CS9840 Learning and Computer Vision Prof. Olga Veksler

Lecture 10 Neural Networks

Many slides are from A. Ng, Y. LeCun, G. Hinton, A. Ranzato, Fei-Fei Li, R. Fergus

Outline

- Intro/History
- Perceptron: 1 layer Neural Network (NN)
- Multilayer NN
 - also called
 - Multilayer Perceptron (MLP)
 - Artificial Neural Network (ANN)
 - Feedforward Neural Network
- Training Neural Networks
 - Backpropagation algorithm
 - Practical tips for training

Artificial Neural Networks

- Neural Networks correspond to some classifier function f_{NN}(x)
- Can carve out arbitrarily complex decision boundaries without requiring as many terms as polynomial functions
- Originally inspired by research in how human brain works
 - but cannot claim that this is how the brain actually works
- Now very successful in practice, but took a while to get there

ANN History: First Successes

- 1958, F. Rosenblatt, Cornell University
 - Perceptron, oldest neural network
 - studied in lecture on linear classifiers
 - Algorithm to train the Perceptron

- Built in hardware to recognize digits images
- Proved convergence in linearly separable case
- Early success lead to a lot of claims which were not fulfilled
- New York Times reports that perceptron is "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

ANN History: Stagnation

- 1969, M. Minsky and S. Pappert
 - Book "Perceptrons"
 - Proved that perceptrons can learn only linearly separable classes
 - In particular cannot learn very simple XOR function
 - Conjectured that multilayer neural networks also limited by linearly separable functions
- No funding and almost no research (at least in North America) in 1970's as the result of 2 things above

ANN History: Revival & Stagnation (Again)

- Revival of ANN in early 1980
- 1986, (re)discovery of backpropagation algorithm by Werbos, Rumelhart, Hinton and Ronald Williams
 - Allows training a MLP
- Many examples of mulitlayer Neural Networks appear
- 1998, Convolutional network (convnet) by Y. Lecun for digit recognition, very successful
- 1990's: research in NN move slowly again
 - Networks with multiple layers are hard to train well (except convnet for digit recognition)
 - SVM becomes popular, works better

ANN History: Deep Learning Age

- Deep networks are inspired by brain architecture
- Until now, no success at training them, except convnet
- 2006-now: deep networks are trained successfully
 - massive training data becomes available
 - better hardware: fast training on GPU
 - better training algorithms for network training when there are many hidden layers
 - unsupervised learning of features, helps when training data is limited
- Break through papers
 - Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554.
 - Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19
- Industry: Facebook, Google, Microsoft, etc.

Biology: Neuron, Basic Brain Processor

- Neurons (or nerve cells) are special cells that process and transmit information by electrical signaling
 - in brain and also spinal cord
- Human brain has around 10¹¹ neurons
- A neuron connects to other neurons to form a network
- Each neuron cell communicates to anywhere from 1000 to 10,000 other neurons

Biology: Main Components of Neuron

- cell body
 - computational unit
- dendrites
 - "input wires", receive inputs from other neurons
 - a neuron may have thousands of dendrites, usually short
- axon
 - "output wire", sends signal to other neurons
 - single long structure (up to 1 meter)
 - splits in possibly thousands branches at the end, "axon terminals"

Perceptron: 1 Layer Neural Network

- Linear classifier f(x) = sign(w^tx+w₀) is a single neuron "net"
- Input layer units emits features, except bias emits "1"
- Output layer unit applies h(t) = sign(t)
- **h**(t) is also called an *activation function*

Multilayer Neural Network

- First hidden unit outputs
- Second hidden unit outputs
- Network implements classifier

 $h(w_0 + w_1 x_1 + w_2 x_2)$ $h(w_0 + w_1 x_1 + w_2 x_2)$

 $\mathbf{f}(\mathbf{x}) = \mathbf{h}(\mathbf{w}\mathbf{h}(\cdot) + \mathbf{w}\mathbf{h}(\cdot))$

• More complex boundaries than Perceptron

Multilayer Neural Network: Small Example

• Implements classifier

 $\mathbf{f}(\mathbf{x}) = \operatorname{sign}(4\mathbf{h}(\cdot) + 2\mathbf{h}(\cdot) + 7)$

= sign(4 sign(3x₁+5x₂)+2 sign(6+3x₂) + 7)

- Computing f(x) is called *feed forward operation*
 - graphically, function is computed from left to right
- Edge weights are learned through training

Multilayer NN: General Structure

- f (x) is multi-dimensional
- Classification
 - If **f**₁(**x**) is largest, decide class 1
 - If **f**₂(**x**) is largest, decide class 2
 - If **f**₃(**x**) is largest, decide class 3

Multilayer NN : Multiple Classes

- 3 classes, 2 features, 1 hidden layer
 - 3 input units, one for each feature
 - 3 output units, one for each class
 - 2 hidden units
 - 1 bias unit, can draw in layer 1, or each layer has one

Multilayer NN : General Structure

- Input layer: **d** features, **d** input units
- Output layer: **m** classes, **m** output units
- Hidden layer: how many units?
 - more units correspond to more complex classifiers

Multilayer NN : General Structure

- Can have many hidden layers
- Feed forward structure
 - ith layer connects to (i+1)th layer
 - except bias unit can connect to any layer
 - or, alternatively each layer can have its own bias unit

Multilayer NN : Overview

- NN corresponds to rather complex classifier f(x,w)
 - complexity depends on the number of hidden layers/units
 - f(x,w) is a composition of many functions
 - easier to visualize as a network
 - notation gets ugly
- To train NN, just as before
 - formulate an objective or *loss* function **L(w)**
 - optimize it with gradient descent
 - lots of heuristics to get gradient descent work well enough

Multilayer NN : Expressive Power

- Every continuous function from input to output can be implemented with enough hidden units, 1 hidden layer, and proper *nonlinear* activation functions
 - easy to show that with linear activation function, multilayer neural network is equivalent to perceptron
- More of theoretical than practical interest
 - do not know the desired function in the first place, our goal is to learn it through the samples
 - but this result gives confidence that we are on the right track
 - multilayer NN is general (expressive) enough to construct any required decision boundaries, unlike the Perceptron

Multilayer NN: Decision Boundaries

 Perceptron (single layer neural net)

- Multilayer NN
- Arbitrarily complex decision regions
- Even not contiguous

Multilayer NN : Nonlinear Boundary Example

 $-\mathbf{x}_1 + \mathbf{x}_2 - 1 > 0 \Rightarrow$ class 1

 $\mathbf{x}_1 - \mathbf{x}_2 - 3 > 0 \Rightarrow$ class 1

Multilayer NN : Nonlinear Boundary Example

• Combine two Perceptrons into a 3 layer NN

- Interpretation
 - 1 hidden layer maps input features to new features
 - next layer then applies linear classifier to the new features

this part implements Perceptron (liner classifier)

this part implements mapping to new features **y**

• Consider 3 layer NN example we saw previously:

the original feature space

linearly separable in the new feature space

Multi Layer NN: Activation Function

- h() = sign() does not work for gradient descent
- Can use tanh or sigmoid function

- Rectified Linear (ReLu) popular recently
 - gradients do not saturate for positive halfinterval
 - but have to be careful with learning rate, otherwise many units can become "dead", i.e. always output 0

Multilayer NN: Modes of Operation

- Due to historical reasons, training and testing stages have special names
 - Backpropagation (or training)
 Minimize objective function with gradient descent
 - Feedforward (or testing)

- Convenient compact notation
- For Perceptron

$$\mathbf{x} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{bmatrix}$$

• Change notation a bit

• Do not draw bias unit

• Compact picture

$$\xrightarrow{\mathbf{X}} \mathbf{h}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}) \xrightarrow{\mathbf{h}}$$

• **h**(t) = sign(t)

• Consider the first layer (2 perceptrons)

- Red perceptron has weights w¹ and bias b₁
- Green perceptron has weights w² and bias b₂

$$\begin{array}{c} \mathbf{x} \\ \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) \end{array} \begin{array}{c} \mathbf{h}_{1} = \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) \\ \mathbf{w}^{1} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \\ \end{array} \\ \begin{array}{c} \mathbf{x} \\ \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) \end{array} \begin{array}{c} \mathbf{h}_{2} = \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) \\ \mathbf{w}^{2} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \end{array}$$

$$\begin{array}{c|c} \mathbf{x} & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) & \mathbf{h}_{1} = \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) \\ \hline \mathbf{x} & \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) & \mathbf{h}_{2} = \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) & \mathbf{x}^{2} & \mathbf{x}^{2} & \mathbf{w}^{2} \cdot \mathbf{x} \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} & \mathbf{w}^{1} \cdot \mathbf{x} \end{array}$$

$$\mathbf{w^1} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \quad \mathbf{w^2} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{array}{c|c} \mathbf{x} & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) \\ \hline \mathbf{x} & \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) \end{array} \begin{array}{c} \mathbf{h}_{1} = \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) \\ \hline \mathbf{x} & \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2} \end{array} \begin{array}{c} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \hline \mathbf{x}_{2} \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2} \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2} \\ \hline \mathbf{w}^{1} \cdot \mathbf{x} \\ \hline \mathbf{w}^{1} \cdot \mathbf{w} \\ \hline \mathbf{w}^{1}$$

$$\mathbf{w^1} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \quad \mathbf{w^2} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{array}{c|c} \mathbf{x} & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) & \mathbf{h}_{1} = \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) \\ \hline \mathbf{x} & \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) & \mathbf{h}_{2} = \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) & \mathbf{h}_{1} & \mathbf{h}_{2} = \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}^{1}) & \mathbf{h}_{2} = \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}^{1}) & \mathbf{h}_{2} = \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}^{2}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{b}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1}) & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1}) \\ \hline \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1} \cdot \mathbf{w} + \mathbf{w}^{1}$$

h(v) for vector v means applying h to each component of v

 $\mathbf{w^1 = \begin{vmatrix} \mathbf{w^2 = } \end{vmatrix} = \begin{vmatrix} \mathbf{w^2 = } \end{vmatrix} = \begin{vmatrix} \mathbf{w^2 = } \end{vmatrix}$

$$\begin{array}{c|c} \mathbf{x} & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) & \mathbf{h}_{1} = \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) & \mathbf{x} \\ \hline \mathbf{x} & \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) & \mathbf{h}_{2} = \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) & \mathbf{w}^{1} = \begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \mathbf{b}^{1} = \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \end{bmatrix} \\ \mathbf{h}^{1} = \mathbf{h}(\mathbf{W}^{1}\mathbf{x} + \mathbf{b}^{1}) = \begin{bmatrix} \mathbf{h}_{1} \\ \mathbf{b}_{2} \end{bmatrix} \end{array}$$

• **h**(**v**) for vector **v** means applying **h** to each component of **v**

Multilayer NN: Vector Notation for Next Layer

- W² is a matrix of weights between hidden layer 1 and 2
 - W²(r,c) is weight from unit c to unit r
- **b**² is a vector of bias weights for second hidden layer
 - b²_r is bias weight of unit **r** in second layer
- h² is a vector of second layer outputs
 - h²_r is output of unit **r** in second layer

Multilayer NN: Vector Notation, all Layers

Complete depiction

$$\begin{array}{c} x \\ \hline & \\ \end{array} \\ \hline h(W^1x + b^1) \\ \hline & \\ \end{array} \\ \begin{array}{c} h^1 \\ h(W^2h^1 + b^2) \\ \hline & \\ \end{array} \\ \begin{array}{c} h^2 \\ \hline & \\ \end{array} \\ \begin{array}{c} h(W^3h^2 + b^3) \\ \hline & \\ \end{array} \\ \begin{array}{c} h^3 = 0 \\ \hline & \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array}$$

- $h^3 = o$ is vector from the output layer
- **o** = $h(W^{3}h^{2}+b^{3})$
 - = h(W³h(W²h¹ +b²)+b³)
 - $= h(W^{3}h(W^{2}h(W^{1}x + b^{1}) + b^{2}) + b^{3})$

Multilayer NN: Output Representation

- Output of NN is a vector
- As before, if **x**ⁱ be sample of class **k**, its label is

- Ideal output
 - unit **o**_k = 1
 - other output units zero

Training NN: Squared Difference Loss

- Wish to minimize difference between **y**ⁱ and **f**(**x**ⁱ)
- Let W be all edge weights
- With squared difference loss
- Squared loss on one example xⁱ:

$$\mathbf{L}(\mathbf{x}^{i},\mathbf{y}^{i};\mathbf{W}) = \left\| \mathbf{f}(\mathbf{x}^{i}) - \mathbf{y}^{i} \right\|^{2} = \sum_{j=1}^{m} \left(\mathbf{f}_{j}(\mathbf{x}^{i}) - \mathbf{y}_{j}^{i} \right)^{2}$$

• For this example, squared loss is 3²+2²=13

$$\mathbf{f}(\mathbf{x}) = \mathbf{o} = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix} \qquad \mathbf{y}^{\mathbf{i}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

• **f** depends on **W**, but too cumbersome to write **f**(**x**,**W**) everywhere

Training NN: Squared Difference Loss

• Let $X = x^1, ..., x^n$ $Y = y^1, ..., y^n$

• Loss on all examples:
$$\mathbf{L}(\mathbf{X}, \mathbf{Y}; \mathbf{W}) = \sum_{i=1}^{n} \|\mathbf{f}(\mathbf{x}^{i}) - \mathbf{y}^{i}\|^{2}$$

• Gradient descent

initialize w to random choose ε , α while $\alpha ||\nabla L(X,Y;W)|| > \varepsilon$ w = w - $\alpha \nabla L(X,Y;W)$

Training NN: Cross Entropy Loss

- Squared error loss is usually not recommended for classification
- Better Loss function for classification: Cross Entropy
- First put the output **o** through soft-max

$$\mathbf{f}_{\mathbf{k}}(\mathbf{x}) = \frac{\exp(\mathbf{o}_{\mathbf{k}})}{\sum_{j=1}^{m} \exp(\mathbf{o}_{j})}$$

Interpret f_k(x) as probability of class k

Training NN: Cross Entropy Loss

• One sample cross entropy loss, dropping superscripts from **x**ⁱ, **y**ⁱ:

$$\mathbf{L}(\mathbf{x},\mathbf{y};\mathbf{W}) = -\sum_{j} \mathbf{y}_{j} \log \mathbf{f}_{j}(\mathbf{x})$$

• If sample **x** is of class **k**, then the above is equivalent to

$$L(\mathbf{x}, \mathbf{y}; \mathbf{W}) = -\log \mathbf{f}_{\mathbf{k}}(\mathbf{x})$$

- this loss function is also called -log loss
- minimizing -log is equivalent to maximizing probability
- Loss on all samples

$$L(X, Y; W) = \sum L(x, y; W)$$

Training NN: -Log Loss Function

- Need to find derivative of L wrt every network weight \mathbf{w}_i $\frac{\partial \mathbf{L}}{\partial \mathbf{w}_i}$
- After derivative found, according to gradient descent, weight update is $\Delta \mathbf{w}_{i} = -\alpha \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{i}}$
 - where α is the learning rate
- Update weight:

$$\mathbf{w}_{i} = \mathbf{w}_{i} + \Delta \mathbf{w}_{i}$$

Training NN: -Log Loss Function

• How many weights do we have in our network?

- Weights are in matrices W¹, W²,..., W^L
- And are in matrices **b**¹,**b**²,...,**b**^L

Computing Derivatives: Small Example

- Small network f(x,y,z) = (x+y)z
- Rewrite using
 - $\mathbf{q} = \mathbf{x} + \mathbf{y}$
- **f**(**x**,**y**,**z**) = **qz**
- each node does one operation

Computing Derivatives: Small Example

- Small network f(x,y,z) = (x+y)z
- Rewrite using
 - $\mathbf{q} = \mathbf{x} + \mathbf{y}$
 - **f**(**x**,**y**,**z**) = **qz**
- Example of computing **f(-2,5,-4)**

Computing Derivatives: Small Example

- Small network **f**(**x**,**y**,**z**) = (**x**+**y**)**z**
- Rewrite using $\mathbf{q} = \mathbf{x} + \mathbf{y} \implies \mathbf{f}(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{q}\mathbf{z}$
- Want $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}, \frac{\partial \mathbf{f}}{\partial \mathbf{y}}, \frac{\partial \mathbf{f}}{\partial \mathbf{z}}$
- Compute $\frac{\partial \mathbf{f}}{\partial}$ from the end backwards
 - for each edge, with respect to the main variable at edge origin
 - using chain rule with respect to the variable at edge end, if needed

chain rule for f(y(x)) $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$

Computing Derivatives: Chain of Chain Rule

• Compute $\frac{\partial \mathbf{d}}{\partial}$ from the end backwards

direction of computation

- for each edge, with respect to the main variable at edge origin
- using chain rule with respect to the variable at edge end, if needed

Computing Derivatives Backwards

$$\begin{array}{c} x \\ \hline & \\ \end{array} \\ \hline & \\ \end{array} \\ \begin{array}{c} h^1 \\ h(W^2h^1 + b^2) \\ \hline & \\ \end{array} \\ \begin{array}{c} h^2 \\ h(W^3h^2 + b^3) \\ \hline & \\ \end{array} \\ \begin{array}{c} O \\ \hline & \\ \end{array} \\ \begin{array}{c} L(O) \\ \end{array} \\ \end{array}$$

- Have loss function **L**(**o**)
- Need derivatives for all $\frac{\partial \mathbf{L}}{\partial \mathbf{w}}, \frac{\partial \mathbf{L}}{\partial \mathbf{b}}$
- Will compute derivatives from end to front, backwards
- On the way will also compute intermediate derivatives $\frac{\partial \mathbf{L}}{\partial \mathbf{h}}$

- Simplified view at a network node
 - inputs **x**,**y** come in
 - node computes some function **h**(**x**,**y**)

- At each network node
 - inputs **x**,**y** come in
 - nodes computes activation function h(x,y)
- Have loss function L(·)

• Easy to compute local node derivatives $\frac{\partial \mathbf{h}}{\partial \mathbf{x}}$, $\frac{\partial \mathbf{h}}{\partial \mathbf{y}}$

- More complete view at a network node
 - inputs x,y come in, get multiplied by weight w and v
 - node computes function h(wx,vy)
 - node output **h** gets multiplied by **u**

• To be concrete, let h(i,j) = i + j

- h(i,j) = i + j
- Break into more computational nodes
 - all computation happens inside nodes, not on edges

- Some of these partial derivatives are intermediate
 - their values will not be used for gradient descent

• Example when $\mathbf{w} = 1$, $\mathbf{x} = 2$, $\mathbf{v} = 3$, $\mathbf{y} = 4$, $\mathbf{u} = 2$, $\frac{\partial \mathbf{L}}{\partial \mathbf{c}} = 2$

Computing Derivatives: Staging Computation

- Each node is responsible for one function
- To compute exp(1/x)

Computing Derivatives: Vector Notation

• Inputs outputs are often vectors

$$\begin{array}{c|c} x \\ \hline & h(W^{1}x + b^{1}) \\ \hline & h(W^{2}h^{1} + b^{2}) \\ \hline & h(W^{3}h^{2} + b^{3}) \\ \hline & \end{pmatrix} \begin{array}{c} 0 \\ \hline & L(0) \\ \hline \end{array}$$

- **h**(a) is a function from **R**ⁿ to **R**^m
- Chain rule generalizes to vector functions

Computing Derivatives: Vector Notation

- Let $\mathbf{f}(\mathbf{x}): \mathbf{R}^n \to \mathbf{R}^m$,
 - **x** is **n**-dimensional vector and output **f**(**x**) is **m**-dimensional vector
- Jacobian matrix
 - has m rows and n columns
 - has $\frac{\partial \mathbf{f}_i}{\partial \mathbf{x}_i}$ in row **i**, column **j**
- Example $f(x): \mathbb{R}^3 \rightarrow \mathbb{R}^2$, Jacobian matrix

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}_{1}} = \begin{bmatrix} \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{x}_{1}} & \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{x}_{2}} & \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{x}_{3}} \\ \frac{\partial \mathbf{f}}{\partial \mathbf{x}_{1}} & \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{x}_{2}} & \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{x}_{3}} \end{bmatrix}$$

Computing Derivatives: Vector Notation

- $f(x): \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $g(x): \mathbb{R}^k \rightarrow \mathbb{R}^n$
- $f(g(x)): \mathbb{R}^k \rightarrow \mathbb{R}^m$
- Chain rule for vector functions

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \frac{\partial \mathbf{f}}{\partial \mathbf{g}} \frac{\partial \mathbf{g}}{\partial \mathbf{x}}$$
$$\uparrow \qquad \uparrow \qquad \uparrow$$

Jacobian matrices

Vector Notation: Look at One Node

- h, x, y are vectors
- already computed Jacobian $\frac{\partial \mathbf{L}}{\partial \mathbf{h}}$
- Need Jacobians $\frac{\partial L}{\partial x}, \frac{\partial L}{\partial y}$

Vector Notation: Look at One Node

- Can apply to matrices (and tensors) as well
- But first vectorize matrix (or tensor)
- Say W is 10 x 5, stretch into 50x1 vector
- Still denote Jacobian by $\frac{\partial \mathbf{h}}{\partial \mathbf{W}}$

Vector Notation: Look at One Node

- Easy to compute local node Jacobians $\frac{\partial \mathbf{h}}{\partial \mathbf{x}}, \frac{\partial \mathbf{h}}{\partial \mathbf{W}}$
- But they can get very large (although sparse)
- Say **h** is 1000 x 1, **W** is 1000 x 500, then $\frac{\partial h}{\partial W}$ is 1000 x 500,000

Compact Vector Notation

- Assume loss **L** is a scalar
 - if not, can do derivation for each component independently
- Consider matrix $\mathbf{W} = \begin{bmatrix} \mathbf{w}_{11} & \dots & \mathbf{w}_{1k} \\ \vdots & \ddots & \vdots \\ \mathbf{w}_{d1} & \dots & \mathbf{w}_{dk} \end{bmatrix}$
- Organize derivatives in matrix the same shape as W, denoted with

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{\mathbf{o}}} = \begin{bmatrix} \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{11}} & \cdots & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{1k}} \\ \vdots & \cdots & \vdots \\ \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{d1}} & \cdots & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{dk}} \end{bmatrix}$$

• Contrast with Jacobian $\frac{\partial \mathbf{L}}{\partial \mathbf{W}} = \begin{bmatrix} \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{11}} & \dots & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{1k}} & \dots & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{d1}} & \dots & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{dk}} \end{bmatrix}$

Compact Vector Notation

- Assume loss L is a scalar
 - if not, can do derivation for each component independently
- Assume W, X, and h are matrices
 - subsumes the case when they are vectors as well

Training Protocols

- Batch Protocol
 - full gradient descent
 - weights are updated only after all examples are processed
 - might be very slow to train
- Single Sample Protocol
 - examples are chosen randomly from the training set
 - weights are updated after every example
 - weighs get changed faster than batch, less stable
 - One iteration over all samples (in random order) is called an epoch
- Mini Batch
 - Divide data in batches, and update weights after processing each batch
 - Middle ground between single sample and batch protocols
 - Helps to prevent over-fitting in practice, think of it as "noisy" gradient
 - allows CPU/GPU memory hierarchy to be exploited so that it trains much faster than single-sample in terms of wall-clock time
 - One iteration over all mini-batches is called an epoch

Regularization

Larger networks are more prone to overfitting

Regularization

- Can control overfitting by using network with less units
- Better if control overfitting by adding weight regularization $\frac{\lambda}{2} \| \mathbf{W} \|$ to the loss function

- During gradient descent, subtract λw from each weight w
 - intuitively, implements weight decay

Small model vs. Big Model+Regularize

Ensembles of Neural Networks

- Train multiple independent models, average their predictions
- Improvements are more dramatic with higher model variety
- Few approaches to forming an ensemble
 - Same model, different initializations
 - train multiple models with the best set of hyperparameters (found through cross validation) but with different random initialization.
 - drawback is that the variety is only due to initialization
 - Top models discovered during cross-validation
 - Use cross-validation to determine the best hyperparameters, then pick the top few
 - Improves ensemble variety but has the danger of including suboptimal models
 - practical, does not require additional retraining of models after cross-validation
 - Different checkpoints of a single model
 - Take different "checkpoints" of a single network over time
 - Lacks variety, but very cheap
 - Running average of parameters during training
 - Maintain a second copy of the network's weights in memory that maintains an exponentially decaying sum of previous weights during training
 - This way you're averaging the state of the network over last several iterations

Dropout

- During training, keep each unit active with probability **p**
 - otherwise set to 0
 - **p** = 0.5 is common

standard net

net with dropout, first iteration

net with dropout, second iteration

- During training, sampling a subset of 2ⁿ networks possible
- Extreme ensemble training
 - training each member of ensemble only on a small batch of examples

Dropout

standard net used at test time

net with dropout, first iteration

net with dropout, second iteration

- At test time, no dropout is applied, the whole "ensemble" is active
- Scale units by **p** at test time, since all units are active now
- Or, better, scale units by 1/p at training time
- Dropout is usually applied to fully connected layers

Practical Training Tips: Initialization

- Initialization parameters for W
 - do not set all the parameters W equal
 - all units compute the same output, gradient descent updates are the same
 - can initialize W to small random numbers
 - if using RELU, better initialize with randn(n) $\frac{2}{\sqrt{n}}$, where **n** is number of inputs to the unit
- Biases **b** usually initialized to 0
 - with ReLU often intialize to small positive number, like 0.1

- Set the learning rate carefully
- Toy example $x \xrightarrow{w} + \xrightarrow{z} y \xrightarrow{y} y = z$
- Optimal weights: w = 1, b = 0
- Gradient descent

$$\mathbf{w}^{t} = \mathbf{w}^{t-1} - \alpha \nabla \mathbf{L} \left(\mathbf{w}^{t-1} \right)$$

• Training Data (20 examples)

 $\begin{aligned} \mathsf{x} &= [0.0,\, 0.5,\, 1.0,\, 1.5,\, 2.0,\, 2.5,\, 3.0,\, 3.5,\, 4.0,\, 4.5,\, 5.0,\, 5.5,\, 6.0,\, 6.5,\, 7.0,\, 7.5,\, 8.0,\, 8.5,\, 9.0,\, 9.5] \\ \mathsf{y} &= [0.1,\, 0.4,\, 0.9,\, 1.6,\, 2.2,\, 2.5,\, 2.8,\, 3.5,\, 3.9,\, 4.7,\, 5.1,\, 5.3,\, 6.3,\, 6.5,\, 6.7,\, 7.5,\, 8.1,\, 8.5,\, 8.9,\, 9.5] \end{aligned}$

• Surface of the loss function L(w,b)

- Loss L(w) should decrease during gradient descent
 - If L(w) oscillates, α is too large, decrease it
 - If L(w) goes down but very slowly, α is too small, increase it
- Typically cross-validate learning rates from 10⁻² to 10⁻⁵
- \bullet Helps to adjust α at the training time, especially for many layered (deep) networks
 - Step decay
 - reduce learning rate by some factor every few epochs
 - i.e. by a factor 0.5 every 5 epochs, or by 0.1 every 20 epochs
 - Exponential decay
 - $\alpha = \alpha_0 e^{-kt} \alpha$, where α_0 , k are hyperparameters and t is epoch number
 - 1/t decay
 - $\alpha = \alpha_0/(1+kt)$ where a_0, k are hyperparameters and t is epoch number
 - Err on the side of slower decay, if time budget allows

Practical Training Tips: Batch Size

Gradient descent

Stochastic gradient descent, 1 epoch

Practical Training Tips: Batch Size

- Track number of epoch vs. Loss
- If the line is too wiggly, batch size might be too small

Practical Training Tips: Validation/Training Accuracy

• Track number of epoch vs. validation/training accuracy

 Not much overfitting, increase network capacity? Strong overfitting, increase regularization?

Practical Training Tips: Momentum

- Add temporal average direction in which weights have been moving recently
- Parameter vector will build up velocity in direction that has consistent gradient
- Helps avoid local minima and speed up descent in flat (plateau) regions
- Previous direction: ∆w^t=w^t-w^{t-1}
- Weight update rule with momentum
 - common to set $\boldsymbol{\beta} \in (0.6, 0.9)$, also can cross-validate

$$\mathbf{w}^{\mathbf{t}+1} = \mathbf{w}^{\mathbf{t}} + (1 - \beta) \nabla \mathbf{L}(\mathbf{w}^{\mathbf{t}}) + \beta \Delta \mathbf{w}^{\mathbf{t}-1}$$

steepest descent direction

Practical Training Tips: Normalization

- Features should be normalized for faster convergence
- Suppose fish length is in meters and weight in grams
 - typical sample [length = 0.5, weight = 3000]
 - feature length will be almost ignored
 - If length is in fact important, learning will be very slow
- Any normalization we looked at before will do
 - test samples should be normalized exactly as training samples
- Images are already roughly normalized
 - intensity/color are in the range [0,255]
 - usually subtract mean image from training data, zero-centers data
 - mean computed on training data only
 - subtracted from test data as well

Training NN: How Many Epochs?

training time

Large training error: random decision regions in the beginning - underfit Small training error: decision regions improve with time Zero training error: decision regions fit training data perfectly - overfit

Learn when to stop training through cross validation

Other Practical Training Tips

- Before training on full dataset, make sure can overfit on a small portion of the data
 - turn regularization off
- Search hyperparameters on coarse scale for a few epoch, and then on finer scale for more epoch
 - random search might be better than grid search

