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Outline 

• Deep Networks (DNN) 
• convolutional Network 

• Training Deep Network 
 

 



NN as Non-Linear Feature Mapping 
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• 1 hidden layer NN can be interpreted as first 
mapping input features to new features 

• Then applying  (linear classifier) to the new 
features 



NN as Non-Linear Feature Mapping 
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NN as Nonlinear Feature Mapping 
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• Consider 3 layer NN example we saw previously: 

x1 

x2 

non linearly separable in 
the original feature space 

+ 

y1 

y2 

linearly separable in the 
new feature space 



NN as Nonlinear Feature Mapping 
• Features are  key to recent success in object recognition 
• Multitude of hand-crafted features, time consuming 

• With NN, change in paradigm: instead of hand-
crafting , learn features automatically from data 

Textons 

SIFT HOG 

Patches 



• How many layers should we choose? 
     Shallow network 

Shallow vs. Deep Architecture 

    Deep network 

• Deep network lead to many successful 
applications recently 



Why Deep Networks 
• Evidence from biology 

 
 

 
 

 
 

 



• 2 layer networks can represent any function 
• But deep architectures are more efficient for 

representing some functions 
• problems  that can be represented with a polynomial 

number of nodes with k layers, may require an exponential 
number of nodes with k-1 layers 

• thus with deep architecture, less units might be needed 
overall 

• less weights, less parameter updates, more efficient 

 
 

 
 

Why Deep Networks 



Why Deep Networks 
 
• Sub-features created in deep architecture can 

potentially be shared between multiple tasks 
 
 

 
 

 
 

 



• Deep architecture works well for  hierarchical feature 
extraction 

• hierarchies features are especially natural in vision 

• Each stage is a trainable feature transform 
• Level of abstraction increases up the hierarchy 

 
 

 
 

 
 

 

Why Deep Networks: Hierarchical Feature Extraction 

Input layer  
pixels 

First layer  
edges 

Second layer  
object parts 

Third layer   
objects 



• Another example (from M. Zeiler’2013) 
  

 

 
 

 
 
 

 

Why Deep Networks: Hierarchical Feature Extraction 

visualization of 
learned features 

Patches that result in high 
response 

Layer 1 

Layer 2 



Why Deep Networks: Hierarchical Feature Extraction 

Layer 3 

Layer 4 

visualization of 
learned features 

Patches that result in high 
response 



Early Work on Deep Networks 
• Fukushima (1980) – Neo-Cognitron 
• LeCun (1998) – Convolutional Networks (convnets) 

• Similarities to Neo-Cognitron 
• Success on character recognition 

• Other attempts at deeply layered Networks trained with 
backpropagation 
• not much success 

• very slow 
• diffusion of gradient 

• recent work has shown significant training improvements with 
various tricks (drop-out, unsupervised learning of early layers, 
etc.) 



ConvNets: Prior Knowledge for Network Architecture 

• Convnets use prior knowledge about recognition task 
into network architecture design 
• connectivity structure 
• weight constraints 
• neuron activation functions 

• This is less intrusive than hand-designing the features 
• but it still prejudices the network towards the particular way 

of solving the problem that we had in mind 

 



Convolutional Network: Motivation 
• Consider a fully connected 

network 
• Example: 200 by 200 image, 

4x104 connections to one 
hidden unit 

• For 105 hidden units → 4x109   
connections 

• But spatial correlations are 
mostly local 

• Do not waste resources by 
connecting unrelated pixels 
  

hidden layer 



Convolutional Network: Motivation 
• Connect only pixels in a local 

patch, say 10x10 
• For 200 by 200 image,  102 

connections to one hidden 
unit 

• For 105 hidden units → 107   
connections 
• contrast with  4x109 for fully 

connected layer 
• factor of 400 decrease 



Convolutional Network: Motivation 
 

• If a feature is useful in one image 
location, it should be useful in all 
other locations 
• stationarity: statistics is similar at 

different locations 

• All neurons detect the same 
feature at different positions in the 
input image 
• i.e. share parameters (network 

weights) across different locations 
• bias is usually not shared 
• also greatly reduces the number of 

tunable parameters 

all red connections  
have the same weight 
 

all green connections 
have the same weight 
 

all blue connections 
have the same weight 
 



ConvNets: Weight Sharing 
• Much fewer parameters to 

learn 
• For 105 hidden units and 

10x10 patch 
• 107 parameters to learn 

without sharing 
• 102 parameters to learn with  

sharing 
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Filtering via Convolution Recap 
• Recall filtering with convolution for feature extraction 



Convolutional Layer 
• Note similarity to 

convolution with some 
fixed filter 

• But here the filter is 
learned 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 
• Each filter is responsible for 

one feature type 
• Learn multiple filters 
• Example: 

• 10x10 patch 
• 100 filters 
• only 104 parameters to learn 
• because parameters are 

shared between different 
locations 

 



Convolutional Layer 
• Output is usually slightly smaller because the borders of the 

image are left out 

• If want output to be the same size, zero-pad the image 
appropriately 



Convolutional Layer 
• Can apply convolution only to 

some pixels (say every second) 
• output layer is smaller 
• less parameters to learn 

• Example 
• stride = 2 
• apply convolution every second pixel 
• makes image approximately twice 

smaller in each dimension 
• image not zero-padded in this example 

 

 



Convolutional Layer 
• Input image is usually color, has 3 channels or depth 3 
 

 



Convolutional Layer 
• Convolve 3D image with 3D filter 
 

 



Convolutional Layer 
• One convolution step is a 75 dimensional dot product 

between the 5x5x3 filter and a piece of image of size 5x5x3 
• Can be expressed as  wtx, 75 parameters to learn (w) 
• Can add bias  wtx + b, 76 parameters to learn (w,b) 

 
 

 



Convolutional Layer 
• Convolve 3D image with 3D filter 

• result is a 28x28x1 activation map, no zero padding used 
• 76 parameters to learn 

 

 



Convolutional Layer 
• Consider a second, green filter  
 

 



Convolutional Layer 

• Stack them to get a new 28x28x6 “image” 
• 76x6 = 456 parameters to learn 
 

• If have 6 filters (each of size 5x5x3) get 6 activation maps, 
28x28 each 

 

 



Convolutional Layer 
• Apply activation function (say ReLu) to the activation map 
 

 



Several Convolution Layers 
• Construct a sequence of convolution layers interspersed with 

activation functions 
 

 

• Use zero-padding if don’t want output layers to shrink 
 

 



Convolutional Layer 
• 1x1 convolutions make perfect sense 
• Example 

• Input image of size 56x56x64 
• Convolve with 32 filters, each of size 1x1x64 

 

 



Weight Sharing Constraints 
• Easy to modify  backpropagation algorithm to incorporate 

weight sharing 
• Compute the gradients as usual, and then modify the gradients 

so that they satisfy the constraints. 
• if the weights started off satisfying the constraints, they will continue to 

satisfy them 

• To constrain w1 = w2, we need  ∆w1 = ∆w2 
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GOOD BAD BAD BAD 

too noisy too 
correlated structure 

lack 

Check Learned Convolutions 
• Good training: learned filters exhibit structure and are uncorrelated 



Convolutional Layer Summary 
• Local connectivity 
• Weight sharing 
• Handling multiple input/output channels 
• Retains location associations 

# filters = #output (activation) maps  # input channels 

Local connectivity 
Weight sharing 

filter size, 
stride 



Convolutional Layer Summary 
• Takes as input volume W x H x D  
• Requires four hyperparameters 

• number of filters K 
• usually try powers of 2 (32, 64, 128, etc) 

• their spatial extent F 
• smaller size is more popular, 3, 5, 7 

• stride S 
• 1 or 2 

• amount of zero padding P 
• as fits 

• Produces volume of size W’ x H’ x D’ where 
• W’ = (W – F +2P)/S +1 
• H’ = (H – F +2P)/S +1 
• D’ = K 

• With parameter sharing, introduces F*F*D weights per 
filter, for a total of (F*F*D)*K weights and K biases 
 



Pooling Layer 
• Say a filter is an eye detector 
• Want to detection to be robust to precise eye location  

 



Pooling Layer 
• Pool  responses at different locations  

• by taking max, average, etc. 
• robustness to exact spatial location 
• also larger receptive field (see more of the input) 

 • Usually pooling applied 
with stride > 1 

• This reduces resolution 
of  output map 

• But  we already lost 
resolution (precision)   
by pooling   



Pooling Layer: Max Pooling Example 



Pooling Layer 
• Pooling usually applied to each activation map separately 



Pooling Layer Summary 
• Takes volume of size W x H x D 
• Introduces no parameters to learn 
• Hyperparameters 

• stride S 
• common settings:  2 

• spatial extent F 
• common settings: 2,3  

• padding is not common to use with pooling 
• Produces a volume of size W’ x H’ x D’ 

• W’ = (W - F)/S + 1 
• H’ = (H - F)/S+1 
• D’ = D 

 



Issues with Pooling 
• After several levels of pooling, we lost information about the 

precise positions of things 
• This makes it impossible to use the precise spatial 

relationships between high-level parts for recognition 
 



Local Contrast Normalization 



want the same response 

Local Contrast Normalization 



( ) ( )( )
( )( )yxN

yxNyxhyxh i

ii
i

,
,,),(1

σ
µ−

=+

Local Contrast Normalization 

• Normalize each patch (say 
7x7) to be zero mean unit 
variance 

• Effects 
• Improves invariance 
• Improves optimization by 

making activation layer on the 
same scale 

• Usually improves 
classification rate 
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Convolution 

One Stage 

ConvNets: Typical Stage 

LCN Pooling 

Conceptually similar to: SIFT, HoG, etc. 

Nonlinearity 



Fully Connected 
Layers 

Whole System 

1st  stage 2nd  stage 3rd  stage 

Input 
Image 

Class 
Labels 

Typical Architecture 

Conceptually similar to: SIFT → K-Means → Pyramid Pooling → SVM 

Convolution 

One Stage 

LCN Pooling Nonlinearity 



Fully Connected Layer 
• Can have just one fully connected layer 
• Example for 3-class classification problem 

 

1st  stage 2nd  stage 3rd  stage 

Input 
Image 

• Can have more than one fully connected layer 

1st  stage 2nd  stage 3rd  stage 

Input 
Image 



Fully Connected Layer 
• Can implement as a convolutional layer 

• input  of size 56x56x64 
• say 3 class problem 
• convolve with  3  filters, each of size 56x56x64 

 

 



Overview of CNN 
• Made up of Layers 
• Every Layer has a simple API 

•  transforms an input 3D volume to an output 3D volume with some 
differentiable function 

• may or may not have parameters 
• may or may not have hyperparameters 

65 



ConvNets: Training 

• All Layers are differentiable 
• Use standard back-propagation (gradient descent) 
• At test time, run only in forward mode 

 
 



Conv Nets: Character Recognition 
• http://yann.lecun.com/exdb/lenet/index.html 

http://yann.lecun.com/exdb/lenet/index.html


ConvNet for ImageNet 
• Krizhevsky et.al.(NIPS 2012) developed  deep 

convolutional neural net of the type pioneered by  
Yann LeCun 

•  Architecture 
• 7 hidden layers not counting some max pooling layers 
• the early layers were convolutional 
• the last two layers were globally connected 

 
 

• Activation function 
• rectified linear units in every hidden layer 
• train much faster and are more expressive than logistic unit 



Results: ILSVRC 2012 



ConvNet on Image Classification 



Krizhevsky et.al. Architecture 



Tricks to Improve Generalization 

• To get more data: 
• Use left-right reflections of the images 
• Train on random 224x224 patches from the 256x256 images  

• At test time: 
• combine the opinions from ten different patches:  

• four 224x224 corner patches plus the central 224x224 patch  
• the reflections of those five patches 

 • Use dropout to regularize weights in the fully connected layers 
• half of the hidden units in a layer are randomly removed  for each 

training example 
 



ImageNet Experiments 



Going Deeper with Convolutions 
http://arxiv.org/abs/1409.4842 



Transfer Learning with CNN 
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