CS840a

Learning and Computer Vision Prof. Olga Veksler

Lecture 8
 SVM

Some pictures from C. Burges

- Said to start in 1979 with Vladimir Vapnik's paper
- Major developments throughout 1990's
- Elegant theory
- Has good generalization properties
- Have been applied to diverse problems very successfully in the last 10-15 years
- One of the most important developments in pattern recognition in the last 15 years

Linear Discriminant Functions

- A discriminant function is linear if it can be written as

$$
\begin{gathered}
g(x)=w^{t} x+w_{0} \\
\begin{array}{c}
g(x)>0 \Rightarrow x \in \text { class } 1 \\
g(x)<0 \Rightarrow x \in \text { class } 2
\end{array}
\end{gathered}
$$

- which separating hyperplane should we choose?

Linear Discriminant Functions

- Training data is just a subset of of all possible data
- Suppose hyperplane is close to sample $\boldsymbol{x}_{\boldsymbol{i}}$
- If we see new sample close to sample \boldsymbol{i}, it is likely to be on the wrong side of the hyperplane

- Poor generalization (performance on unseen data)

Linear Discriminant Functions

- Hyperplane as far as possible from any sample

- New samples close to old samples will be classified correctly
- Good generalization

SVM

- Idea: maximize distance to the closest example

- For the optimal hyperplane
- distance to the closest negative example = distance to the closest positive example

SVM: Linearly Separable Case

- SVM: maximize the margin

- margin is twice the absolute value of distance \boldsymbol{b} of the closest example to the separating hyperplane
- Better generalization (performance on test data)
- in practice
- and in theory

SVM: Linearly Separable Case

- Support vectors are samples closest to separating hyperplane
- they are the most difficult patterns to classify
- Optimal hyperplane is completely defined by support vectors
- of course, we do not know which samples are support vectors without finding the optimal hyperplane

SVM: Formula for the Margin

- $g(x)=w^{t} x+w_{0}$
- absolute distance between \boldsymbol{x} and the boundary $\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$

$$
\left|w^{t} x+w_{0}\right|
$$

$$
\|w\|
$$

- distance is unchanged for hyperplane $\boldsymbol{g}_{1}(\boldsymbol{x})=\alpha \boldsymbol{g}(\boldsymbol{x})$

$$
\frac{\left|\alpha w^{t} x+\alpha w_{0}\right|}{\|\alpha w\|}=\frac{\left|w^{t} x+w_{0}\right|}{\|w\|}
$$

- Let $\boldsymbol{x}_{\boldsymbol{i}}$ be an example closest to the boundary. Set

$$
\left|w^{t} x_{i}+w_{0}\right|=1
$$

- Now the largest margin hyperplane is unique

SVM: Formula for the Margin

- For uniqueness, set $\left|w^{t} \boldsymbol{x}_{i}+w_{0}\right|=\mathbf{1}$ for any example $\boldsymbol{x}_{\boldsymbol{i}}$ closest to the boundary
- now distance from closest sample $\boldsymbol{x}_{\boldsymbol{i}}$ to $\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$ is

$$
\frac{\left|w^{t} x_{i}+w_{0}\right|}{\|w\|}=\frac{1}{\|w\|}
$$

- Thus the margin is

$$
m=\frac{2}{\|w\|}
$$

SVM: Optimal Hyperplane

- Maximize margin

$$
m=\frac{2}{\|w\|}
$$

- subject to constraints

$$
\left\{\begin{array}{l}
w^{t} x_{i}+w_{0} \geq 1 \text { if } x_{i} \text { is positive example } \\
w^{t} x_{i}+w_{0} \leq-1 \text { if } x_{i} \text { is negative example }
\end{array}\right.
$$

- Let $\begin{cases}z_{i}=1 & \text { if } x_{i} \text { is positive example } \\ z_{i}=-1 & \text { if } x_{i} \text { is negative example }\end{cases}$
- Can convert our problem to
minimize $J(w)=\frac{1}{\mathbf{2}}\|w\|^{2}$
constrained to $\quad z_{i}\left(w^{t} x_{i}+w_{0}\right) \geq 1 \quad \forall i$
- $J(\boldsymbol{w})$ is a quadratic function, thus there is a single global minimum

SVM: Optimal Hyperplane

- Use Kuhn-Tucker theorem to convert our problem to:

$$
\begin{aligned}
\text { maximize } & L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} x_{i}^{t} x_{j} \\
\text { constrained to } & \alpha_{i} \geq 0 \quad \forall i \text { and } \sum_{i=1}^{n} \alpha_{i} z_{i}=0
\end{aligned}
$$

- $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ are new variables, one for each sample
- Can rewrite $L_{D}(\alpha)$ using \boldsymbol{n} by \boldsymbol{n} matrix \boldsymbol{H} :

$$
L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2}\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]^{t} H\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

- where the value in the \boldsymbol{i} th row and \boldsymbol{j} th column of \boldsymbol{H} is

$$
H_{i j}=z_{i} z_{j} x_{i}^{t} x_{j}
$$

SVM: Optimal Hyperplane

- Use Kuhn-Tucker theorem to convert our problem to:

$$
\text { maximize } \quad L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} x_{i}^{t} x_{j}
$$

constrained to

$$
\alpha_{i} \geq 0 \quad \forall i \quad \text { and } \sum_{i=1}^{n} \alpha_{i} z_{i}=0
$$

- $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ are new variables, one for each sample
- $L_{D}(\alpha)$ can be optimized by quadratic programming
- $L_{D}(\alpha)$ formulated in terms of α
- depends on w and w_{0}

SVM: Optimal Hyperplane

- After finding the optimal $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$
- For every sample i, one of the following must hold
- $\alpha_{i}=0$ (sample \boldsymbol{i} is not a support vector)
- $\boldsymbol{\alpha}_{i} \neq 0$ and $\boldsymbol{z}_{\boldsymbol{i}}\left(\boldsymbol{w}^{t} \boldsymbol{x}_{i}+\boldsymbol{w}_{0}-\mathbf{1}\right)=\mathbf{0}$ (sample \boldsymbol{i} is support vector)
- can find \boldsymbol{w} using $\boldsymbol{w}=\sum_{i=1}^{n} \alpha_{i} z_{i} x_{i}$
- can solve for w_{0} using any $\alpha_{i}>0$ and $\alpha_{i}\left[z_{i}\left(w^{t} x_{i}+w_{0}\right)-1\right]=0$

$$
w_{0}=\frac{1}{z_{i}}-w^{t} x_{i}
$$

- Final discriminant function:

$$
g(x)=\left(\sum_{x_{i} \in S} \alpha_{i} z_{i} x_{i}\right)^{t} x+w_{0}
$$

- where \boldsymbol{S} is the set of support vectors

$$
S=\left\{x_{i} \mid \alpha_{i} \neq 0\right\}
$$

SVM: Optimal Hyperplane

$$
\text { maximize } \quad L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} x_{i}^{t} x_{j}
$$

constrained to $\quad \alpha_{i} \geq 0 \quad \forall i$ and $\sum_{i=1}^{n} \alpha_{i} z_{i}=0$

- $L_{D}(\alpha)$ depends on the number of samples, not on dimension of samples
- samples appear only through the dot products $\boldsymbol{x}_{\boldsymbol{i}}^{\boldsymbol{t}} \boldsymbol{x}_{\boldsymbol{j}}$
- This will become important when looking for a nonlinear discriminant function, as we will see soon
- Code available on the web to optimize

SVM: Non Separable Case

- Data is most likely to be not linearly separable, but linear classifier may still be appropriate

- Can apply SVM in non linearly separable case
- data should be "almost" linearly separable for good performance

SVM: Non Separable Case

- Use non-negative slack variables ξ_{1}, \ldots, ξ_{n}
- one for each sample
- Change constraints from $z_{i}\left(w^{t} x_{i}+w_{0}\right) \geq 1 \quad \forall i$ to

$$
z_{i}\left(w^{t} x_{i}+w_{o}\right) \geq 1-\xi_{i} \quad \forall i
$$

- ξ_{i} is a measure of deviation from the ideal for sample i
- $\xi_{i}>1$ sample \boldsymbol{i} is on the wrong side of the separating hyperplane
- $0<\xi_{i}<1$ sample \boldsymbol{i} is on the right side of separating hyperplane but within the region of maximum margin

SVM: Non Separable Case

- Would like to minimize

$$
J\left(w, \xi_{1}, \ldots, \xi_{n}\right)=\frac{\mathbf{1}}{\mathbf{2}}\|\boldsymbol{w}\|^{2}+\beta \sum_{i=1}^{n}\left(\xi_{i}>0\right) \quad \begin{gathered}
\text { \# of samples } \\
\text { not in ideal location }
\end{gathered}
$$

- where $I\left(\xi_{i}>0\right)=\left\{\begin{array}{lll}1 & \text { if } & \xi_{i}>0 \\ 0 & \text { if } & \xi_{i} \leq 0\end{array}\right.$
- constrained to $z_{i}\left(w^{t} x_{i}+w_{0}\right) \geq 1-\xi_{i}$ and $\xi_{i} \geq 0 \quad \forall i$
- $\quad \beta$ measures relative weight of first and second terms
- if β is small, we allow a lot of samples not in ideal position
- if β is large, we want to have very few samples not in ideal position
- choosing β appropriately is important

SVM: Non Separable Case

$$
J\left(w, \xi_{1}, \ldots, \xi_{n}\right)=\frac{1}{2}\|w\|^{2}+\beta \sum_{i=1}^{n} I\left(\xi_{i}>0\right) \text { \# of examples }
$$

large β, few samples not in ideal position

small β, a lot of samples not in ideal position

SVM: Non Separable Case

- Unfortunately this minimization problem is NP-hard due to discontinuity of functions $I\left(\xi_{i}\right)$

$$
J\left(w, \xi_{1}, \ldots, \xi_{n}\right)=\frac{1}{2}\|w\|^{2}+\beta \sum_{\sum_{i=1}^{n} l\left(\xi_{i}>0\right)} \begin{gathered}
\text { \# of examples } \\
\text { not in ideal location }
\end{gathered}
$$

- where $I\left(\xi_{i}>0\right)=\left\{\begin{array}{lll}1 & \text { if } & \xi_{i}>0 \\ 0 & \text { if } & \xi_{i} \leq 0\end{array}\right.$
- constrained to $z_{i}\left(w^{t} x_{i}+w_{0}\right) \geq 1-\xi_{i}$ and $\xi_{i} \geq 0 \quad \forall i$

SVM: Non Separable Case

- Instead we minimize

$$
\boldsymbol{J}\left(w, \xi_{1}, \ldots, \xi_{n}\right)=\frac{\mathbf{1}}{\mathbf{2}}\|\boldsymbol{w}\|^{2}+\beta \sum_{i=1}^{n} \xi_{i} \quad \begin{gathered}
\text { a measure of } \\
\# \text { of misclassified } \\
\text { examples }
\end{gathered}
$$

- constrained to $\begin{cases}z_{i}\left(w^{t} x_{i}+w_{0}\right) \geq 1-\xi_{i} & \forall i \\ \xi_{i} \geq 0 & \forall i\end{cases}$
- Use Kuhn-Tucker theorem to converted to

$$
\text { maximize } \quad L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} z_{i} z_{j} x_{i}^{t} x_{j}
$$

constrained to

$$
0 \leq \alpha_{i} \leq \beta \quad \forall i \quad \text { and } \sum_{i=1}^{n} \alpha_{i} z_{i}=0
$$

$$
w=\sum_{i=1}^{n} \alpha_{i} z_{i} x_{i}
$$

- solve for w_{0} using any $0<\alpha_{i}<\beta$ and $\alpha_{i}\left[z_{i}\left(w^{t} x_{i}+w_{0}\right)-1\right]=0$
- Cover's theorem:
- "pattern-classification problem cast in a high dimensional space non-linearly is more likely to be linearly separable than in a lowdimensional space"
- One dimensional space, not linearly separable

- Lift to two dimensional space with $\varphi(x)=\left(x, x^{2}\right)$

Non Linear Mapping

- To solve a non linear problem with a linear classifier

1. Project data \boldsymbol{x} to high dimension using function $\boldsymbol{\varphi}(\boldsymbol{x})$
2. Find a linear discriminant function for transformed data $\varphi(x)$
3. Final nonlinear discriminant function is $g(x)=w^{t} \varphi(x)+w_{0}$

- In 2D, discriminant function is linear

$$
g\left(\left[\begin{array}{l}
x^{(1)} \\
x^{(2)}
\end{array}\right]\right)=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]\left[\begin{array}{l}
x^{(1)} \\
x^{(2)}
\end{array}\right]+w_{0}
$$

- In 1D, discriminant function is not linear $g(x)=w_{1} x+w_{2} x^{2}+w_{0}$

Non Linear Mapping: Another Example

- Can use any linear classifier after lifting data into a higher dimensional space. However we will have to deal with the "curse of dimensionality"

1. poor generalization to test data
2. computationally expensive

- SVM avoids the "curse of dimensionality" problems by
- enforcing largest margin permits good generalization
- It can be shown that generalization in SVM is a function of the margin, independent of the dimensionality
- computation in the higher dimensional case is performed only implicitly through the use of kernel functions

Non Linear SVM: Kernels

- Recall SVM optimization

$$
\text { maximize } \quad L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} z_{i} z_{j} x_{i}^{t} x_{j}
$$

- Note this optimization depends on samples $\boldsymbol{x}_{\boldsymbol{i}}$ only through the dot product $\boldsymbol{x}_{i}{ }^{t} \boldsymbol{x}_{\boldsymbol{j}}$
- If we lift $\boldsymbol{x}_{\boldsymbol{i}}$ to high dimension using $\boldsymbol{\varphi}(\boldsymbol{x})$, need to compute high dimensional product $\boldsymbol{\varphi}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{t} \boldsymbol{\varphi}\left(\boldsymbol{x}_{j}\right)$
> maximize $\quad L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} z_{i} z_{j}\binom{\left(x_{i}\right)^{t} \varphi\left(x_{j}\right)}{K\left(x_{i j} x_{j}\right)}$.
- Idea: find kernel function $K\left(x_{i}, x_{j}\right)$ s.t.

$$
K\left(x_{i}, x_{j}\right)=\varphi\left(x_{i}\right)^{t} \varphi\left(x_{j}\right)
$$

Non Linear SVM: Kernels

maximize $\quad L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} z_{i} z_{j}\left(\begin{array}{c}\left(x_{i}\right)^{t} \varphi\left(x_{j}\right) \\ K\left(x_{i j} x_{j}\right)\end{array}\right.$

- Then we only need to compute $\boldsymbol{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ instead of $\boldsymbol{\varphi}\left(x_{i}\right)^{\boldsymbol{t}} \boldsymbol{\varphi}\left(x_{j}\right)$
- "kernel trick": do not need to perform operations in high dimensional space explicitly

Non Linear SVM: Kernels

- \quad Suppose we have 2 features and $K(x, y)=\left(x^{t} y\right)^{2}$

Which mapping $\boldsymbol{\varphi}(\boldsymbol{x})$ does it correspond to?

$$
\left.\begin{array}{l}
K(x, y)=\left(x^{t} y\right)^{2}=\left(\left[\begin{array}{ll}
x^{(1)} & x^{(2)}
\end{array}\right]\left[\begin{array}{l}
y^{(1)} \\
y^{(2)}
\end{array}\right]\right)^{2}=\left(x^{(1)} y^{(1)}+x^{(2)} y^{(2)}\right)^{2} \\
\quad=\left(x^{(1)} y^{(1)}\right)^{2}+2\left(x^{(1)} y^{(1)}\right)\left(x^{(2)} y^{(2)}\right)+\left(x^{(2)} y^{(2)}\right)^{2} \\
\quad=\left[\begin{array}{llll}
\left(x^{(1)}\right)^{2} & \sqrt{2} x^{(1)} x^{(2)} & \left(x^{(2)}\right)^{2}
\end{array}\right]\left[\left(y^{(1)}\right)^{2}\right. \\
\sqrt{2} y^{(1)} y^{(2)} \\
\left(y^{(2)}\right)^{2}
\end{array}\right]^{t} .
$$

Thus
$\left.\varphi(x)=\| \begin{array}{lll}\left(x^{(1)}\right)^{2} & \sqrt{2} x^{(1)} x^{(2)} & \left(x^{(2)}\right)^{2}\end{array}\right]$

Non Linear SVM: Kernels

- How to choose kernel function $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$?
- $\boldsymbol{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ should correspond to product $\boldsymbol{\varphi}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{\boldsymbol{t}} \boldsymbol{\varphi}\left(\mathbf{x}_{j}\right)$ in a higher dimensional space
- Mercer's condition tells us which kernel function can be expressed as dot product of two vectors
- Kernel's not satisfying Mercer's condition can be sometimes used, but no geometrical interpretation
- Some common choices (satisfying Mercer's condition):
- Polynomial kernel

$$
K\left(x_{i}, x_{j}\right)=\left(x_{i}^{t} x_{j}+1\right)^{p}
$$

- Gaussian radial Basis kernel (data is lifted in infinite dimensions)

$$
K\left(x_{i}, x_{j}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{i}-x_{j}\right\|^{2}\right)
$$

- search for separating hyperplane in high dimension

$$
w \varphi(x)+w_{0}=0
$$

- Choose $\varphi(x)$ so that the first (" 0 "th) dimension is the augmented dimension with feature value fixed to 1

$$
\varphi(x)=\left[\begin{array}{llll}
1 & x^{(1)} & x^{(2)} & x^{(1)} x^{(2)}
\end{array}\right]^{\boldsymbol{t}}
$$

- Threshold parameter \boldsymbol{w}_{0} gets folded into the weight vector \boldsymbol{w}

$$
\left.\begin{array}{ll}
w_{0} & w
\end{array}\right]\left[\begin{array}{l}
1 \\
*
\end{array}\right]=0
$$

- Will not use notation $a=\left[w_{0} w\right]$, we'll use old notation \boldsymbol{w} and seek hyperplane through the origin

$$
w \varphi(x)=0
$$

- If the first component of $\varphi(x)$ is not 1 , the above is equivalent to saying that the hyperplane has to go through the origin in high dimension
- removes only one degree of freedom
- But we have introduced many new degrees when we lifted the data in high dimension
- Start with data $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ which lives in feature space of dimension d
Choose kernel $\boldsymbol{K}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)$ or function $\boldsymbol{\varphi}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$ which takes sample x_{i} to a higher dimensional space

Find the largest margin linear discriminant function in the higher dimensional space by using quadratic programming package to solve:
maximize $L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} z_{i} z_{j} K\left(x_{i}, x_{j}\right)$
constrained to $0 \leq \alpha_{i} \leq \beta \quad \forall i$ and $\sum_{i=1}^{n} \alpha_{i} z_{i}=0$

Non Linear SVM Recipe

- Weight vector \boldsymbol{w} in the high dimensional space:

$$
w=\sum_{x_{i} \in S} \alpha_{i} z_{i} \varphi\left(x_{i}\right)
$$

- where \boldsymbol{S} is the set of support vectors

$$
S=\left\{x_{i} \mid \alpha_{i} \neq 0\right\}
$$

Linear discriminant function of largest margin in the high dimensional space:

$$
g(\varphi(x))=w^{t} \varphi(x)=\left(\sum_{x_{i} \in \mathrm{~S}} \alpha_{i} z_{i} \varphi\left(x_{i}\right)\right)^{t} \varphi(x)
$$

Non linear discriminant function in the original space:

$$
g(x)=\left(\sum_{x_{i} \in S} \alpha_{i} z_{i} \varphi\left(x_{i}\right)\right)^{t} \varphi(x)=\sum_{x_{i} \in S} \alpha_{i} z_{i} \varphi^{t}\left(x_{i}\right) \varphi(x)=\sum_{x_{i} \in S} \alpha_{i} z_{i} K\left(x_{i}, x\right)
$$

- decide class 1 if $\boldsymbol{g}(\boldsymbol{x})>0$, otherwise decide class 2

Non Linear SVM

- Nonlinear discriminant function

$$
g(x)=\sum_{x \in S}\left[\begin{array}{l}
\alpha \\
\alpha, z_{i} \mid \\
\mid k\left(x_{i}, x\right)
\end{array}\right.
$$

$$
\boldsymbol{g}(\boldsymbol{x})=\sum \begin{gathered}
\begin{array}{c}
\text { weight of support } \\
\text { vector } \boldsymbol{x}_{i}
\end{array} \quad \mp \mathbf{1} \begin{array}{c}
\text { similarity } \\
\text { between } \boldsymbol{x} \text { and } \\
\text { support vector } \boldsymbol{x}_{i}
\end{array}, ~
\end{gathered}
$$

most important training samples, i.e. support vectors

$$
K\left(x_{i}, x\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{i}-x\right\|^{2}\right)
$$

- Class 1: $\mathbf{x}_{1}=[1,-1], x_{2}=[-1,1]$

Class 2: $x_{3}=[1,1], x_{4}=[-1,-1]$
Use polynomial kernel of degree 2 :

- $K\left(x_{i}, x_{j}\right)=\left(\boldsymbol{x}_{i}{ }^{t} \boldsymbol{x}_{j}+1\right)^{2}$
- This kernel corresponds to mapping

$$
(x)=\left[\begin{array}{lllll}
1 & \sqrt{2} x^{(1)} & \sqrt{2} x^{(2)} & \sqrt{2} x^{(1)} \mathbf{x}^{(2)} & \left(\mathbf{x}^{(1)}\right)^{2}
\end{array} \quad\left(\mathbf{x}^{(2)}\right)^{2}\right]^{t}
$$

Need to maximize

$$
\left.\left.L_{D}(\alpha)=\sum_{i=1}^{4} \alpha_{i} \quad \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{i} \alpha_{i} \mathbf{z}_{i} \mathbf{z}_{j} \right\rvert\, \mathbf{x}_{i}^{t} \mathbf{x}_{j}+1\right)^{2}
$$

constrained to

$$
0 \leq \alpha_{i} \quad \forall i \quad \text { and } \quad \alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}=0
$$

SVM Example: XOR Problem

Can rewrite $\quad L_{D}(\alpha)=\sum_{i=1}^{4} \alpha_{i}-\frac{1}{2} \alpha^{t} H \alpha$

- where $\alpha=\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4}\end{array}\right]^{t}$ and $H=\left[\begin{array}{rrrr}9 & 1 & -1 & -1 \\ 1 & 9 & -1 & -1 \\ -1 & -1 & 9 & 1 \\ -1 & -1 & 1 & 9\end{array}\right]$

Take derivative with respect to α and set it to $\mathbf{0}$

$$
\frac{d}{d a} L_{D}(\alpha)=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{rrrr}
9 & 1 & -1 & -1 \\
1 & 9 & -1 & -1 \\
-1 & -1 & 9 & 1 \\
-1 & -1 & 1 & 9
\end{array}\right] \alpha=0
$$

Solution to the above is $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0.25$

- satisfies the constraints $\forall i, 0 \leq \alpha_{i}$ and $\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}=0$
- all samples are support vectors

$$
(\mathbf{x})=\left[\begin{array}{llllll}
1 & \sqrt{2} \mathbf{x}^{(1)} & \sqrt{2} \mathbf{x}^{(2)} & \sqrt{2} \mathbf{x}^{(1)} \mathbf{x}^{(2)} & \left(\mathbf{x}^{(1)}\right)^{2} & \left.\left(\mathbf{x}^{(2)}\right)^{2}\right)^{\mathbf{t}}
\end{array}\right.
$$

Weight vector \boldsymbol{w} is:

$$
\begin{aligned}
w=\sum_{i=1}^{4} \alpha_{i} z_{i} \varphi\left(x_{i}\right) & =0.25\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)-\varphi\left(x_{3}\right)-\varphi\left(x_{4}\right)\right) \\
& =\left[\begin{array}{llllll}
0 & 0 & 0 & \sqrt{2} & 0 & 0
\end{array}\right]
\end{aligned}
$$

- by plugging in $\mathbf{x}_{1}=[1,-1], \mathbf{x}_{2}=[-1,1], \mathbf{x}_{3}=[1,1], \mathbf{x}_{4}=[-1,-1]$

Thus the nonlinear discriminant function is:

$$
g(x)=w \varphi(x)=\sum_{i=1}^{6} w_{i} \varphi_{i}(x)=\sqrt{2}\left(\sqrt{2} x^{(1)} x^{(2)}\right)=2 x^{(1)} x^{(2)}
$$

$$
g(x)=-2 x^{(1)} X^{(2)}
$$

decision boundaries nonlinear
decision boundary is linear

Degree 3 Polynomial Kernel

- In linearly separable case (on the left), decision boundary is roughly linear, indicating that dimensionality is controlled
- Nonseparable case (on the right) is handled by a polynomial of degree 3
- Advantages:
- Based on nice theory
- excellent generalization properties
- objective function has no local minima
- can be used to find non linear discriminant functions
- Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space
- Disadvantages:
- tends to be slower than other methods
- quadratic programming is computationally expensive
- Not clear how to choose the Kernel

