CS9840
 Learning and Computer Vision Prof. Olga Veksler

Lecture 10
 Neural Networks

Many slides are from A. Ng, Y. LeCun, G. Hinton, A. Ranzato, Fei-Fei Li, R. Fergus

Outline

- Intro/History
- Perceptron: 1 layer Neural Network (NN)
- Multilayer NN
- also called
- Multilayer Perceptron (MLP)
- Artificial Neural Network (ANN)
- Feedforward Neural Network
- Training Neural Networks
- Backpropagation algorithm
- Practical tips for training

Artificial Neural Networks

- Neural Networks correspond to some classifier function $\mathbf{f}_{\mathrm{NN}}(\mathbf{x})$
- Can carve out arbitrarily complex decision boundaries without requiring as many terms as polynomial functions
- Originally inspired by research in how human brain works
- but cannot claim that this is how the brain actually works
- Now very successful in practice, but took a while to get there

ANN History: First Successes

- 1958, F. Rosenblatt, Cornell University
- Perceptron, oldest neural network
- studied in lecture on linear classifiers
- Algorithm to train the Perceptron
- Built in hardware to recognize digits images
- Proved convergence in linearly separable case
- Early success lead to a lot of claims which were not fulfilled
- New York Times reports that perceptron is "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

ANN History: Stagnation

- 1969, M. Minsky and S. Pappert
- Book "Perceptrons"
- Proved that perceptrons can learn only linearly separable classes
- In particular cannot learn very simple XOR function
- Conjectured that multilayer neural networks also limited by linearly separable functions
- No funding and almost no research (at least in North America) in 1970's as the result of 2 things above

ANN History: Revival \& Stagnation (Again)

- Revival of ANN in early 1980
- 1986, (re)discovery of backpropagation algorithm by Werbos, Rumelhart, Hinton and Ronald Williams
- Allows training a MLP
- Many examples of mulitlayer Neural Networks appear
- 1998, Convolutional network (convnet) by Y. Lecun for digit recognition, very successful
- 1990's: research in NN move slowly again
- Networks with multiple layers are hard to train well (except convnet for digit recognition)
- SVM becomes popular, works better

ANN History: Deep Learning Age

- Deep networks are inspired by brain architecture
- Until now, no success at training them, except convnet
- 2006-now: deep networks are trained successfully
- massive training data becomes available
- better hardware: fast training on GPU
- better training algorithms for network training when there are many hidden layers
- unsupervised learning of features, helps when training data is limited
- Break through papers
- Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554.
- Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19
- Industry: Facebook, Google, Microsoft, etc.

Biology: Neuron, Basic Brain Processor

- Neurons (or nerve cells) are special cells that process and transmit information by electrical signaling
- in brain and also spinal cord
- Human brain has around 10^{11} neurons
- A neuron connects to other neurons to form a network
- Each neuron cell communicates to anywhere
 from 1000 to 10,000 other neurons

Biology: Main Components of Neuron

- dendrites
- "input wires", receive inputs from other neurons
- a neuron may have thousands of dendrites, usually short
- axon
- "output wire", sends signal to other neurons
- single long structure (up to 1 meter)
- splits in possibly thousands branches at the end, "axon terminals"

Perceptron: 1 Layer Neural Network

layer 1	layer 2
input layer	output layer

- Linear classifier $f(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{\mathbf{t}} \mathbf{x}+\mathbf{w}_{\mathbf{0}}\right)$ is a single neuron "net"
- Input layer units emits features, except bias emits "1"
- Output layer unit applies $\mathbf{h}(\mathrm{t})=\boldsymbol{\operatorname { s i g }}(\mathrm{t})$
- $\mathbf{h}(\mathrm{t})$ is also called an activation function

Multilayer Neural Network

layer 1
Input layer

$$
\begin{array}{cc}
\text { layer 2 } & \text { layer 3 } \\
\text { hidden layer } & \text { output layer }
\end{array}
$$

- First hidden unit outputs
- Second hidden unit outputs
- Network implements classifier
$h\left(w_{0}+w_{1} \mathbf{x}_{1}+w_{2} \mathbf{x}_{2}\right)$
$h\left(w_{0}+w_{1} \mathbf{x}_{1}+w_{2} \mathbf{x}_{2}\right)$
$\mathbf{f}(\mathbf{x})=\mathbf{h}(\mathbf{w h}(\cdot)+\mathbf{w h}(\cdot))$
- More complex boundaries than Perceptron

Multilayer Neural Network: Small Example

- Implements classifier

$$
\begin{aligned}
\mathbf{f}(\mathbf{x}) & =\operatorname{sign}(4 h(\cdot)+2 h(\cdot)+7) \\
& =\operatorname{sign}\left(4 \operatorname{sign}\left(3 \mathbf{x}_{1}+5 \mathbf{x}_{2}\right)+2 \operatorname{sign}\left(6+3 \mathbf{x}_{2}\right)+7\right)
\end{aligned}
$$

- Computing $f(\mathbf{x})$ is called feed forward operation
- graphically, function is computed from left to right
- Edge weights are learned through training

Multilayer NN: General Structure

layer 1 Input layer
layer 2 hidden layer
layer 3 output layer

- $\mathbf{f}(\mathbf{x})$ is multi-dimensional
- Classification
- If $f_{1}(\mathbf{x})$ is largest, decide class 1
- If $\mathrm{f}_{2}(\mathbf{x})$ is largest, decide class 2
- If $f_{3}(\mathbf{x})$ is largest, decide class 3

Multilayer NN : Multiple Classes

layer 1	layer 2	layer 3
Input layer	hidden layer	output layer

- 3 classes, 2 features, 1 hidden layer
- 3 input units, one for each feature
- 3 output units, one for each class
- 2 hidden units
- 1 bias unit, can draw in layer 1, or each layer has one

Multilayer NN : General Structure

- Input layer: d features, d input units
- Output layer: m classes, m output units
- Hidden layer: how many units?
- more units correspond to more complex classifiers

Multilayer NN : General Structure

layer 1
Input layer
layer 2
hidden layer
layer 3
hidden layer
layer 4 output layer

- Can have many hidden layers
- Feed forward structure
- ith layer connects to (i+1)th layer
- except bias unit can connect to any layer
- or, alternatively each layer can have its own bias unit

Multilayer NN : Overview

- NN corresponds to rather complex classifier $\mathbf{f}(\mathbf{x}, \mathbf{w})$
- complexity depends on the number of hidden layers/units
- $f(x, w)$ is a composition of many functions
- easier to visualize as a network
- notation gets ugly
- To train NN, just as before
- formulate an objective or loss function $\mathbf{L}(\mathbf{w})$
- optimize it with gradient descent
- lots of heuristics to get gradient descent work well enough

Multilayer NN : Expressive Power

- Every continuous function from input to output can be implemented with enough hidden units, 1 hidden layer, and proper nonlinear activation functions
- easy to show that with linear activation function, multilayer neural network is equivalent to perceptron
- More of theoretical than practical interest
- do not know the desired function in the first place, our goal is to learn it through the samples
- but this result gives confidence that we are on the right track
- multilayer NN is general (expressive) enough to construct any required decision boundaries, unlike the Perceptron

Multilayer NN: Decision Boundaries

- Perceptron (single layer neural net)

- Multilayer NN
- Arbitrarily complex decision regions
- Even not contiguous

Multilayer NN : Nonlinear Boundary Example

$-\mathrm{x}_{1}+\mathrm{x}_{2}-1>0 \Rightarrow$ class 1

$\mathrm{x}_{1}-\mathrm{x}_{2}-3>0 \Rightarrow$ class 1

Multilayer NN : Nonlinear Boundary Example

- Combine two Perceptrons into a 3 layer NN

Multilayer NN as Non-Linear Feature Mapping

- Interpretation
- 1 hidden layer maps input features to new features
- next layer then applies linear classifier to the new features

Multilayer NN as Non-Linear Feature Mapping

this part implements
Perceptron (liner classifier)

Multilayer NN as Non-Linear Feature Mapping

this part implements mapping to new features y

Multilayer NN as Non-Linear Feature Mapping

- Consider 3 layer NN example we saw previously:

non linearly separable in the original feature space
linearly separable in the new feature space

Multi Layer NN: Activation Function

- $\mathbf{h}()=\boldsymbol{s i g n}()$ does not work for gradient descent

- Can use tanh or sigmoid function
- Rectified Linear (ReLu) popular recently
- gradients do not saturate for positive halfinterval
- but have to be careful with learning rate, otherwise many units can become "dead", i.e. always output 0

Multilayer NN: Modes of Operation

- Due to historical reasons, training and testing stages have special names
- Backpropagation (or training)

Minimize objective function with gradient descent

- Feedforward (or testing)

Multilayer NN: Vector Notation

- Convenient compact notation
- For Perceptron

Multilayer NN: Vector Notation

- Change notation a bit

Multilayer NN: Vector Notation

- Do not draw bias unit

- Compact picture
- $h(t)=\operatorname{sign}(t)$

Multilayer NN: Vector Notation

- Consider the first layer (2 perceptrons)

Multilayer NN: Vector Notation for First Layer

- Red perceptron has weights w^{1} and bias b_{1}
- Green perceptron has weights w^{2} and bias b_{2}

$$
\begin{array}{ll}
x & h\left(w^{1} \cdot x+b_{1}\right)
\end{array} \xrightarrow{h_{1}=h\left(w^{1} \cdot x+b_{1}\right)} \quad w^{1}=\left[\begin{array}{l}
1 \\
5
\end{array}\right] .
$$

Multilayer NN: Vector Notation for First Layer

$\xrightarrow{h\left(w^{2} \cdot x+b_{2}\right)} \quad h_{2}=h\left(w^{2} \cdot x+b_{2}\right)$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 5 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
w^{1} \cdot x \\
w^{2} \cdot x
\end{array}\right]} \\
& \mathbf{W}^{\mathbf{1}} \cdot \mathbf{x}
\end{aligned}
$$

$$
\mathbf{w}^{\mathbf{1}}=\left[\begin{array}{l}
1 \\
5
\end{array}\right] \quad \mathbf{w}^{\mathbf{2}}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Multilayer NN: Vector Notation for First Layer

$$
\begin{array}{r}
\xrightarrow{\mathbf{x}} \begin{array}{r}
h\left(w^{1} \cdot x+b_{1}\right)
\end{array} \xrightarrow{h_{1}=h\left(w^{1} \cdot x+b_{1}\right)}\left[\begin{array}{ll}
1 & 5 \\
\mathbf{x}\left(w^{2} \cdot x+b_{2}\right) & h_{1}=h\left(w^{2} \cdot x+b_{2}\right) \\
3 & 2
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
w^{1} \cdot x+b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
w^{2} \cdot x+b_{2}
\end{array}\right] \\
\mathbf{W}^{1} \cdot \mathbf{x}+\mathbf{b}^{\mathbf{1}}
\end{array}
$$

$$
\boldsymbol{w}^{\mathbf{1}}=\left[\begin{array}{l}
1 \\
5
\end{array}\right] \quad \mathbf{w}^{\mathbf{2}}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Multilayer NN: Vector Notation for First Layer

$$
\mathbf{w}^{1}=\left[\begin{array}{l}
1 \\
5
\end{array}\right] \quad \mathbf{w}^{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

- $\mathbf{h}(\mathbf{v})$ for vector \mathbf{v} means applying \mathbf{h} to each component of \mathbf{v}

Multilayer NN: Vector Notation for First Layer

- $\mathbf{h}(\mathbf{v})$ for vector \mathbf{v} means applying \mathbf{h} to each component of \mathbf{v}

Multilayer NN: Vector Notation for Next Layer

- $\mathbf{W}^{\mathbf{2}}$ is a matrix of weights between hidden layer 1 and 2
- $\mathbf{W}^{2}(\mathbf{r}, \mathbf{c})$ is weight from unit \mathbf{c} to unit \mathbf{r}
- $\boldsymbol{b}^{\mathbf{2}}$ is a vector of bias weights for second hidden layer
- b_{r}^{2} is bias weight of unit r in second layer
- $\mathbf{h}^{\mathbf{2}}$ is a vector of second layer outputs
- h^{2} is output of unit r in second layer

Multilayer NN: Vector Notation, all Layers

- Complete depiction

- $\mathbf{h}^{\mathbf{3}}=\mathbf{0}$ is vector from the output layer
- $0=h\left(W^{3} h^{2}+b^{3}\right)$

$$
\begin{array}{ll}
= & h\left(W^{3} h\left(W^{2} h^{1}+b^{2}\right)+b^{3}\right) \\
= & h\left(W^{3} h\left(W^{2} h\left(W^{1} x+b^{1}\right)+b^{2}\right)+b^{3}\right)
\end{array}
$$

Multilayer NN: Output Representation

- Output of NN is a vector
- As before, if \mathbf{x}^{i} be sample of class \mathbf{k}, its label is

$\mathbf{f}\left(\mathbf{x}^{\mathbf{i}}\right)=\mathbf{o}=\left[\begin{array}{c}0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right] \longleftarrow$ row \mathbf{k}
- Ideal output
- unit $\mathbf{o}_{\mathrm{k}}=1$
- other output units zero

Training NN: Squared Difference Loss

- Wish to minimize difference between \mathbf{y}^{i} and $\mathbf{f}\left(\mathbf{x}^{i}\right)$
- Let \mathbf{W} be all edge weights
- With squared difference loss
- Squared loss on one example \mathbf{x}^{i} :

$$
L\left(x^{i}, y^{i} ; W\right)=\left\|f\left(x^{i}\right)-y^{i}\right\|^{2}=\sum_{j=1}^{m}\left(f_{j}\left(x^{i}\right)-y_{j}^{i}\right)^{2}
$$

- For this example, squared loss is $3^{2}+2^{2}=13$

$$
f(x)=0=\left[\begin{array}{r}
3 \\
1 \\
-2
\end{array}\right] \quad y^{i}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

- \mathbf{f} depends on \mathbf{W}, but too cumbersome to write $\mathbf{f}(\mathbf{x}, \mathbf{W})$ everywhere

Training NN: Squared Difference Loss

- Let $\quad \mathbf{X}=\mathbf{x}^{1}, \ldots, \mathbf{x}^{\mathrm{n}}$

$$
\mathbf{Y}=\mathbf{y}^{1}, \ldots, \mathbf{y}^{\mathrm{n}}
$$

- Loss on all examples: $L(\mathbf{X}, \mathbf{Y} ; \mathbf{W})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left\|\mathbf{f}\left(\mathbf{x}^{\mathbf{i}}\right)-\mathbf{y}^{\mathbf{i}}\right\|^{2}$
- Gradient descent
initialize w to random
choose ε, α
while $\alpha\|\nabla \mathrm{L}(\mathrm{X}, \mathrm{Y} ; \mathrm{W})\|>\varepsilon$

$$
\mathbf{w}=\mathbf{w}-\alpha \nabla \mathrm{L}(\mathrm{X}, \mathrm{Y} ; \mathrm{W})
$$

Training NN: Cross Entropy Loss

- Squared error loss is usually not recommended for classification
- Better Loss function for classification: Cross Entropy
- First put the output o through soft-max

$$
\begin{gathered}
\mathbf{f}_{\mathbf{k}}(\mathbf{x})=\frac{\exp \left(\mathbf{o}_{\mathbf{k}}\right)}{\sum_{\mathrm{j}=1}^{\mathrm{m}} \exp \left(\mathbf{o}_{\mathrm{j}}\right)} \\
\mathbf{O}=\left[\begin{array}{c}
0.6 \\
-1 \\
5 \\
8 \\
4
\end{array}\right]
\end{gathered} \quad \square\left[\begin{array}{c}
0.006 \\
0.0001 \\
0.047 \\
0.94 \\
0.17
\end{array}\right]=\mathbf{f}(\mathbf{x})=\operatorname{sofmax}(\mathbf{0})
$$

- Interpret $\mathbf{f}_{\mathbf{k}}(\mathbf{x})$ as probability of class \mathbf{k}

Training NN: Cross Entropy Loss

- One sample cross entropy loss, dropping superscripts from $\mathbf{x}^{\mathbf{i}}, \mathbf{y}^{\mathbf{i}}$:

$$
\mathbf{L}(\mathbf{x}, \mathbf{y} ; \mathbf{w})=-\sum_{\mathrm{j}} \mathbf{y}_{\mathrm{j}} \log \mathbf{f}_{\mathbf{j}}(\mathbf{x})
$$

- If sample \mathbf{x} is of class \mathbf{k}, then the above is equivalent to

$$
L(\mathbf{x}, \mathbf{y} ; \mathbf{W})=-\log f_{k}(\mathbf{x})
$$

- this loss function is also called -log loss
- minimizing -log is equivalent to maximizing probability
- Loss on all samples

$$
\mathrm{L}(\mathbf{X}, \mathbf{Y} ; \mathbf{W})=\sum \mathrm{L}(\mathbf{x}, \mathbf{y} ; \mathbf{W})
$$

Training NN: -Log Loss Function

- Need to find derivative of L wrt every network weight \mathbf{w}_{i}

$$
\frac{\partial \mathbf{L}}{\partial \mathbf{w}_{\mathbf{i}}}
$$

- After derivative found, according to gradient descent, weight update is

$$
\Delta \mathbf{w}_{\mathbf{i}}=-\alpha \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{\mathbf{i}}}
$$

- where α is the learning rate
- Update weight:

$$
\mathbf{w}_{\mathbf{i}}=\mathbf{w}_{\mathbf{i}}+\Delta \mathbf{w}_{\mathbf{i}}
$$

Training NN: -Log Loss Function

- How many weights do we have in our network?

- Weights are in matrices $\mathbf{W}^{1}, \mathbf{W}^{2}, \ldots, \mathbf{W}^{L}$
- And are in matrices $\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{\llcorner }$

Computing Derivatives: Small Example

- Small network $f(\mathbf{x}, \mathbf{y}, \mathbf{z})=(\mathbf{x}+\mathbf{y}) \mathbf{z}$
- Rewrite using
- $q=x+y$
- $f(x, y, z)=q z$
- each node does one operation

Computing Derivatives: Small Example

- Small network $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})=(\mathbf{x}+\mathbf{y}) \mathbf{z}$
- Rewrite using
- $q=x+y$
- $f(x, y, z)=q z$
- Example of computing $\mathbf{f (- 2 , 5 , - 4)}$

Computing Derivatives: Small Example

- Small network $f(\mathbf{x}, \mathbf{y}, \mathbf{z})=(\mathbf{x}+\mathbf{y}) \mathbf{z}$
- Rewrite using $\mathbf{q}=\mathbf{x}+\mathbf{y} \Rightarrow \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{q z}$
- Want $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}, \frac{\partial \mathbf{f}}{\partial \mathbf{y}}, \frac{\partial \mathbf{f}}{\partial \mathbf{z}}$
chain rule for $f(\mathbf{y}(\mathbf{x}))$

$$
\frac{\partial \mathbf{f}}{\partial \mathbf{x}}=\frac{\partial \mathbf{f}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}}
$$

- Compute $\frac{\partial f}{\partial}$ from the end backwards
- for each edge, with respect to the main variable at edge origin
- using chain rule with respect to the variable at edge end, if needed

Computing Derivatives: Chain of Chain Rule

- Compute $\frac{\partial \mathrm{d}}{\partial}$ from the end backwards
- for each edge, with respect to the main variable at edge origin
- using chain rule with respect to the variable at edge end, if needed

$$
\begin{aligned}
& \frac{\partial \mathbf{d}}{\partial \mathbf{a}}=\frac{\partial \mathbf{d}}{\partial \mathbf{b}} \frac{\partial \mathbf{b}}{\partial \mathbf{a}} \quad \frac{\partial \mathbf{d}}{\partial \mathbf{b}}=\frac{\partial \mathbf{d}}{\partial \mathbf{c}} \frac{\partial \mathbf{c}}{\partial \mathbf{b}} \quad \frac{\partial \mathbf{d}}{\partial \mathbf{c}} \\
& \text { prev local } \\
& \text { example: if } h(c)=c^{2} \text {, then } \frac{\partial d}{\partial c}=\frac{\partial h}{\partial c}=2 c
\end{aligned}
$$

Computing Derivatives Backwards

$\xrightarrow{\mathbf{x}} \xrightarrow{h\left(W^{1} x+b^{1}\right)} \xrightarrow{h^{1}} \xrightarrow{h\left(W^{2} h^{1}+b^{2}\right)} \xrightarrow{h^{2}} \xrightarrow{h\left(W^{3} h^{2}+b^{3}\right)} \mathbf{0} \xrightarrow{\mathbf{o}(0)}$

- Have loss function L(o)
- Need derivatives for all $\frac{\partial \mathbf{L}}{\partial \mathbf{w}}, \frac{\partial \mathbf{L}}{\partial \mathbf{b}}$
- Will compute derivatives from end to front, backwards
- On the way will also compute intermediate derivatives $\frac{\partial \mathbf{L}}{\partial \mathbf{h}}$

Computing Derivatives: Look at One Node

- Simplified view at a network node
- inputs \mathbf{x}, \mathbf{y} come in
- node computes some function $\mathbf{h}(\mathbf{x}, \mathbf{y})$

Computing Derivatives: Look at One Node

- At each network node
- inputs $\mathbf{x , y}$ come in
- nodes computes activation function $\mathbf{h}(\mathbf{x}, \mathbf{y})$
- Have loss function $L(\cdot)$

Computing Derivatives: Look at One Node

- Need $\frac{\partial \mathbf{L}}{\partial \mathbf{x}}, \frac{\partial \mathbf{L}}{\partial \mathbf{y}}$
- Easy to compute local node derivatives $\frac{\partial \mathbf{h}}{\partial \mathbf{x}}, \frac{\partial \mathbf{h}}{\partial \mathbf{y}}$

Computing Derivatives: Look at One Node

- More complete view at a network node
- inputs \mathbf{x}, \mathbf{y} come in, get multiplied by weight \mathbf{w} and \mathbf{v}
- node computes function $\mathbf{h}(\mathbf{w x}, \mathbf{v y})$
- node output h gets multiplied by \mathbf{u}

Computing Derivatives: Look at One Node

- To be concrete, let $\mathbf{h}(\mathbf{i}, \mathbf{j})=\mathbf{i}+\mathbf{j}$

Computing Derivatives: Look at One Node

- $\mathbf{h}(\mathbf{i}, \mathbf{j})=\mathbf{i}+\mathbf{j}$

- Break into more computational nodes
- all computation happens inside nodes, not on edges

Computing Derivatives: Look at One Node

- Some of these partial derivatives are intermediate
- their values will not be used for gradient descent

Computing Derivatives: Look at One Node

$$
\frac{\partial \mathbf{L}}{\partial \mathbf{w}}=\frac{\partial \mathbf{L}}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial \mathbf{w}}=\frac{\partial \mathbf{L}}{\partial \mathbf{a}} \mathbf{x}=8
$$

- Example when $\mathbf{w}=1, \mathbf{x}=2, \mathbf{v}=3, \mathbf{y}=4, u=2, \frac{\partial \mathbf{L}}{\partial \mathbf{c}}=2$

Computing Derivatives: Staging Computation

- Each node is responsible for one function
- To compute $\exp (1 / \mathbf{x})$

Computing Derivatives: Vector Notation

- Inputs outputs are often vectors
$\xrightarrow{\mathbf{x}} \xrightarrow{h\left(W^{1} x+b^{1}\right)} \xrightarrow{h^{1}} \xrightarrow{h\left(W^{2} h^{1}+b^{2}\right)} \xrightarrow{h^{2} \xrightarrow{h}\left(W^{3} h^{2}+b^{3}\right) \xrightarrow{0} \xrightarrow{0}(0)}$
- $\mathbf{h}(\mathbf{a})$ is a function from $\mathbf{R}^{\mathbf{n}}$ to $\mathbf{R}^{\mathbf{m}}$
- Chain rule generalizes to vector functions

Computing Derivatives: Vector Notation

- Let $\mathbf{f}(\mathbf{x}): \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}^{\mathbf{m}}$,
- \mathbf{x} is \mathbf{n}-dimensional vector and output $\mathbf{f}(\mathbf{x})$ is \mathbf{m}-dimensional vector
- Jacobian matrix
- has \mathbf{m} rows and \mathbf{n} columns
- has $\frac{\partial \mathbf{f}_{\mathbf{i}}}{\partial \mathbf{x}_{\mathbf{j}}}$ in row \mathbf{i}, column \mathbf{j}
- Example $\mathbf{f}(\mathbf{x}): \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{\mathbf{2}}$, Jacobian matrix

Computing Derivatives: Vector Notation

- $f(x): R^{n} \rightarrow R^{m}$ and $g(x): R^{k} \rightarrow R^{n}$
- $f(g(x)): R^{k} \rightarrow R^{m}$
- Chain rule for vector functions
$\frac{\partial \mathbf{f}}{\partial \mathbf{x}}=\frac{\partial \mathbf{f}}{\partial \mathbf{g}} \frac{\partial \mathbf{g}}{\partial \mathbf{x}}$

Jacobian matrices

Vector Notation: Look at One Node

- h, \mathbf{x}, \mathbf{y} are vectors
- already computed Jacobian $\frac{\partial \mathbf{L}}{\partial \mathbf{h}}$
- Need Jacobians $\frac{\partial \mathbf{L}}{\partial \mathbf{x}}, \frac{\partial \mathbf{L}}{\partial \mathbf{y}}$
- Easy to compute local node Jacobians $\frac{\partial \mathbf{h}}{\partial \mathbf{x}}, \frac{\partial \mathbf{h}}{\partial \mathbf{y}}$

Vector Notation: Look at One Node

- Can apply to matrices (and tensors) as well
- But first vectorize matrix (or tensor)
- Say \mathbf{W} is 10×5, stretch into 50×1 vector
- Still denote Jacobian by $\frac{\partial \mathbf{h}}{\partial \mathbf{W}}$

$$
\frac{\partial \mathbf{L}}{\partial \mathbf{x}}=\frac{\partial \mathbf{L}}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{x}}
$$

Vector Notation: Look at One Node

- Easy to compute local node Jacobians $\frac{\partial \mathbf{h}}{\partial \mathbf{x}}, \frac{\partial \mathbf{h}}{\partial \mathbf{W}}$
- But they can get very large (although sparse)
- Say \mathbf{h} is $1000 \times 1, \mathbf{W}$ is 1000×500, then $\frac{\partial \mathbf{h}}{\partial \mathbf{W}}$ is $1000 \times 500,000$

Compact Vector Notation

- Assume loss Lis a scalar
- if not, can do derivation for each component independently
- Consider matrix $\mathbf{W}=\left[\begin{array}{ccc}\mathbf{w}_{11} & \ldots & \mathbf{w}_{1 \mathrm{k}} \\ \vdots & \ldots & \vdots \\ \mathbf{w}_{\mathrm{d} 1} & \ldots & \mathbf{w}_{\mathrm{dk}}\end{array}\right]$
- Organize derivatives in matrix the same shape as \mathbf{W}, denoted with

$$
\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{0}}=\left[\begin{array}{ccc}
\frac{\partial \mathbf{L}}{\partial \mathbf{w}_{11}} & \cdots & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{1 \mathbf{k}}} \\
\vdots & \cdots & \vdots \\
\frac{\partial \mathbf{L}}{\partial \mathbf{w}_{\mathrm{d} 1}} & \cdots & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{\mathrm{dk}}}
\end{array}\right]
$$

- Contrast with Jacobian $\frac{\partial \mathbf{L}}{\partial \mathbf{W}}=\left[\begin{array}{lllllll}\frac{\partial \mathbf{L}}{\partial \mathbf{w}_{11}} & \cdots & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{1 \mathbf{k}}} & \cdots & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{\mathrm{d} 1}} & \cdots & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{\mathrm{dk}}}\end{array}\right]$

Compact Vector Notation

- Assume loss L is a scalar
- if not, can do derivation for each component independently
- Assume W, X, and \mathbf{h} are matrices
- subsumes the case when they are vectors as well

Training Protocols

- Batch Protocol
- full gradient descent
- weights are updated only after all examples are processed
- might be very slow to train
- Single Sample Protocol
- examples are chosen randomly from the training set
- weights are updated after every example
- weighs get changed faster than batch, less stable
- One iteration over all samples (in random order) is called an epoch
- Mini Batch
- Divide data in batches, and update weights after processing each batch
- Middle ground between single sample and batch protocols
- Helps to prevent over-fitting in practice, think of it as "noisy" gradient
- allows CPU/GPU memory hierarchy to be exploited so that it trains much faster than single-sample in terms of wall-clock time
- One iteration over all mini-batches is called an epoch

Regularization

- Larger networks are more prone to overfitting

6 hidden neurons

20 hidden neurons

Regularization

- Can control overfitting by using network with less units
- Better if control overfitting by adding weight regularization $\frac{\lambda}{2}\|\mathbf{W}\|^{2}$ to the loss function

$\lambda=0.1$

- During gradient descent, subtract $\lambda \mathbf{w}$ from each weight w
- intuitively, implements weight decay

Small model vs. Big Model+Regularize

Ensembles of Neural Networks

- Train multiple independent models, average their predictions
- Improvements are more dramatic with higher model variety
- Few approaches to forming an ensemble
- Same model, different initializations
- train multiple models with the best set of hyperparameters (found through cross validation) but with different random initialization.
- drawback is that the variety is only due to initialization
- Top models discovered during cross-validation
- Use cross-validation to determine the best hyperparameters, then pick the top few
- Improves ensemble variety but has the danger of including suboptimal models
- practical, does not require additional retraining of models after cross-validation
- Different checkpoints of a single model
- Take different "checkpoints" of a single network over time
- Lacks variety, but very cheap
- Running average of parameters during training
- Maintain a second copy of the network's weights in memory that maintains an exponentially decaying sum of previous weights during training
- This way you're averaging the state of the network over last several iterations

Dropout

- During training, keep each unit active with probability \mathbf{p}
- otherwise set to 0
- $\mathbf{p}=0.5$ is common

standard net

net with dropout, first iteration

net with dropout, second iteration
- During training, sampling a subset of 2^{n} networks possible
- Extreme ensemble training
- training each member of ensemble only on a small batch of examples

Dropout

standard net used at test time

net with dropout, first iteration

net with dropout, second iteration

- At test time, no dropout is applied, the whole "ensemble" is active
- Scale units by p at test time, since all units are active now
- Or, better, scale units by $1 / p$ at training time
- Dropout is usually applied to fully connected layers

Practical Training Tips: Initialization

- Initialization parameters for W
- do not set all the parameters \mathbf{W} equal
- all units compute the same output, gradient descent updates are the same
- can initialize \mathbf{W} to small random numbers
- if using RELU, better initialize with $\operatorname{randn}(n) \frac{2}{\sqrt{n}}$, where n is number of inputs to the unit
- Biases busually initialized to 0
- with ReLU often intialize to small positive number, like 0.1

Practical Training Tips: Learning Rate

- Set the learning rate carefully
- Toy example

- Optimal weights: $w=1, b=0$
- Gradient descent

$$
\mathbf{w}^{\mathbf{t}}=\mathbf{w}^{\mathbf{t}-1}-\alpha \nabla \mathbf{L}\left(\mathbf{w}^{\mathbf{t}-1}\right)
$$

- Training Data (20 examples)

$$
\begin{aligned}
& x=[0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5,9.0,9.5] \\
& y=[0.1,0.4,0.9,1.6,2.2,2.5,2.8,3.5,3.9,4.7,5.1,5.3,6.3,6.5,6.7,7.5,8.1,8.5,8.9,9.5]
\end{aligned}
$$

Practical Training Tips: Learning Rate

- Surface of the loss function $\mathbf{L}(\mathbf{w}, \mathbf{b})$

Practical Training Tips: Learning Rate

Practical Training Tips: Learning Rate

- Loss L(w) should decrease during gradient descent
- If $\mathbf{L}(\mathbf{w})$ oscillates, $\boldsymbol{\alpha}$ is too large, decrease it
- If $\mathrm{L}(\mathbf{w})$ goes down but very slowly, $\boldsymbol{\alpha}$ is too small, increase it
- Typically cross-validate learning rates from 10^{-2} to 10^{-5}
- Helps to adjust α at the training time, especially for many layered (deep) networks
- Step decay
- reduce learning rate by some factor every few epochs
- i.e. by a factor 0.5 every 5 epochs, or by 0.1 every 20 epochs
- Exponential decay
- $\alpha=\alpha_{0} \mathrm{e}^{-\mathrm{kt}} \alpha$, where α_{0}, k are hyperparameters and t is epoch number
- $1 / \mathrm{t}$ decay
- $\alpha=\alpha_{0} /(1+k t)$ where a_{0}, k are hyperparameters and t is epoch number
- Err on the side of slower decay, if time budget allows

Practical Training Tips: Batch Size

Gradient descent
see only one example

Stochastic gradient descent, 1 epoch

Practical Training Tips: Batch Size

- Track number of epoch vs. Loss
- If the line is too wiggly, batch size might be too small

Practical Training Tips: Validation/Training Accuracy

- Track number of epoch vs. validation/training accuracy

- Not much overfitting, increase network capacity?

- Strong overfitting, increase regularization?

Practical Training Tips: Momentum

- Add temporal average direction in which weights have been moving recently
- Parameter vector will build up velocity in direction that has consistent gradient
- Helps avoid local minima and speed up descent in flat (plateau) regions
- Previous direction: $\Delta \mathbf{w}^{\mathrm{t}}=\mathbf{w}^{\mathrm{t}}-\mathbf{w}^{\mathrm{t}-1}$
- Weight update rule with momentum
- common to set $\boldsymbol{\beta} \in(0.6,0.9)$, also can cross-validate

$$
\mathbf{w}^{\mathbf{t}+1}=\mathbf{w}^{\mathbf{t}}+(1-\beta) \nabla \underbrace{\boldsymbol{D} \mathbf{m}^{\mathbf{t}}\left(\mathbf{w}^{\mathbf{t}}\right)}_{\text {steepest descent }}+\underbrace{\beta \Delta \mathbf{w}^{\mathbf{t}-1}}_{\begin{array}{c}
\text { previous } \\
\text { direction }
\end{array}}
$$

Practical Training Tips: Normalization

- Features should be normalized for faster convergence
- Suppose fish length is in meters and weight in grams
- typical sample [length $=0.5$, weight $=3000$]
- feature length will be almost ignored
- If length is in fact important, learning will be very slow
- Any normalization we looked at before will do
- test samples should be normalized exactly as training samples
- Images are already roughly normalized
- intensity/color are in the range $[0,255]$
- usually subtract mean image from training data, zero-centers data
- mean computed on training data only
- subtracted from test data as well

Training NN: How Many Epochs?

training time

Large training error: random decision regions in the beginning - underfit

Small training error: decision regions improve with time

Zero training error: decision regions fit training data perfectly - overfit

- Learn when to stop training through cross validation

Other Practical Training Tips

- Before training on full dataset, make sure can overfit on a small portion of the data
- turn regularization off
- Search hyperparameters on coarse scale for a few epoch, and then on finer scale for more epoch
- random search might be better than grid search

Important parameter

Random Layout

Important parameter

