
Lecture 11

Convolutional
Neural Networks

Many slides are from A. Ng, Y. LeCun, G. Hinton, A. Ranzato

CS9840
Learning and Computer Vision

Prof. Olga Veksler

Outline

• Deep Networks (DNN)
• convolutional Network

• Training Deep Network

NN as Non-Linear Feature Mapping

x1

x2

1

• 1 hidden layer NN can be interpreted as first
mapping input features to new features

• Then applying (linear classifier) to the new
features

NN as Non-Linear Feature Mapping

x1

x2

1

 this part implements
Perceptron (liner classifier)

y1

y2

y3

NN as Non-Linear Feature Mapping

x1

x2

1

 this part implements
mapping to new features y

y1

y2

y3

NN as Nonlinear Feature Mapping

x1

x2

1 -1
-1
1

-3
 1

-1

1.5

1
1

• Consider 3 layer NN example we saw previously:

x1

x2

non linearly separable in
the original feature space

+

y1

y2

linearly separable in the
new feature space

NN as Nonlinear Feature Mapping
• Features are key to recent success in object recognition
• Multitude of hand-crafted features, time consuming

• With NN, change in paradigm: instead of hand-
crafting , learn features automatically from data

Textons

SIFT HOG

Patches

• How many layers should we choose?
 Shallow network

Shallow vs. Deep Architecture

 Deep network

• Deep network lead to many successful
applications recently

Why Deep Networks
• Evidence from biology

• 2 layer networks can represent any function
• But deep architectures are more efficient for

representing some functions
• problems that can be represented with a polynomial

number of nodes with k layers, may require an exponential
number of nodes with k-1 layers

• thus with deep architecture, less units might be needed
overall

• less weights, less parameter updates, more efficient

Why Deep Networks

Why Deep Networks

• Sub-features created in deep architecture can

potentially be shared between multiple tasks

• Deep architecture works well for hierarchical feature
extraction

• hierarchies features are especially natural in vision

• Each stage is a trainable feature transform
• Level of abstraction increases up the hierarchy

Why Deep Networks: Hierarchical Feature Extraction

Input layer
pixels

First layer
edges

Second layer
object parts

Third layer
objects

• Another example (from M. Zeiler’2013)

Why Deep Networks: Hierarchical Feature Extraction

visualization of
learned features

Patches that result in high
response

Layer 1

Layer 2

Why Deep Networks: Hierarchical Feature Extraction

Layer 3

Layer 4

visualization of
learned features

Patches that result in high
response

Early Work on Deep Networks
• Fukushima (1980) – Neo-Cognitron
• LeCun (1998) – Convolutional Networks (convnets)

• Similarities to Neo-Cognitron
• Success on character recognition

• Other attempts at deeply layered Networks trained with
backpropagation
• not much success

• very slow
• diffusion of gradient

• recent work has shown significant training improvements with
various tricks (drop-out, unsupervised learning of early layers,
etc.)

ConvNets: Prior Knowledge for Network Architecture

• Convnets use prior knowledge about recognition task
into network architecture design
• connectivity structure
• weight constraints
• neuron activation functions

• This is less intrusive than hand-designing the features
• but it still prejudices the network towards the particular way

of solving the problem that we had in mind

Convolutional Network: Motivation
• Consider a fully connected

network
• Example: 200 by 200 image,

4x104 connections to one
hidden unit

• For 105 hidden units → 4x109
connections

• But spatial correlations are
mostly local

• Do not waste resources by
connecting unrelated pixels

hidden layer

Convolutional Network: Motivation
• Connect only pixels in a local

patch, say 10x10
• For 200 by 200 image, 102

connections to one hidden
unit

• For 105 hidden units → 107
connections
• contrast with 4x109 for fully

connected layer
• factor of 400 decrease

Convolutional Network: Motivation

• If a feature is useful in one image
location, it should be useful in all
other locations
• stationarity: statistics is similar at

different locations

• All neurons detect the same
feature at different positions in the
input image
• i.e. share parameters (network

weights) across different locations
• bias is usually not shared
• also greatly reduces the number of

tunable parameters

all red connections
have the same weight

all green connections
have the same weight

all blue connections
have the same weight

ConvNets: Weight Sharing
• Much fewer parameters to

learn
• For 105 hidden units and

10x10 patch
• 107 parameters to learn

without sharing
• 102 parameters to learn with

sharing

*
-1 0 1
-1 0 1
-1 0 1

=

Filtering via Convolution Recap
• Recall filtering with convolution for feature extraction

Convolutional Layer
• Note similarity to

convolution with some
fixed filter

• But here the filter is
learned

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer
• Each filter is responsible for

one feature type
• Learn multiple filters
• Example:

• 10x10 patch
• 100 filters
• only 104 parameters to learn
• because parameters are

shared between different
locations

Convolutional Layer
• Output is usually slightly smaller because the borders of the

image are left out

• If want output to be the same size, zero-pad the image
appropriately

Convolutional Layer
• Can apply convolution only to

some pixels (say every second)
• output layer is smaller
• less parameters to learn

• Example
• stride = 2
• apply convolution every second pixel
• makes image approximately twice

smaller in each dimension
• image not zero-padded in this example

Convolutional Layer
• Input image is usually color, has 3 channels or depth 3

Convolutional Layer
• Convolve 3D image with 3D filter

Convolutional Layer
• One convolution step is a 75 dimensional dot product

between the 5x5x3 filter and a piece of image of size 5x5x3
• Can be expressed as wtx, 75 parameters to learn (w)
• Can add bias wtx + b, 76 parameters to learn (w,b)

Convolutional Layer
• Convolve 3D image with 3D filter

• result is a 28x28x1 activation map, no zero padding used
• 76 parameters to learn

Convolutional Layer
• Consider a second, green filter

Convolutional Layer

• Stack them to get a new 28x28x6 “image”
• 76x6 = 456 parameters to learn

• If have 6 filters (each of size 5x5x3) get 6 activation maps,
28x28 each

Convolutional Layer
• Apply activation function (say ReLu) to the activation map

Several Convolution Layers
• Construct a sequence of convolution layers interspersed with

activation functions

• Use zero-padding if don’t want output layers to shrink

Convolutional Layer
• 1x1 convolutions make perfect sense
• Example

• Input image of size 56x56x64
• Convolve with 32 filters, each of size 1x1x64

Weight Sharing Constraints
• Easy to modify backpropagation algorithm to incorporate

weight sharing
• Compute the gradients as usual, and then modify the gradients

so that they satisfy the constraints.
• if the weights started off satisfying the constraints, they will continue to

satisfy them

• To constrain w1 = w2, we need ∆w1 = ∆w2

21 w
L

w
L

∂
∂

+
∂
∂

• Now use to update w1 and w2 , use

2w
L

∂
∂• Before we used to update w1 and to update w2

1w
L

∂
∂

GOOD BAD BAD BAD

too noisy too
correlated structure

lack

Check Learned Convolutions
• Good training: learned filters exhibit structure and are uncorrelated

Convolutional Layer Summary
• Local connectivity
• Weight sharing
• Handling multiple input/output channels
• Retains location associations

filters = #output (activation) maps # input channels

Local connectivity
Weight sharing

filter size,
stride

Convolutional Layer Summary
• Takes as input volume W x H x D
• Requires four hyperparameters

• number of filters K
• usually try powers of 2 (32, 64, 128, etc)

• their spatial extent F
• smaller size is more popular, 3, 5, 7

• stride S
• 1 or 2

• amount of zero padding P
• as fits

• Produces volume of size W’ x H’ x D’ where
• W’ = (W – F +2P)/S +1
• H’ = (H – F +2P)/S +1
• D’ = K

• With parameter sharing, introduces F*F*D weights per
filter, for a total of (F*F*D)*K weights and K biases

Pooling Layer
• Say a filter is an eye detector
• Want to detection to be robust to precise eye location

Pooling Layer
• Pool responses at different locations

• by taking max, average, etc.
• robustness to exact spatial location
• also larger receptive field (see more of the input)

 • Usually pooling applied
with stride > 1

• This reduces resolution
of output map

• But we already lost
resolution (precision)
by pooling

Pooling Layer: Max Pooling Example

Pooling Layer
• Pooling usually applied to each activation map separately

Pooling Layer Summary
• Takes volume of size W x H x D
• Introduces no parameters to learn
• Hyperparameters

• stride S
• common settings: 2

• spatial extent F
• common settings: 2,3

• padding is not common to use with pooling
• Produces a volume of size W’ x H’ x D’

• W’ = (W - F)/S + 1
• H’ = (H - F)/S+1
• D’ = D

Issues with Pooling
• After several levels of pooling, we lost information about the

precise positions of things
• This makes it impossible to use the precise spatial

relationships between high-level parts for recognition

Local Contrast Normalization

want the same response

Local Contrast Normalization

() ()()
()()yxN

yxNyxhyxh i

ii
i

,
,,),(1

σ
µ−

=+

Local Contrast Normalization

• Normalize each patch (say
7x7) to be zero mean unit
variance

• Effects
• Improves invariance
• Improves optimization by

making activation layer on the
same scale

• Usually improves
classification rate

71

Convolution

One Stage

ConvNets: Typical Stage

LCN Pooling

Conceptually similar to: SIFT, HoG, etc.

Nonlinearity

Fully Connected
Layers

Whole System

1st stage 2nd stage 3rd stage

Input
Image

Class
Labels

Typical Architecture

Conceptually similar to: SIFT → K-Means → Pyramid Pooling → SVM

Convolution

One Stage

LCN Pooling Nonlinearity

Fully Connected Layer
• Can have just one fully connected layer
• Example for 3-class classification problem

1st stage 2nd stage 3rd stage

Input
Image

• Can have more than one fully connected layer

1st stage 2nd stage 3rd stage

Input
Image

Fully Connected Layer
• Can implement as a convolutional layer

• input of size 56x56x64
• say 3 class problem
• convolve with 3 filters, each of size 56x56x64

Overview of CNN
• Made up of Layers
• Every Layer has a simple API

• transforms an input 3D volume to an output 3D volume with some
differentiable function

• may or may not have parameters
• may or may not have hyperparameters

65

ConvNets: Training

• All Layers are differentiable
• Use standard back-propagation (gradient descent)
• At test time, run only in forward mode

Conv Nets: Character Recognition
• http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html

ConvNet for ImageNet
• Krizhevsky et.al.(NIPS 2012) developed deep

convolutional neural net of the type pioneered by
Yann LeCun

• Architecture
• 7 hidden layers not counting some max pooling layers
• the early layers were convolutional
• the last two layers were globally connected

• Activation function
• rectified linear units in every hidden layer
• train much faster and are more expressive than logistic unit

Results: ILSVRC 2012

ConvNet on Image Classification

Krizhevsky et.al. Architecture

Tricks to Improve Generalization

• To get more data:
• Use left-right reflections of the images
• Train on random 224x224 patches from the 256x256 images

• At test time:
• combine the opinions from ten different patches:

• four 224x224 corner patches plus the central 224x224 patch
• the reflections of those five patches

 • Use dropout to regularize weights in the fully connected layers
• half of the hidden units in a layer are randomly removed for each

training example

ImageNet Experiments

Going Deeper with Convolutions
http://arxiv.org/abs/1409.4842

Transfer Learning with CNN

	Slide Number 1
	Outline
	NN as Non-Linear Feature Mapping
	NN as Non-Linear Feature Mapping
	NN as Non-Linear Feature Mapping
	NN as Nonlinear Feature Mapping
	NN as Nonlinear Feature Mapping
	Shallow vs. Deep Architecture
	Why Deep Networks
	Why Deep Networks
	Why Deep Networks
	Why Deep Networks: Hierarchical Feature Extraction
	Why Deep Networks: Hierarchical Feature Extraction
	Why Deep Networks: Hierarchical Feature Extraction
	Early Work on Deep Networks
	ConvNets: Prior Knowledge for Network Architecture
	Convolutional Network: Motivation
	Convolutional Network: Motivation
	Convolutional Network: Motivation
	ConvNets: Weight Sharing
	Filtering via Convolution Recap
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Convolutional Layer
	Several Convolution Layers
	Convolutional Layer
	Weight Sharing Constraints
	Check Learned Convolutions
	Convolutional Layer Summary
	Convolutional Layer Summary
	Pooling Layer
	Pooling Layer
	Pooling Layer: Max Pooling Example
	Pooling Layer
	Pooling Layer Summary
	Issues with Pooling
	Local Contrast Normalization
	Local Contrast Normalization
	Local Contrast Normalization
	ConvNets: Typical Stage
	Typical Architecture
	Fully Connected Layer
	Fully Connected Layer
	Overview of CNN
	ConvNets: Training
	Conv Nets: Character Recognition
	ConvNet for ImageNet
	Results: ILSVRC 2012
	ConvNet on Image Classification
	Krizhevsky et.al. Architecture
	Tricks to Improve Generalization
	ImageNet Experiments
	Slide Number 74
	Transfer Learning with CNN

