CS9840 Learning and Computer Vision Prof. Olga Veksler

Lecture 11

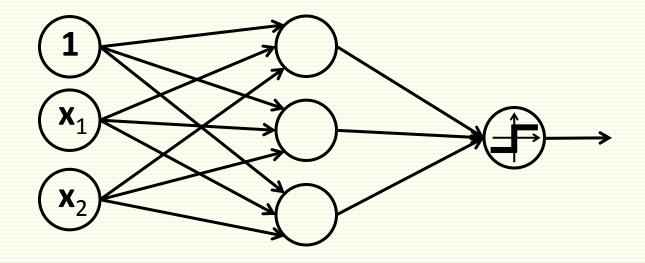
Convolutional Neural Networks

Many slides are from A. Ng, Y. LeCun, G. Hinton, A. Ranzato

Outline

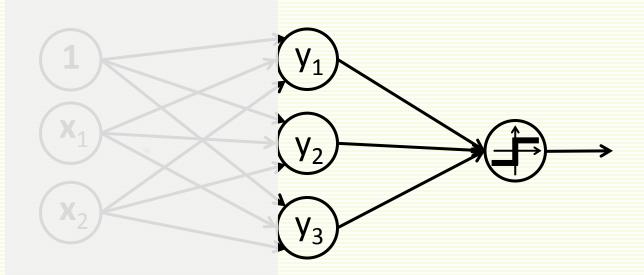
- Deep Networks (DNN)
 - convolutional Network
- Training Deep Network

NN as Non-Linear Feature Mapping



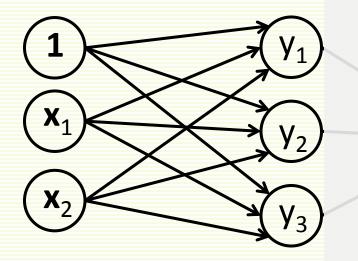
- 1 hidden layer NN can be interpreted as first mapping input features to new features
- Then applying (linear classifier) to the new features

NN as Non-Linear Feature Mapping



this part implements Perceptron (liner classifier)

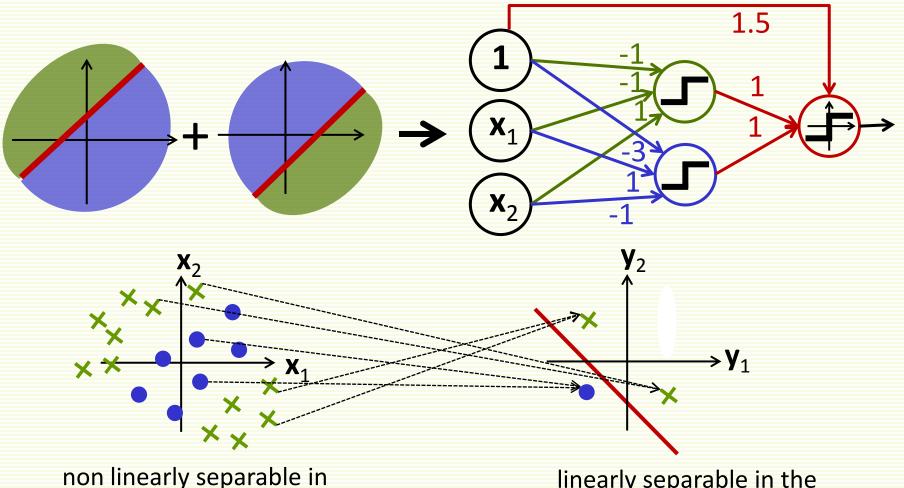
NN as Non-Linear Feature Mapping



this part implements mapping to new features **y**

NN as Nonlinear Feature Mapping

• Consider 3 layer NN example we saw previously:

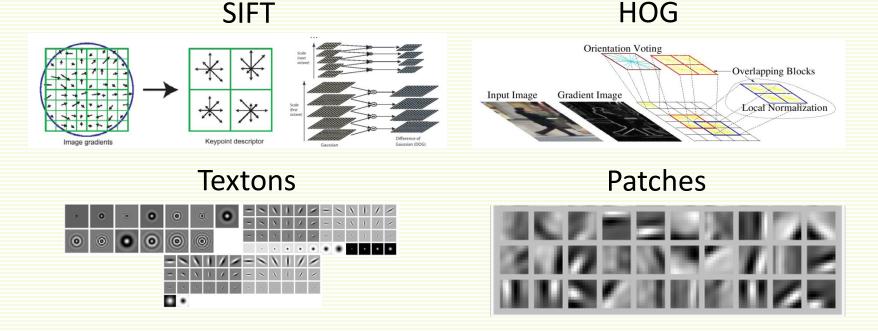


the original feature space

linearly separable in the new feature space

NN as Nonlinear Feature Mapping

- Features are key to recent success in object recognition
- Multitude of hand-crafted features, time consuming



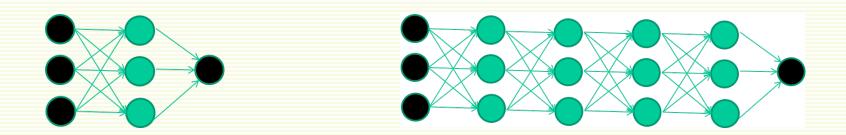
• With NN, change in paradigm: instead of handcrafting, learn features automatically from data

Shallow vs. Deep Architecture

• How many layers should we choose?

Shallow network

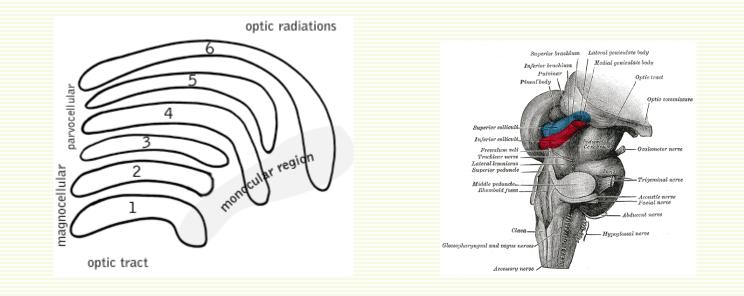
Deep network



 Deep network lead to many successful applications recently

Why Deep Networks

Evidence from biology

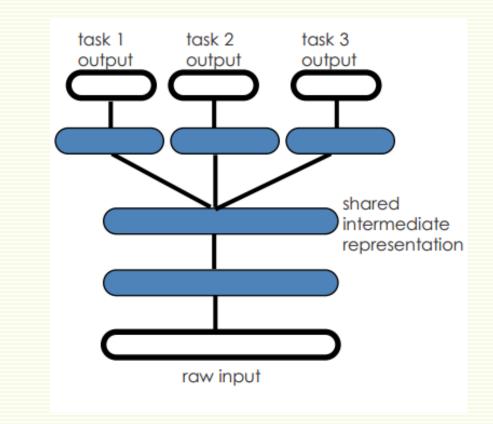


Why Deep Networks

- 2 layer networks can represent any function
- But deep architectures are more efficient for representing some functions
 - problems that can be represented with a polynomial number of nodes with k layers, may require an exponential number of nodes with k-1 layers
 - thus with deep architecture, less units might be needed overall
 - less weights, less parameter updates, more efficient

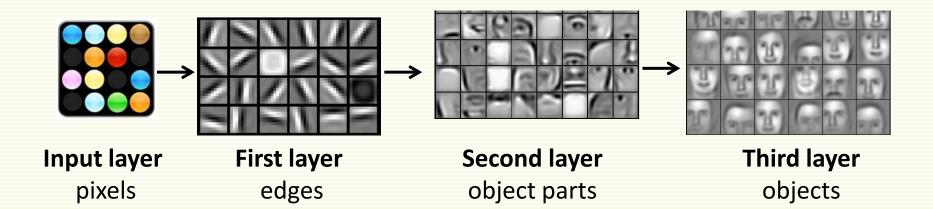
Why Deep Networks

• Sub-features created in deep architecture can potentially be shared between multiple tasks



Why Deep Networks: Hierarchical Feature Extraction

- Deep architecture works well for hierarchical feature extraction
 - hierarchies features are especially natural in vision
- Each stage is a trainable feature transform
- Level of abstraction increases up the hierarchy



Why Deep Networks: Hierarchical Feature Extraction

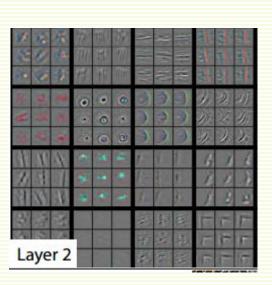
• Another example (from M. Zeiler'2013)

visualization of learned features

Patches that result in high response

Layer 2

Layer 1



Why Deep Networks: Hierarchical Feature Extraction

visualization of learned features

a 6

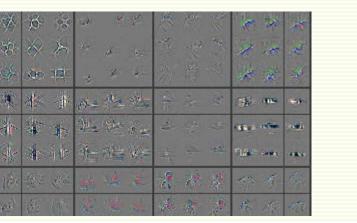
1

-

96 A

34

Patches that result in high response



Layer 3

Layer 4

Early Work on Deep Networks

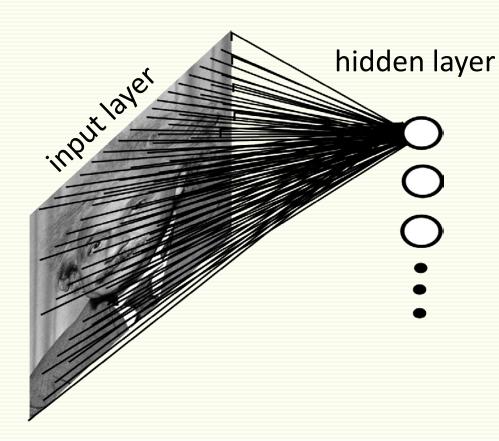
- Fukushima (1980) Neo-Cognitron
- LeCun (1998) Convolutional Networks (convnets)
 - Similarities to Neo-Cognitron
 - Success on character recognition
- Other attempts at deeply layered Networks trained with backpropagation
 - not much success
 - very slow
 - diffusion of gradient
 - recent work has shown significant training improvements with various tricks (drop-out, unsupervised learning of early layers, etc.)

ConvNets: Prior Knowledge for Network Architecture

- Convnets use prior knowledge about recognition task into network architecture design
 - connectivity structure
 - weight constraints
 - neuron activation functions
- This is less intrusive than hand-designing the features
 - but it still prejudices the network towards the particular way of solving the problem that we had in mind

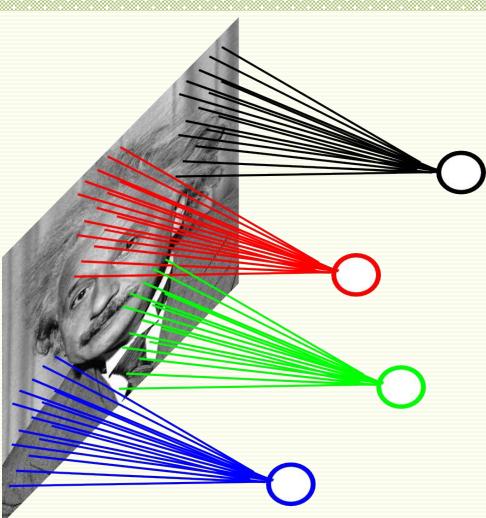
Convolutional Network: Motivation

- Consider a fully connected network
- Example: 200 by 200 image, 4x10⁴ connections to one hidden unit
- For 10⁵ hidden units → 4x10⁹ connections
- But spatial correlations are mostly local
- Do not waste resources by connecting unrelated pixels



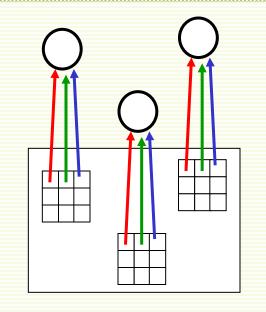
Convolutional Network: Motivation

- Connect only pixels in a local patch, say 10x10
- For 200 by 200 image, 10² connections to one hidden unit
- For 10^5 hidden units $\rightarrow 10^7$ connections
 - contrast with 4x10⁹ for fully connected layer
 - factor of 400 decrease



Convolutional Network: Motivation

- If a feature is useful in one image location, it should be useful in all other locations
 - stationarity: statistics is similar at different locations
- All neurons detect the same feature at different positions in the input image
 - i.e. share parameters (network weights) across different locations
 - bias is usually not shared
 - also greatly reduces the number of tunable parameters



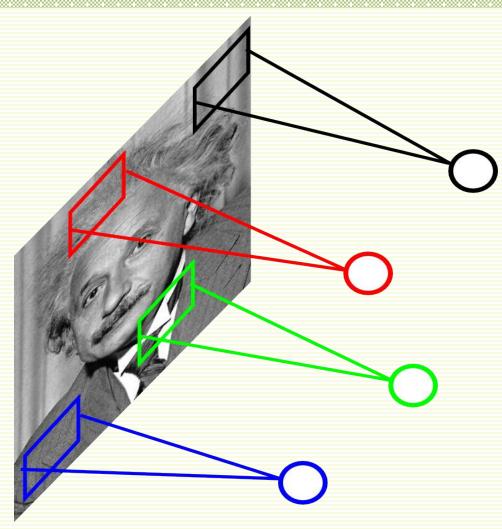
all red connections have the same weight

all green connections have the same weight

all blue connections have the same weight

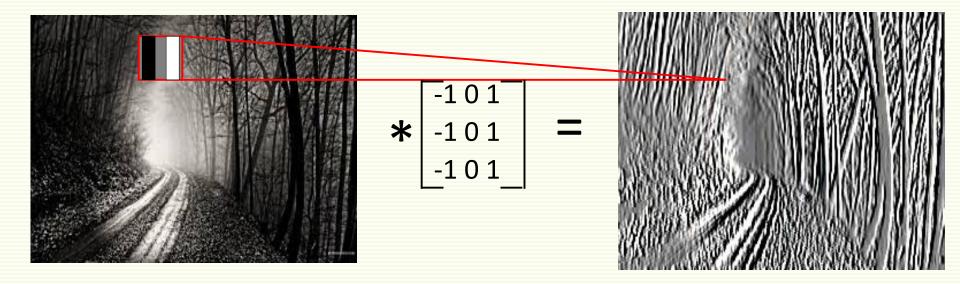
ConvNets: Weight Sharing

- Much fewer parameters to learn
- For 10⁵ hidden units and 10x10 patch
 - 10⁷ parameters to learn without sharing
 - 10² parameters to learn with sharing

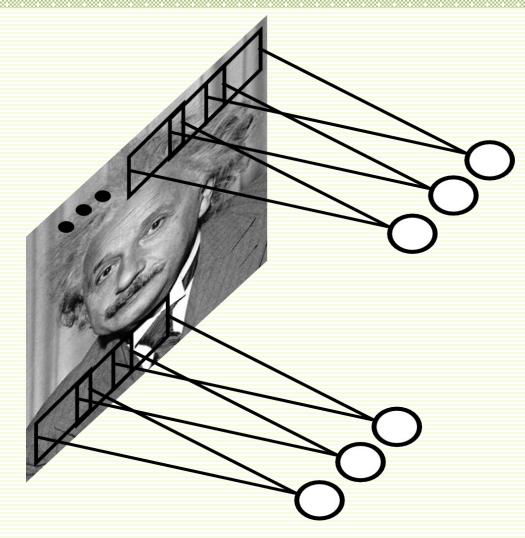


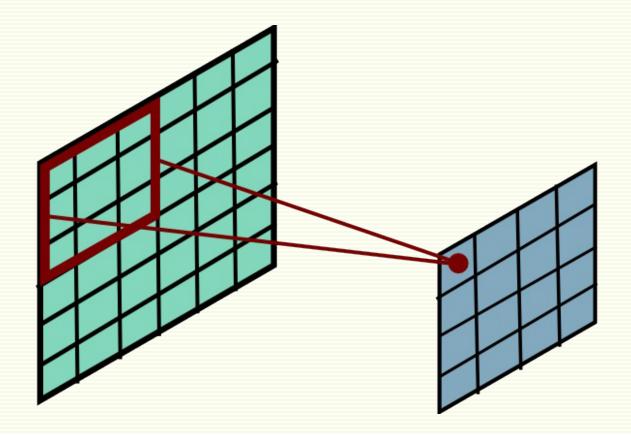
Filtering via Convolution Recap

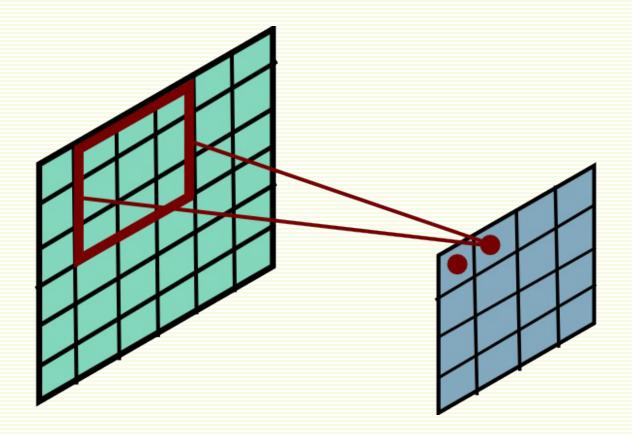
• Recall filtering with convolution for feature extraction

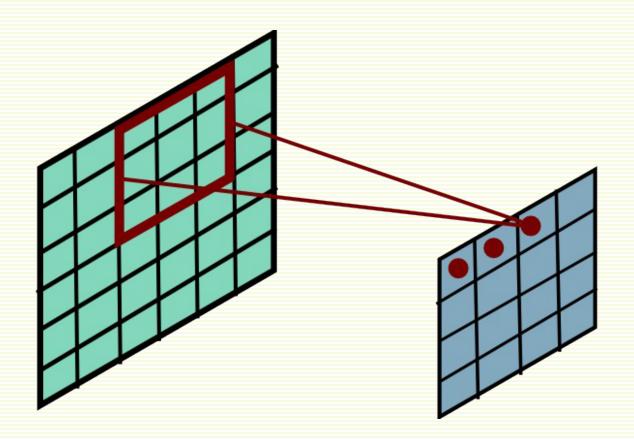


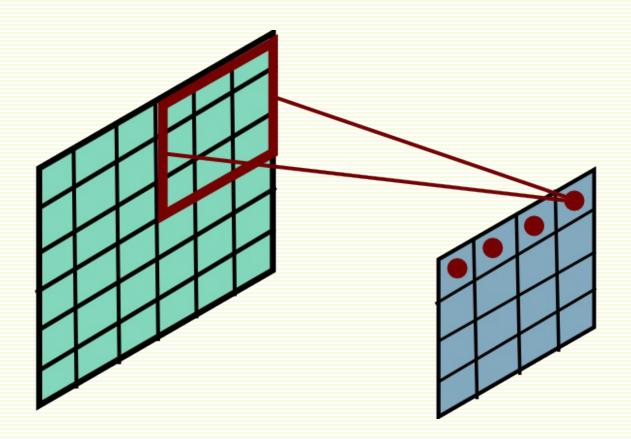
- Note similarity to convolution with some fixed filter
- But here the filter is learned

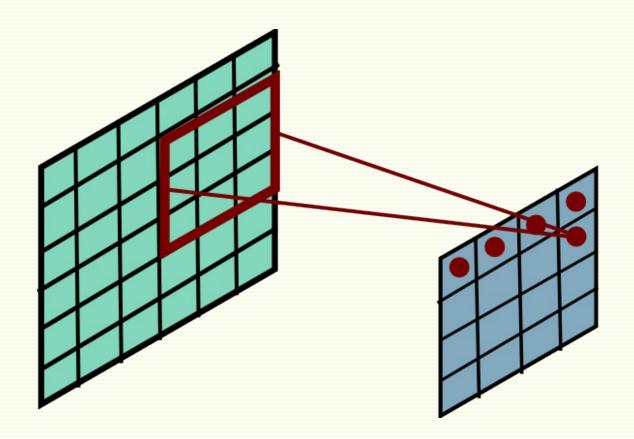


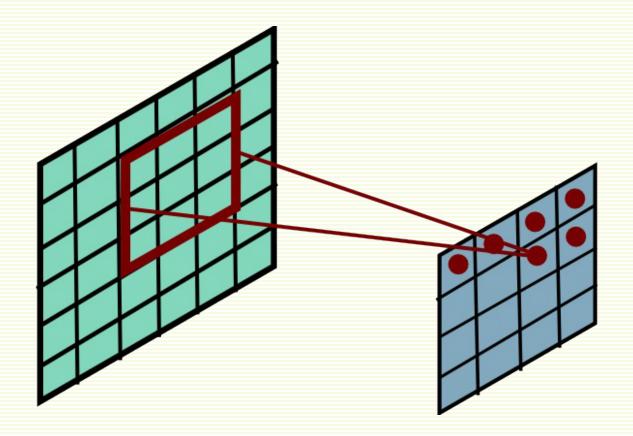


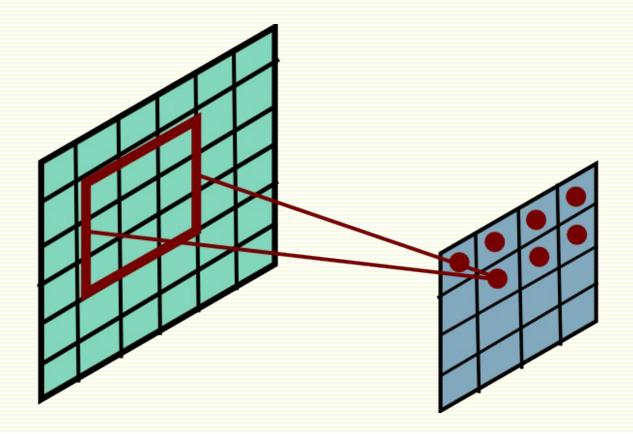


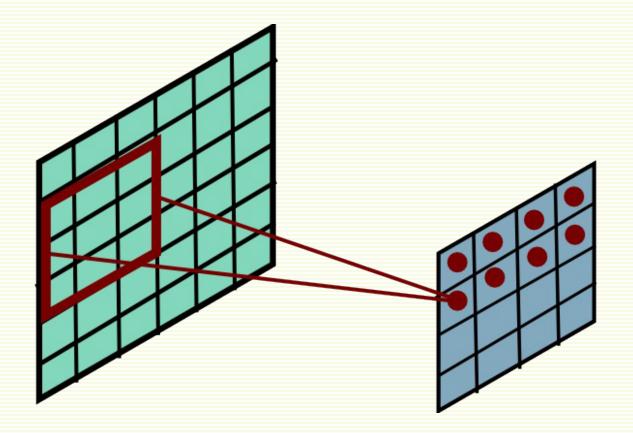


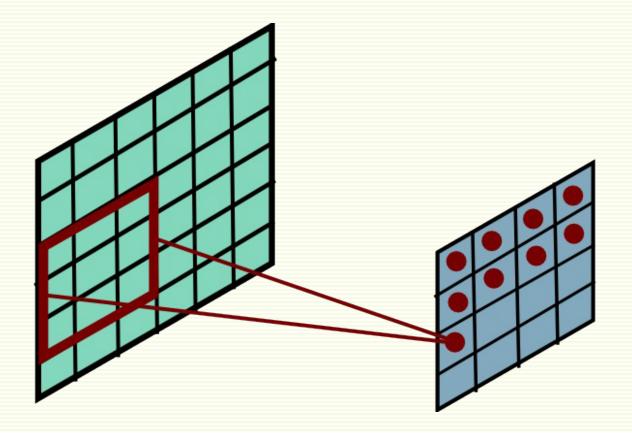


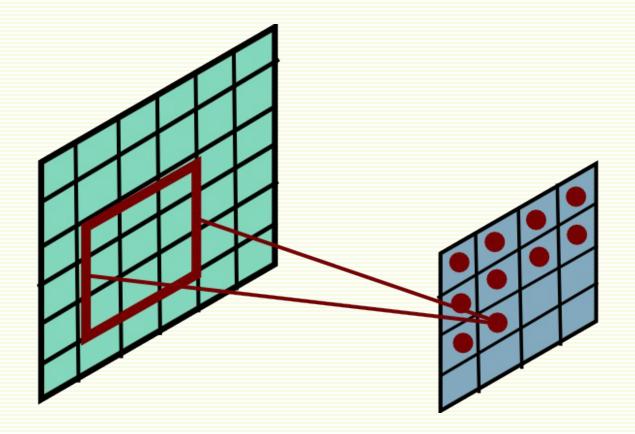


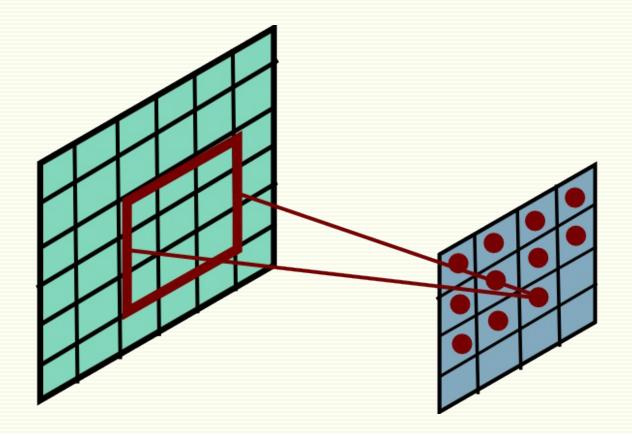


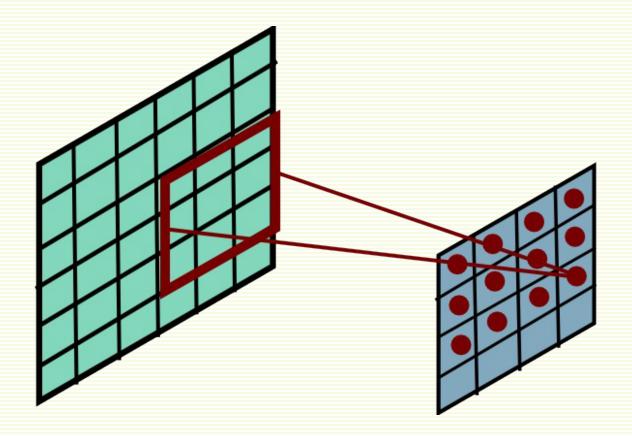


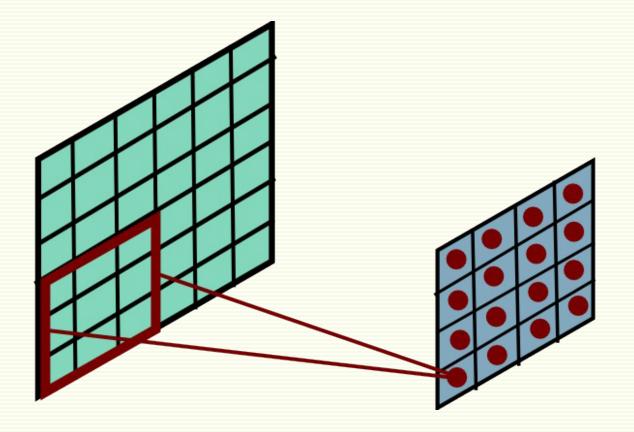




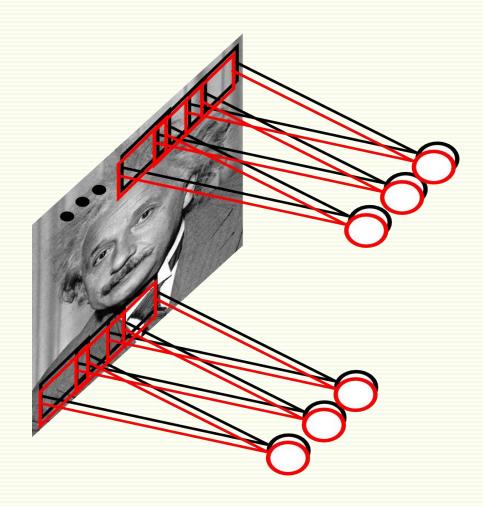




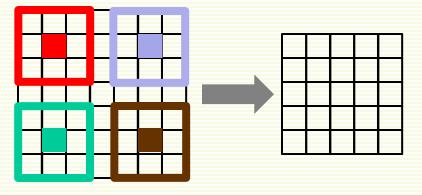




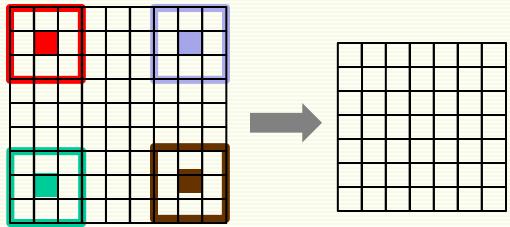
- Each filter is responsible for one feature type
- Learn multiple filters
- Example:
 - 10x10 patch
 - 100 filters
 - only 10⁴ parameters to learn
 - because parameters are shared between different locations



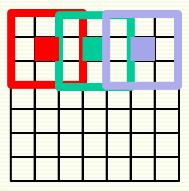
• Output is usually slightly smaller because the borders of the image are left out



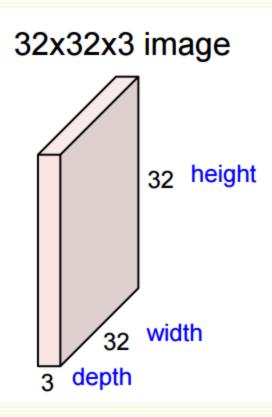
• If want output to be the same size, zero-pad the image appropriately



- Can apply convolution only to some pixels (say every second)
 - output layer is smaller
 - less parameters to learn
- Example
 - stride = 2
 - apply convolution every second pixel
 - makes image approximately twice smaller in each dimension
 - image not zero-padded in this example



• Input image is usually color, has 3 channels or depth 3

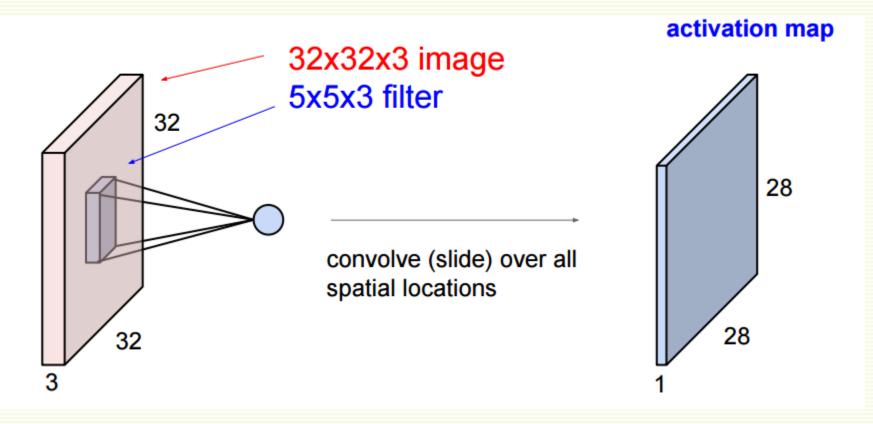


• Convolve 3D image with 3D filter

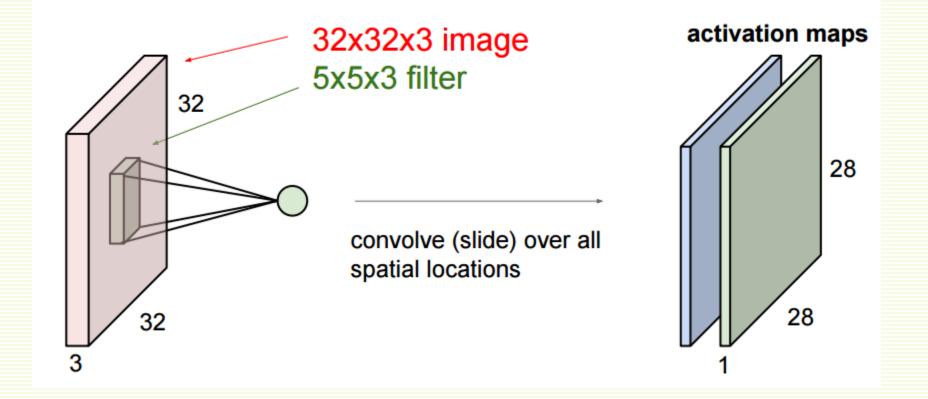
- One convolution step is a 75 dimensional dot product between the 5x5x3 filter and a piece of image of size 5x5x3
- Can be expressed as w^tx, 75 parameters to learn (w)
- Can add bias w^tx + b, 76 parameters to learn (w,b)



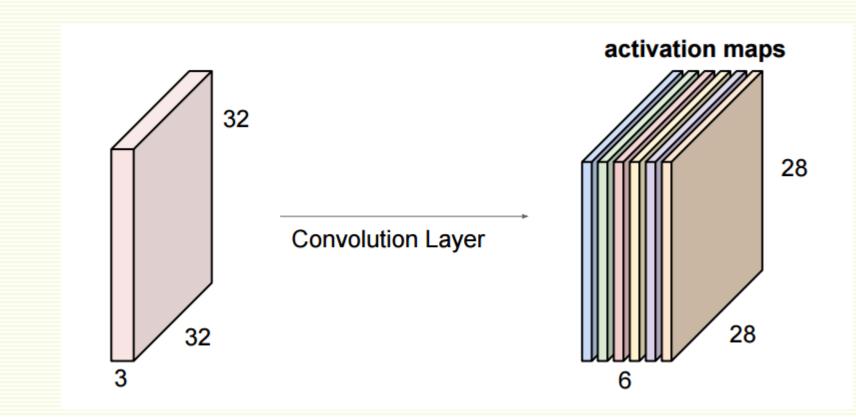
- Convolve 3D image with 3D filter
 - result is a 28x28x1 activation map, no zero padding used
 - 76 parameters to learn



• Consider a second, green filter

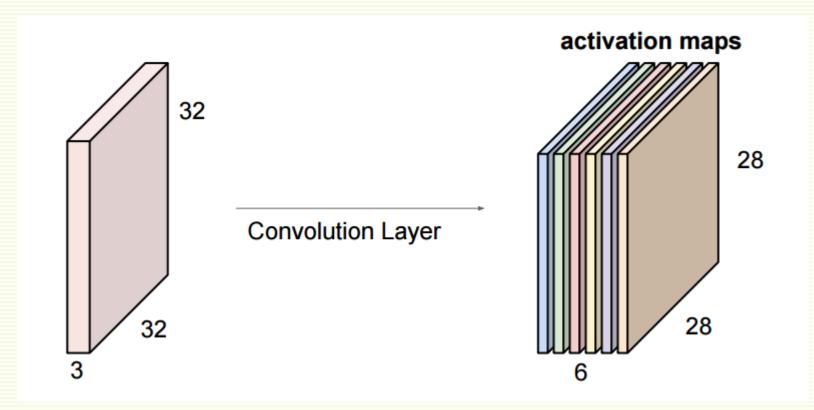


 If have 6 filters (each of size 5x5x3) get 6 activation maps, 28x28 each



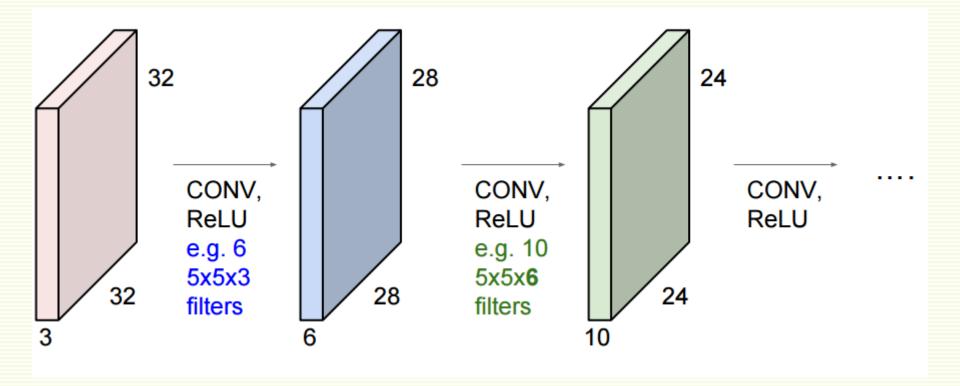
- Stack them to get a new 28x28x6 "image"
- 76x6 = 456 parameters to learn

• Apply activation function (say ReLu) to the activation map



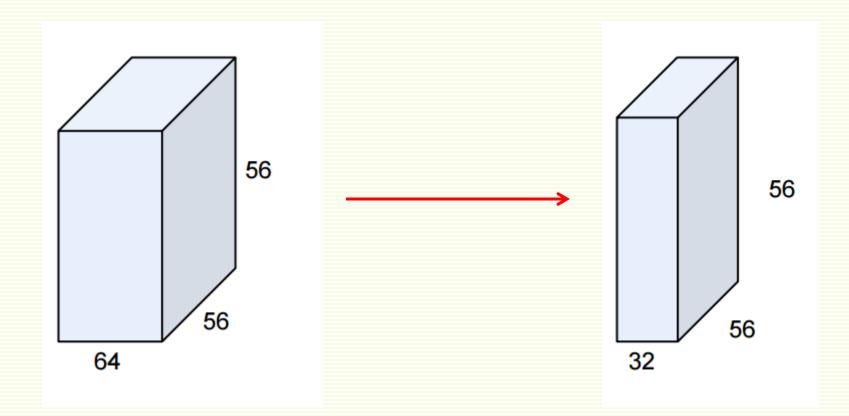
Several Convolution Layers

• Construct a sequence of convolution layers interspersed with activation functions



• Use zero-padding if don't want output layers to shrink

- 1x1 convolutions make perfect sense
- Example
 - Input image of size 56x56x64
 - Convolve with 32 filters, each of size 1x1x64

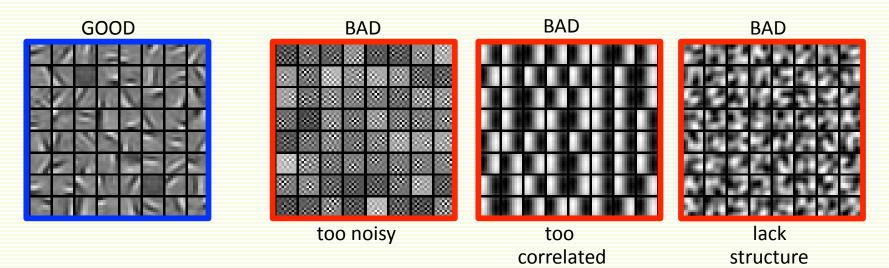


Weight Sharing Constraints

- Easy to modify backpropagation algorithm to incorporate weight sharing
- Compute the gradients as usual, and then modify the gradients so that they satisfy the constraints.
 - if the weights started off satisfying the constraints, they will continue to satisfy them
- To constrain $\mathbf{w}_1 = \mathbf{w}_2$, we need $\Delta \mathbf{w}_1 = \Delta \mathbf{w}_2$
- Before we used $\frac{\partial L}{\partial w_1}$ to update $\mathbf{w_1}$ and $\frac{\partial L}{\partial w_2}$ to update $\mathbf{w_2}$
 - Now use $\frac{\partial L}{\partial w_1} + \frac{\partial L}{\partial w_2}$ to update $\mathbf{w_1}$ and $\mathbf{w_2}$, use

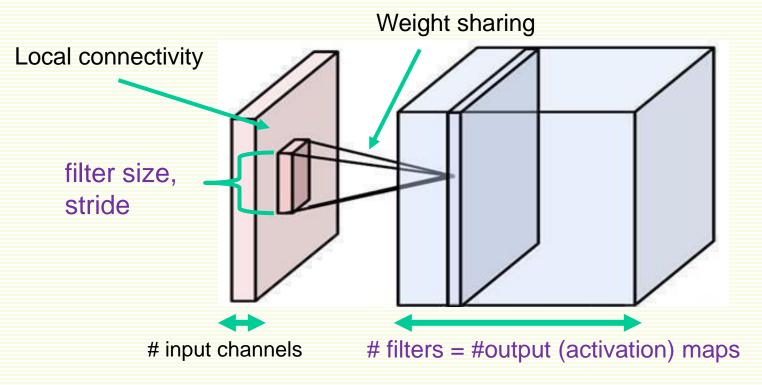
Check Learned Convolutions

• Good training: learned filters exhibit structure and are uncorrelated



Convolutional Layer Summary

- Local connectivity
- Weight sharing
- Handling multiple input/output channels
- Retains location associations

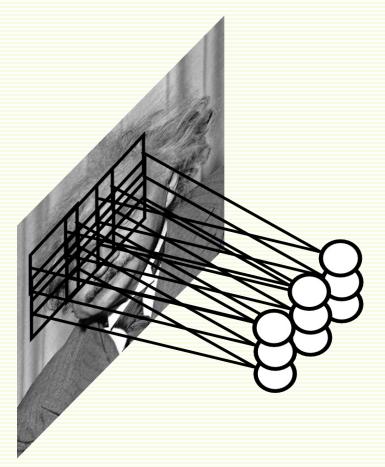


Convolutional Layer Summary

- Takes as input volume W x H x D
- Requires four hyperparameters
 - number of filters **K**
 - usually try powers of 2 (32, 64, 128, etc)
 - their spatial extent F
 - smaller size is more popular, 3, 5, 7
 - stride **S**
 - 1 or 2
 - amount of zero padding P
 - as fits
- Produces volume of size W' x H' x D' where
 - W' = (W F +2P)/S +1
 - **H'** = (**H F** +2**P**)/**S** +1
 - D' = K
- With parameter sharing, introduces F*F*D weights per filter, for a total of (F*F*D)*K weights and K biases

Pooling Layer

- Say a filter is an eye detector
- Want to detection to be robust to precise eye location



Pooling Layer

- Pool responses at different locations
 - by taking max, average, etc.
 - robustness to exact spatial location
 - also larger receptive field (see more of the input)
- Usually pooling applied with stride > 1
- This reduces resolution of output map
- But we already lost resolution (precision) by pooling

Pooling Layer: Max Pooling Example

Single depth slice

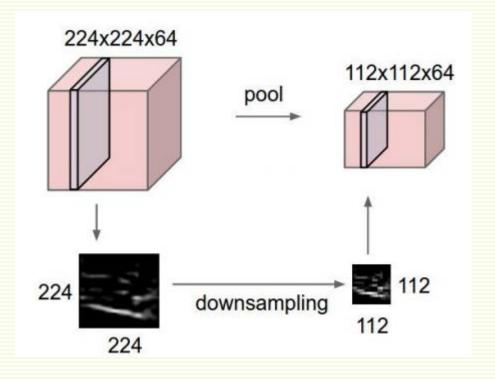
1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8	
3	4	

Pooling Layer

• Pooling usually applied to each activation map separately



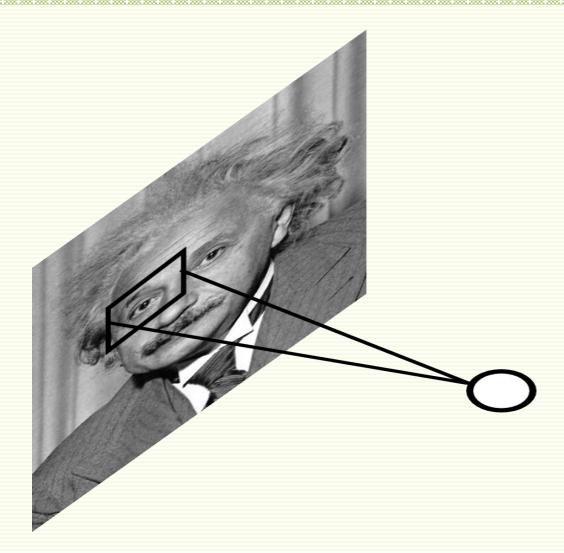
Pooling Layer Summary

- Takes volume of size W x H x D
- Introduces no parameters to learn
- Hyperparameters
 - stride S
 - common settings: 2
 - spatial extent F
 - common settings: 2,3
 - padding is not common to use with pooling
- Produces a volume of size W' x H' x D'
 - W' = (W F)/S + 1
 - H' = (H F)/S+1
 - D' = D

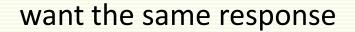
Issues with Pooling

- After several levels of pooling, we lost information about the precise positions of things
- This makes it impossible to use the precise spatial relationships between high-level parts for recognition

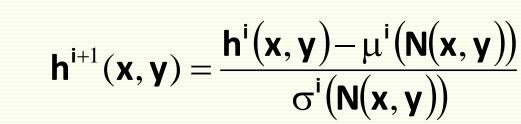
Local Contrast Normalization



Local Contrast Normalization

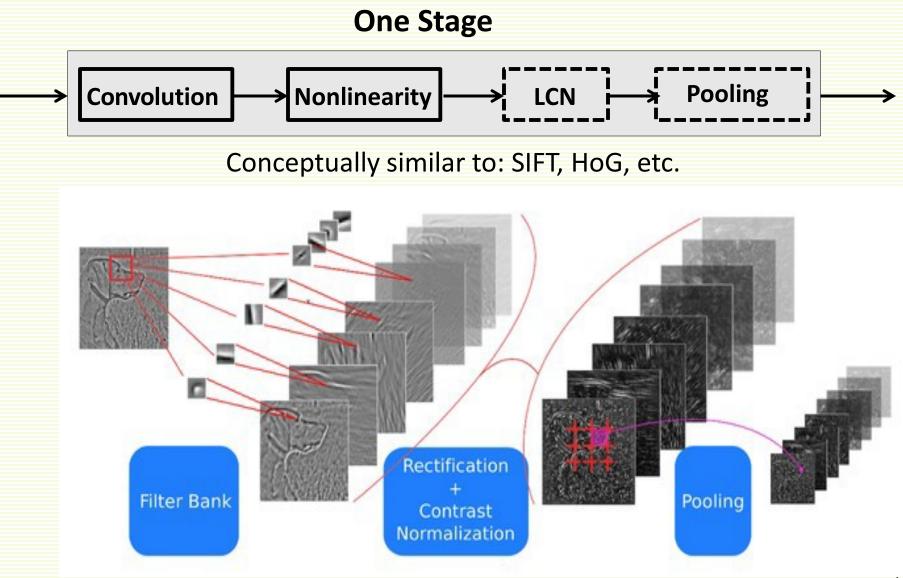


Local Contrast Normalization

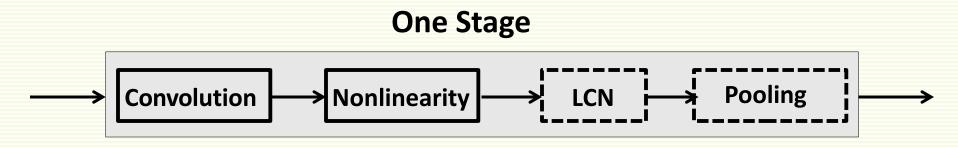


- Normalize each patch (say 7x7) to be zero mean unit variance
- Effects
 - Improves invariance
 - Improves optimization by making activation layer on the same scale
 - Usually improves classification rate

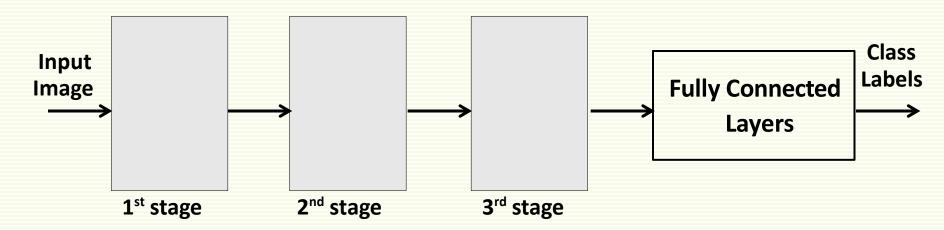
ConvNets: Typical Stage



Typical Architecture



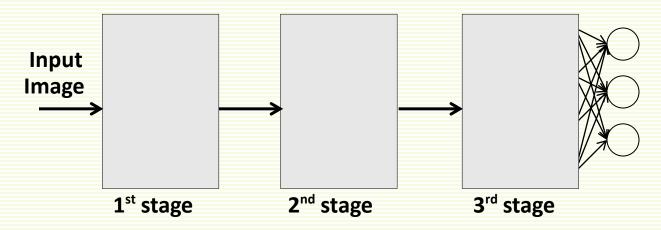
Whole System



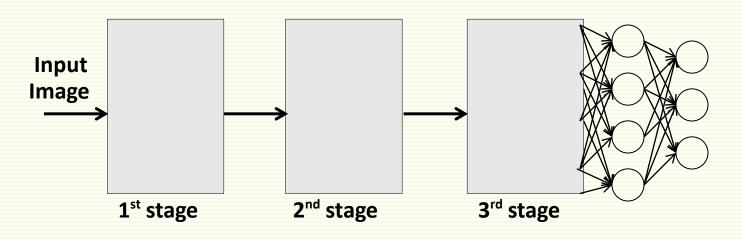
Conceptually similar to: SIFT \rightarrow K-Means \rightarrow Pyramid Pooling \rightarrow SVM

Fully Connected Layer

- Can have just one fully connected layer
- Example for 3-class classification problem

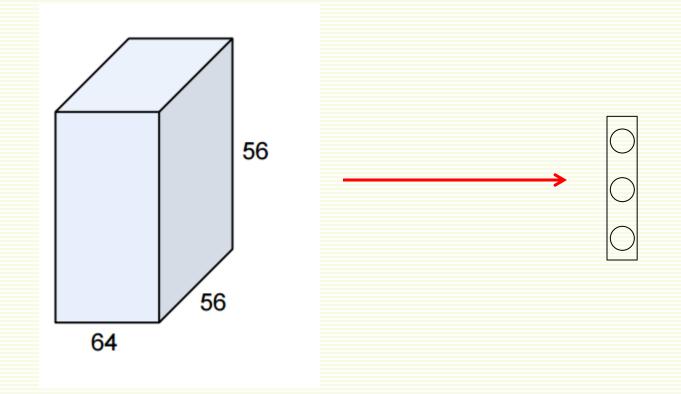


• Can have more than one fully connected layer



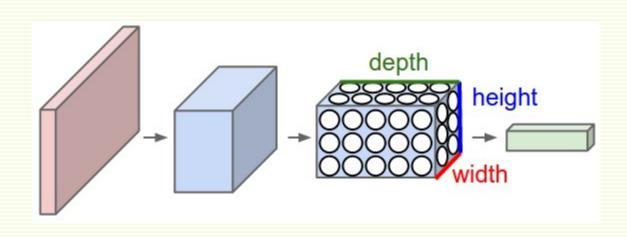
Fully Connected Layer

- Can implement as a convolutional layer
 - input of size 56x56x64
 - say 3 class problem
 - convolve with 3 filters, each of size 56x56x64



Overview of CNN

- Made up of Layers
- Every Layer has a simple API
 - transforms an input 3D volume to an output 3D volume with some differentiable function
 - may or may not have parameters
 - may or may not have hyperparameters



ConvNets: Training

- All Layers are differentiable
- Use standard back-propagation (gradient descent)
- At test time, run only in forward mode

Conv Nets: Character Recognition

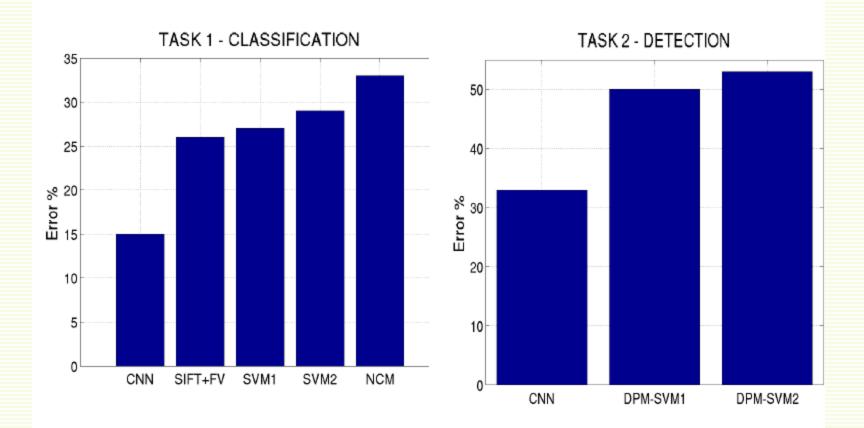
• http://yann.lecun.com/exdb/lenet/index.html

[LeCun et al., 1998] C3: f. maps 16@10x10 C1: feature maps 6@28x28 S4: f. maps 16@5x5 INPUT 32x32 S2: f. maps C5: layer OUTPUT F6: layer 6@14x14 20 10 84 Full connection Gaussian connections Convolutions Subsampling Convolutions Subsampling Full connection

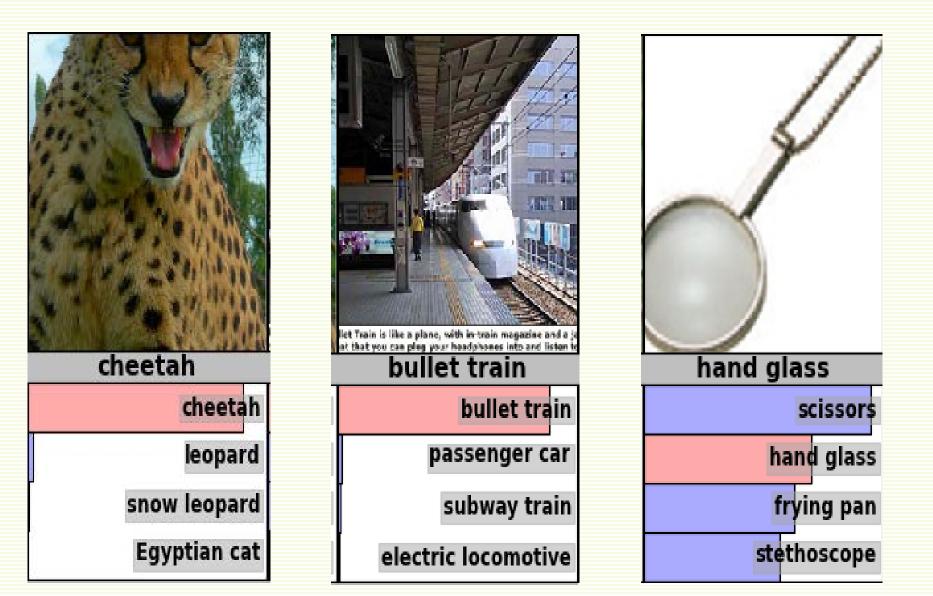
ConvNet for ImageNet

- Krizhevsky et.al.(NIPS 2012) developed deep convolutional neural net of the type pioneered by Yann LeCun
- Architecture
 - 7 hidden layers not counting some max pooling layers
 - the early layers were convolutional
 - the last two layers were globally connected
- Activation function
 - rectified linear units in every hidden layer
 - train much faster and are more expressive than logistic unit

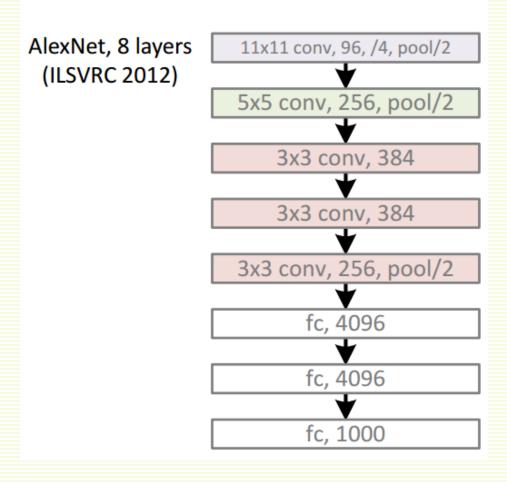
Results: ILSVRC 2012



ConvNet on Image Classification



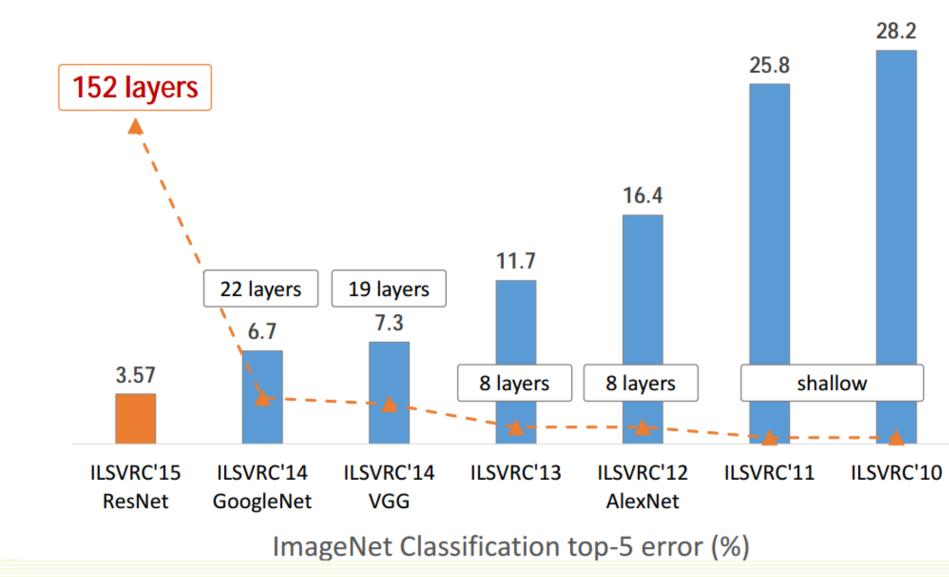
Krizhevsky et.al. Architecture

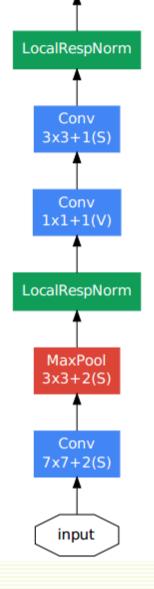


Tricks to Improve Generalization

- To get more data:
 - Use left-right reflections of the images
 - Train on random 224x224 patches from the 256x256 images
- At test time:
 - combine the opinions from ten different patches:
 - four 224x224 corner patches plus the central 224x224 patch
 - the reflections of those five patches
- Use *dropout* to regularize weights in the fully connected layers
 - half of the hidden units in a layer are randomly removed for each training example

ImageNet Experiments





Going Deeper with Convolutions http://arxiv.org/abs/1409.4842

Transfer Learning with CNN

