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SVM
Some pictures from C. Burges



SVM

Said to start in 1979 with Vladimir
Vapnik’s paper

Major developments throughout 1990’s
Elegant theory

e Has good generalization properties

Have been applied to diverse problems
very successfully in the last 10-15 years

One of the most important
developments in pattern recognition in
the last 15 years



Linear Discriminant Functions

e A discriminant function is linear if it can be written as
g(x) = wix + w,

g(x)>0 =x eclass 1
g(x)<0 =x eclass 2

e which separating hyperplane should we choose?



Linear Discriminant Functions

e Training data is just a subset of of all possible data
e Suppose hyperplane is close to sample x;

e |f we see new sample close to sample i, it is likely to be
on the wrong side of the hyperplane
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e Poor generalization (performance on unseen data)



Linear Discriminant Functions

e Hyperplane as far as possible from any sample

e New samples close to old samples will be classified
correctly

e Good generalization



SVM

e |dea: maximize distance to the closest example
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e For the optimal hyperplane

e distance to the closest negative example = distance to the
closest positive example



SVM: Linearly Separable Case

e SVM: maximize the margin
x(2) 1 ‘

e margin is twice the absolute value of distance b of the
closest example to the separating hyperplane
e Better generalization (performance on test data)
e |n practice
e and in theory



SVM: Linearly Separable Case

x(2) %

e Support vectors are samples closest to separating
hyperplane
e they are the most difficult patterns to classify
e Optimal hyperplane is completely defined by support vectors

e of course, we do not know which samples are support vectors without
finding the optimal hyperplane



SVM: Formula for the Margin

X (2

g(x) =wix+w,

absolute distance between x
and the boundary g(x) =0

‘th +W0‘

wi

distance is unchanged for hyperplane
g;(x)=a g (x)

‘awtx +aw0‘ ‘W X +W,

few]  w

Let x; be an example closest to the boundary. Set
‘WtXi +W0‘ =1

Now the largest margin hyperplane is unique



SVM: Formula for the Margin

e For unigueness, set \wtxi +w0\ =1 for any example x;
closest to the boundary
e now distance from closest sample x; to g(x) = 0 is

‘thi +WO‘ 1

i wl X®)

e Thus the margin is
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SVM: Optimal Hyperplane

e Maximize margin m

2
e subject to constraints
w'x, +w,>1 if x, is positive example
w'x, +w, <=1 if x;, is negative example

e let JZ =1 If X;Is positive example
z. =-1 if x, iIs negative example

e Can convert our problem to

minimize 3(w)=w|?

constrained to  z,(w'x, +w, )21 Vi

e J(w) is a quadratic function, thus there is a single global
minimum



SVM: Optimal Hyperplane

e Use Kuhn-Tucker theorem to convert our problem to:

maximize L,(x)= Za —lZZaa 2,2, XX,

Il Bl el Il |
Iljl

constrained to a >0 Vi and Zaizi=0
=1

e a={a,,..., a,}are new variables, one for each sample

e Can rewrite Ly(@) using n by n matrix H:

p— —t p— —

n 1 .
LD(a)=§ai -2 P |H

e where the value in the ith row and jth column of H is
H. —z,sz,x



SVM: Optimal Hyperplane

e Use Kuhn-Tucker theorem to convert our problem to:

maximize LD(a)=Zl:ai—%ZZaiaJZizjxij

i=1 j=1

constrained to @ =0 Vi and Y &z, =0
=1

e a ={a..., a,} are new variables, one for each sample
* Ly(a) can be optimized by quadratic programming

* L,(a) formulated in terms of
e depends on w and w,



SVM: Optimal Hyperplane

e After finding the optimal ¢ = {a,,..., .}

e For every sample i, one of the following must hold
e o =0 (samplei is not a support vector)
e a #0andz(w'x+w,-1)=0(samplei is support vector)

n
e canfindwusing w =) azX,
=1

e can solve for w, using any & > O1 and ¢« [zi(wtxi +W0)—l]=0

_ t
W, —;—W X

e Final discriminant function:

g(X)=(ZaiZaXaJtX+Wo

XiGS

e where S is the set of support vectors
S ={x, |a #0}



SVM: Optimal Hyperplane

maximize Ly(a)= Za &x2,Z XX,

I )Eisj i
1j=1

constrainedto  « 20 Vi and Z

=1

* Ly(a) depends on the number of samples, not on
dimension of samples

e samples appear only through the dot products xitxj

e This will become important when looking for a nonlinear
discriminant function, as we will see soon

e Code available on the web to optimize



SVM: Non Separable Case

e Data is most likely to be not linearly separable, but linear
classifier may still be appropriate
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e Can apply SVM in non linearly separable case
e data should be “almost” linearly separable for good performance



SVM: Non Separable Case

e Use non-negative slack variables &,,..., &,
e one for each sample

e Change constraints from zw'x, +w,)=21 Vi to

zi(wtxi +W0)Z 1-& Vi

e & isameasure of 1 X@
deviation from the ideal

for sample i R

e £ >1 samplei is onthe wrong ‘.
side of the separating hyperplane
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e 0< & <1 samplei is on the right
side of separating hyperplane but
within the region of maximum
margin
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SVM: Non Separable Case

e \Would like to minimize

* where |(§i>o)={

# of samples
IWw,é&,...E )= %H\NH “+ b not in ideal location

1 1f &>0
0 if £ <0

» constrained to z(w'x, +w,)21-& and & >0 Vi

e [ measures relative weight of first and second terms

If #is small, we allow a lot of samples not in ideal position
If B is large, we want to have very few samples not in ideal
position

choosing g appropriately is important



SVM: Non Separable Case

# of examples
J(W,gl,___,gn)=%HWH “+ b not in ideal location

large B, few samples not in small g, alot of samples
ideal position not in ideal position



SVM: Non Separable Case

e Unfortunately this minimization problem is NP-hard due to
discontinuity of functions 1(&)

# of examples
Iw,é&,,..., 5n)=%HWH “+ b not in ideal location

e where I(fi >O)={é :]]: g: 28

e constrained to zi(wtxi+wo)21—§i and & >0 Vi



SVM: Non Separable Case

e |nstead we minimize

a measure of
IW,E,....& )= \W"H 2y B # of misclassified
examples

zi(wtxi +WO)Z 1-& Vi

e constrained to {5 >0 Vi

e Use Kuhn-Tucker theorem to converted to

maximize L,(a)= zn:ai - ZZaIa,z,sz, X
i=1

Iljl

constrainedto 0<e <g Vi and Zaizi=0
=il

e find w using W =) azX;
i=1

e solve for w, usingany O <a; < f# and ¢, [Zi(WtXi +WO)—1]=O



Non Linear Mapping

e Cover’s theorem:

e “pattern-classification problem cast in a high dimensional space
non-linearly is more likely to be linearly separable than in a low-
dimensional space”

e One dimensional space, not linearly separable

00 —o0o000o
3 -2 012 3 5

e Lift to two dimensional space with @(x)=(X,x?)




Non Linear Mapping

e To solve a non linear problem with a linear classifier
1. Project data x to high dimension using function @(X)
2. Find a linear discriminant function for transformed data ¢(X)
3. Final nonlinear discriminant function is g(x) = wt ¢(X) +w,

AX)=(x,X2) u o

5 5 0 ee nn- .
-3-2401235 /n

R R, R ®

e [n 2D, discriminant function is linear

(1) (1)
g([;(((z)]) = [W1 W, ][)):(2)] +W,

e In 1D, discriminant function is not linear g(x)=w,x +w,x* +w,



Non Linear Mapping: Another Example




Non Linear SVM

e Canuse any linear classifier after lifting data into a
higher dimensional space. However we will have to
deal with the “curse of dimensionality”

1. poor generalization to test data
2. computationally expensive

e SVM avoids the “curse of dimensionality” problems
by
e enforcing largest margin permits good generalization

e |t can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality

e computation in the higher dimensional case is performed
only implicitly through the use of kernel functions



Non Linear SVM: Kernels

Recall SVM optimization

maximize L,(@)=Y« —% 0@,2,2 XX,
Note this optimization depends on samples x; only
through the dot product x;'x;

If we lift X; to high dimension using ¢(X), need to
compute high dimensional product @(X;)'¢(x;)

maximize L,(a)= zn:ai —%zn:zn:aiaizizj )
i=1

i=1 j=1

Idea: find kernel function K(x;x;) s.t.
K(x;x;) = @(x;)'ep(x;)



Non Linear SVM: Kernels

maximize L,(a)= Za ——ZZa,a,z,zJ ,

Iljl

* Then we only need to compute K(x;x;) instead of
‘P(Xi)t¢(xj)
e “kernel trick”: do not need to perform operations in
high dimensional space explicitly



Non Linear SVM: Kernels

e Suppose we have 2 features and K(x,y) = (xty)?
e Which mapping ¢(x) does it correspond to?
O\
K(x,y ) - (xty )2 = [[X (1) X(2)]|:y(2)i|]= (X (1)y (®) 4 X(Z)y (2))2

=X(1) (1) 42 (1) ()X(Z) (2) X(2) (2) ¥
(x@y 0f ( y )( )( y )

ot (el

e Thus

p(x)=xOF v2xOx@ (x@F|



Non Linear SVM: Kernels

* How to choose kernel function K(x;x;)?

* K(x;x;) should correspond to product ¢(x;)'¢(x;) in a higher
dimensional space

e Mercer’s condition tells us which kernel function can be
expressed as dot product of two vectors

e Kernel’s not satisfying Mercer’s condition can be sometimes
used, but no geometrical interpretation

e Some common choices (satisfying Mercer’s condition):

e Polynomial kernel
K(xi,xj)=(xitxj +1)IO

e Gaussian radial Basis kernel (data is lifted in infinite dimensions)

K(xi,xj)= exp(— 21 Hxi —XjHZJ

2
(o)




Non Linear SVM

e search for separating hyperplane in high dimension
wo(x)+w, =0

e Choose @(x) so that the first (“0”th) dimension is the
augmented dimension with feature value fixed to 1

¢(X)=[1 x @ x @) X(l)X(Z)]‘

e Threshold parameter w, gets folded into the weight

vector w
[W0 W =0



Non Linear SVM

e Will not use notation a=[w, w], we'll use old
notation w and seek hyperplane through the origin

W¢(x)=0

e If the first component of @(X) is not 1, the above is
equivalent to saying that the hyperplane has to go
through the origin in high dimension

e removes only one degree of freedom

e But we have introduced many new degrees when we lifted
the data in high dimension



Non Linear SVM Recepie

e Start with data x,,...,.x, which lives in feature space of
dimension d

* Choose kernel K(x;x;) or function ¢(x;) which takes sample
x; to a higher dimensional space

e Find the largest margin linear discriminant function
in the higher dimensional space by using quadratic
programming package to solve:

maximize L,(a)= Za Z az,z,K(x,,x,)
1 j=1

constrainedto 0<e <p Vi and Y az =0
=l




Non Linear SVM Recipe

e Weight vector win the high dimensional space:

W = Zaizi¢(xi)

XiES

* where S is the set of support vectors S ={x, | & # 0}

e Linear discriminant function of largest margin in the
high dimensional space:

o(o0)=w'o(x) = Tz (»j}(x)

X. €S

e Non linear discriminant function in the original space:
g(x)=(zaizi¢(xi)J ¢(X) = Zaizi¢t(xi)¢(x) = ZaiZiK(Xi ’X)
X; €S X; €S X; €S

e decideclass1ifg(x)>0, otherwise decide class 2



Non Linear SVM

g(X)= Z & ([ £

g(x)=Y;

Nonlinear discriminant function

K(xi,x)

XiES

weight of support
vector X;

— similarity
+1|| petween x’and
support vector X;

most important
training samples
l.e. support vectors

1
K(xi ,x)= exp(— 2572




SVM Example: XOR Problem

Class 1: x,=[1,-1], x, = [-1,1]
Class 2: x;=[1,1], x, = [-1,-1]

Use polynomial kernel of degree 2:
K(x,x;) = (x;tx;+ 1)?

This kernel corresponds to mapping

(x)= [1 J2xW

Need to maximize

constrained to

J2x?

L (a) Za —Z

0<Lg Vi

\/Ex(l)x(z)

and a, +a,

O

b

azzj(x +1)z

-, =0

o}



SVM Example: XOR Problem

4
e Canrewrite Ly(a)=) ¢« —%atHa

i=1 9 1 -1 -1

1 9 -1 -1

P Where a:[al a2 a3 a4]‘ and H = _1 _1 9 1
-1-1 1 9

e Take derivative with respectto ¢ and setitto 0

’ 11 [9 1-1-1
I Y - T s
qa@=1]-|-1 -1 "9 "1@=0
i [-1-1 1 9

e Solution to the aboveis = o, = a3 = a, = 0.25

e satisfies the constraints Vi, 0<ea and a,+a,—a,—a, =0

e all samples are support vectors



SVM Example: XOR Problem

(X) = [1 \/Ex(l) \/EX(Z) \/Ex(l)x(z) (X(l) )2 (X(z) )2]|

Weight vector w is:

4
W =Zaizi¢(xi) =0'25(¢(X1)+¢(X2)_¢(X3)_¢(X4))
i=1
o 0o 0o V2 0o o
J by plugging in x,=[1,-1], x,=[-1,1], x;=[1,1], x, = [-1,-1]

Thus the nonlinear discriminant function is:

o) =wol) = Swo () = VaNEK) = 2"



SVM Example: XOR Problem

g(x)=-2xWx®
o) Dy @

decision boundaries nonlinear decision boundary is linear



Degree 3 Polynomial Kernel

In linearly separable case (on the left), decision
boundary is roughly linear, indicating that
dimensionality is controlled

Nonseparable case (on the right) is handled by a
polynomial of degree 3



SVM Summary

e Advantages:
e Based on nice theory
e excellent generalization properties
e objective function has no local minima
e can be used to find non linear discriminant functions

e Complexity of the classifier is characterized by the number of
support vectors rather than the dimensionality of the
transformed space

e Disadvantages:
e tends to be slower than other methods
e quadratic programming is computationally expensive
e Not clear how to choose the Kernel
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