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Image Representation



Outline

e How to represent an image as a feature vector?
e Basic image features

* intensity, color, gradients, response to filter(s)

e dense (at each pixel)

e sparse (at a subset of locations)

e Representations
e pixelwise

e histogram
e Global vs. Local histograms
e Spatial pyramids



Basic Image Features

e Given image |, first compute basic image features or feature
responses

e Then consolidate basic image features into a feature vector x that
represents image |

e Simplest basic image feature: intensity of a pixel

e not enough for most applications

e QOther basic image features commonly used:

Color: Texture:
3 values per pixel 1 or 2 values per pixel ~ 48 values per pixel



Extracting Texture (Texture Responses)

e Texture filter bank:
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e Convolve image with each filter

e 48 responses per pixel
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Extracting Texture
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Form a feature
vector from
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responses at
each pixel
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Extracting Texture
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Right features depend on what you want to know

e Object: 2D shape
e Local shape info, shading, shadows, texture

e Scene : overall layout
e |inear perspective, gradients

e Material properties: albedo, feel, hardness, ...
e Color, texture

e Motion
e Optical flow, tracked points

Slide by Derek Hoiem



Pixelwise Representation

e Pile basic image feature values into one vector, say row
order

e Example: intensity as a basic image feature

e one value per pixel
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Pixelwise Representation

e Color as a basic image feature

e three values per pixel

e Pijle all color channel into one vector
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Pixelwise Representation

e Filter responses as a basic image feature

e nvalues per pixel, n is the number of filters

e Pile each filter channel into one vector
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Pixel Representations

e Small change in image appearance

Slide by Erik Learned-Miller



Pixel Representations

e Leads to a large change in feature vector

difference image
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Slide modified from Erik Learned-Miller



Pixel Representations

e Pixelwise representations:
overly sensitive to position

e Nevertheless it has been successfully used in
applications

e eigenfaces, first successful face detection system

Slide by Erik Learned-Miller



Global Intensity Histogram

Think of each intensity value as a “bin”

Visual plot:
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Global Intensity Histogram
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Global Intensity Histogram Quantization

e (Can quantize intensities (larger bins)
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e Histogram: count number of values that fall in each bin

125 5 91

|
|
0 5 10 15

e Quantization
e helps to improve efficiency
e groups similar values together (i.e. removes fine distinction)

e may help for recognition



Multi-Dimensional Histograms

e Basic image features most often multi-dimensional

e color, texture, optical flow, etc.

e How to build histogram?
e Have to quantize, too sparse without quantization



How to Quantize Multi-Dimensional Data?

1. Joint histogram 2. Marginal histogram
e Need lots of data to avoid empty bins *  more data per bin than joint histogram
e Make bins coarse to simulate lots of . works best for independent features
data — loose resolution . loose correlation information
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Histograms based on Irregular Partitioning

feature 2

e |rregular quantization (clustering) gives meaningful bins that

adapt to data

e k-means clustering, etc.
codeword 1

. / codeword 2

o.x..
. . X

feature 2

feature 1 feature 1

e (luster centers are called codewords

feature 2

goes in the ‘bin’ for
codeword 1

A

X

feature 1

e Asample is identified (assigned to) with the closest codeword

e Build histogram over the codeword

e Need to store only the codewords

count how many samples are closest to codeword 1, codeword 2, etc.

Slide Credit: Dave Kauchak



Encoding Image I as Feature Vector

e Pre-computed code-words in green
e Extract 2D features from image/

A
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can also normalize it




Clustered Patches

e So far clustered feature responses at each pixel
e Can cluster other things
e Like image patches =oclenaa il

e overlapping or not codeword 2

codeword 2



Clustered Image Patches
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Feature Vector for image I
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Codewords

e Find codewords on training data, not just one image
e Usually use only a subset of training data for speed

e But not on test data



Analogy to documents: Bag of Words

e |nspiration comes from text classification

eye, cell, optical
nerve, image

Wi, Hubel, Wiesel £

g

China is forecasting a trade surplus of $90bn
(E51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surplus would be created by

China's .
deliberfleXports, Imports, US,




Bag of visual words

* Training
Images

e codewords

or visual
words
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Slide by Derek Hoiem



learning recognition
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codewords dictionary
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Histograms: Implementation issues

e Quantization

e Grids: fast but applicable only with few dimensions
e Clustering: slower but can quantize data in higher dimension

e How many bins (clusters)?

S —

Few Bins Many Bins

Need less data Need more data

Coarser representation Finer representation

If too coarse, distinction is lost If too fine, more distinction

than necessary

Slide Credit: Derek Hoiem



Problem with Global Histogram
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Problem with Global Histogram

Have equal histograms!

Slide by Erik Learned-Miller



Conclusions

1. Pixel representations:
overly sensitive to position

2. Global histogram representations:
under-sensitive to position

Slide by Erik Learned-Miller



A Compromise: A local histogram

A separate (normalized) histogram for each region

1 region hist.
2 region hist.

|16 region hist_.

Slide by Erik Learned-Miller



Local Intensity Histog

ram




Local Intensity Histogram

e |ntensity histogram is sensitive to lighting changes



Local Edge Orientation Histogram

—

e Edges are not as sensitive to lighting changes

e Compute histogram of edges
e typically consider only edge orientation

e How do we choose the right box size?




Spatial pyramid

e Use boxes of different sizes!
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Slide Credit: Derek Hoiem



Spatial Pyramid
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These get piled up into one feature vector
Slide Credit: Derek Hoiem



Other Representations

e Many image representation schemes are based on
histogram of
e texture
e corner features
e SIFT features
o etc.

e There are other ways to represent an image as a feature
vector
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