CS840a Machine Learning in Computer Vision Olga Veksler

Lecture 1 Introduction

Outline

- Course overview
- Introduction to Machine Learning

Course Outline

- Prerequisites
 - Calculus, Statistics, Linear Algebra
 - Some Computer Vision/Image Processing
- Grading
 - Class participation: 10%
 - Four assignments (Matlab): 20%
 - Each assignment is worth 5% of the course mark
 - Assignment grades are 0%, 20%, 40%, 60%, 80%, 100%
 - In class paper presentation 20%
 - Final project: 50%
 - Final Project Presentation 20%
 - Written project report + code, 30 %
 - Matlab, C/C++, anything else as long as I can run it

Course Outline: Content

- Course Structure
 - Lecture (2/3 of the time)
 - Paper discussion (1/3 of the time)
- Machine Learning Topics (tentatively)
 - Nearest neighbor
 - Linear and generalized linear classifiers
 - SVM
 - Boosting
 - Neural Networks
- Computer Vision Topics
 - Image features
 - Mostly classification/detection/recognition
 - object, action, etc

Course Outline: Textbook

- No required textbook, but recommended
 - "Pattern Classification" by R.O. Duda, P.E. Hart and D.G. Stork, second edition
 - "Machine Learning" by Tom M. Mitchell
 - "Pattern Recognition and Machine Learning, by C. Bishop
 - "Machine Learning: a Probabilistic Perspective" by Kevin Patrick Murphy
- Journal/Conference papers

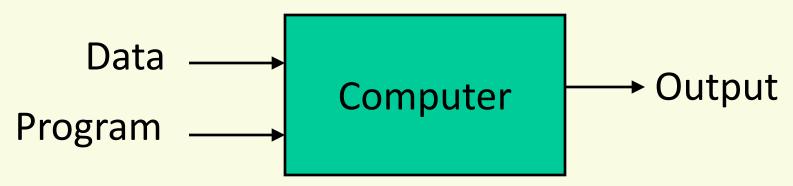
Intro: What is Machine Learning?

- Difficult to come up with explicit program for some tasks
- Classic Example: digit recognition

- However, easy to collect images of digits with their correct labels
- Machine Learning Algorithm will take the collected data and produce a program for recognizing digits
 - done right, program will recognize correctly new images it has never seen

Intro: What is Machine Learning?

Traditional Programming



Machine Learning Data Program Output

Intro: What is Machine Learning?

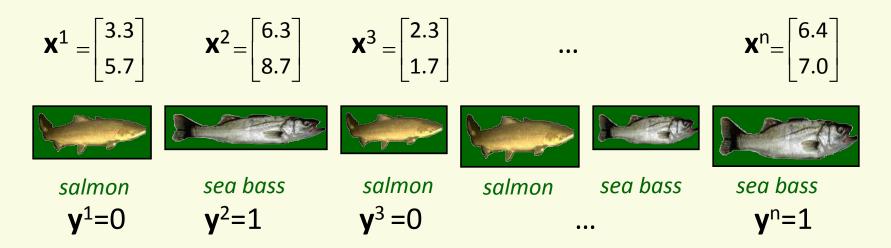
- More general definition (Tom Mitchell):
 - Based on experience E, improve performance on task T as measured by performance measure P
- In computer vision
 - **T** is usually classification, **E** is data (images), and **P** is classification error
 - Digit recognition Example
 - **T** = recognize character in the image
 - **P** = percentage of correctly classified images
 - **E** = dataset of human-labeled images of characters

Different Types of Machine Learning

- Supervised Learning: given training examples of inputs and corresponding outputs, produce the "correct" outputs for new inputs
- Unsupervised Learning: given only inputs as training, find structure in the data
 - e.g. discover "natural" clusters
- Reinforcement Learning: not covered in this course

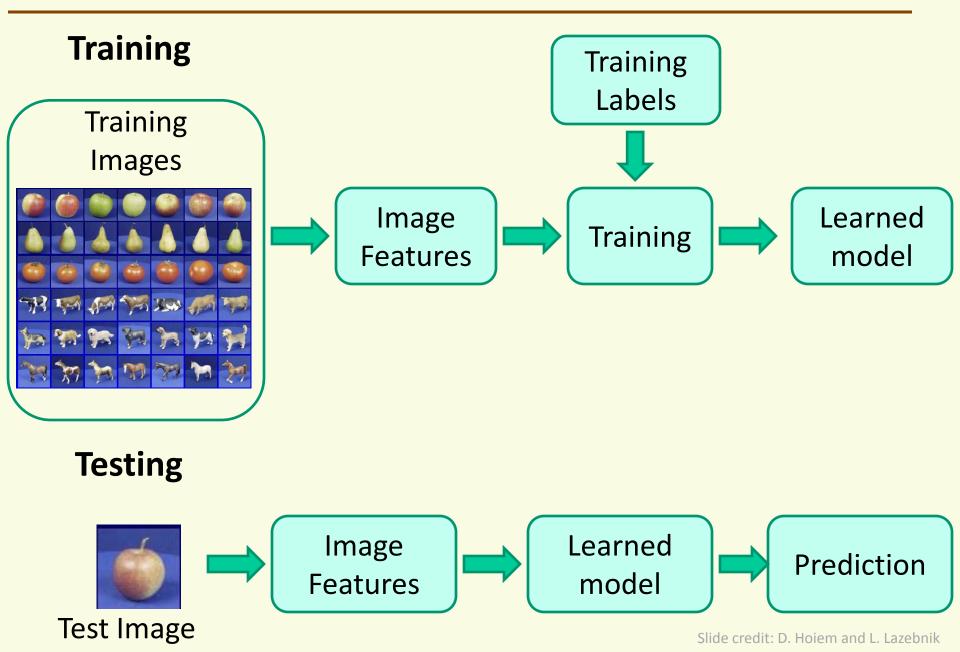
Supervised Machine Learning

• Training samples (also called examples, feature vectors, etc.)



- Target output (label) for each sample **y**¹, **y**²,...**y**ⁿ
 - "teacher" gives target outputs
- Training phase: estimate prediction function **y** = **f**(**x**) from labeled data
 - **f** is also called classifier, learning machine, etc.
- Testing phase: predict label **f**(**x**) for a new (unseen) sample **x**

Training/Testing Phases Illustrated



Two Types of Supervised Machine Learning

Classification

- yⁱ is finite, typically called a *label* or a *class*
- example: $\mathbf{y}^i \in \{\text{baby, child, adult, elder}\}$
- Regression
 - yⁱ is continuous, typically called an *output value*
 - Example: \mathbf{y}^i = age \in [0,130]

More on Training Stage

- Training stage: estimate prediction function y = f(x) from labeled data
- Start with a set of predictor functions or *hypothesis space*
 - hypothesis space f(x,w) is parameterized by parameters or weights w
 - each setting of **w** corresponds to a different hypothesis
 - find (or *tune*) weights w s.t. f(xⁱ,w) = yⁱ "as much as possible" for training samples (xⁱ, yⁱ)
 - "as much as possible" needs to be defined
 - usually done by optimization, can be time consuming

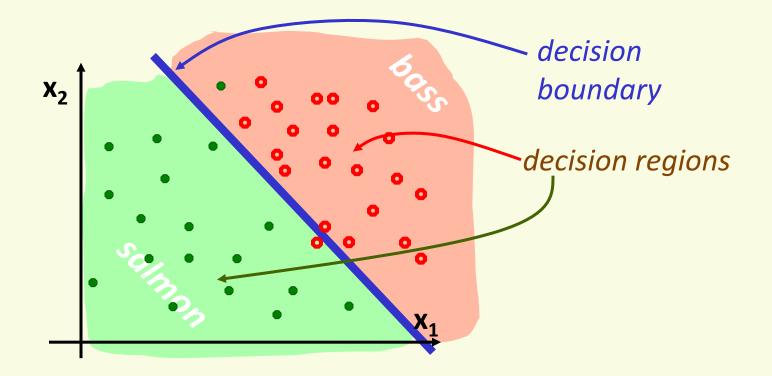
Training Stage: Linear Classifier

- Linear classifier **f**(**x**,**w**) has a simple functional form
- For 2 class problem

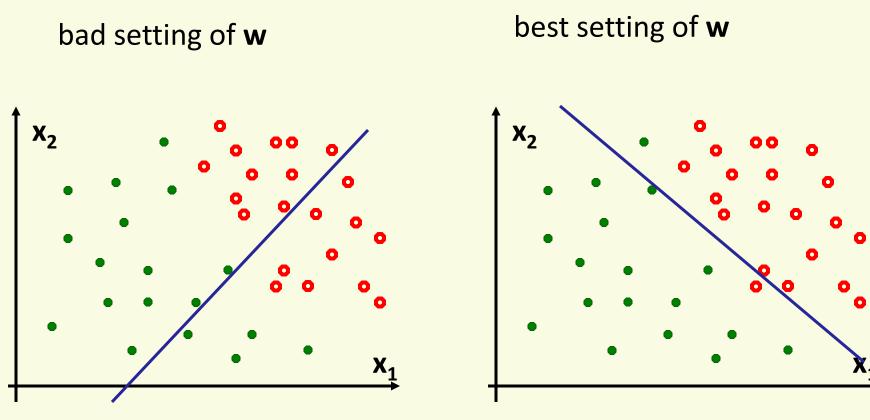
 $\mathbf{f}(\mathbf{x},\mathbf{w}) = \operatorname{sign}(\mathbf{w}^{\mathrm{t}}\mathbf{x} + \mathbf{w}_{0})$

If samples are 2 dimensional

 $\mathbf{f}(\mathbf{x},\mathbf{w}) = \operatorname{sign}(\mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2)$



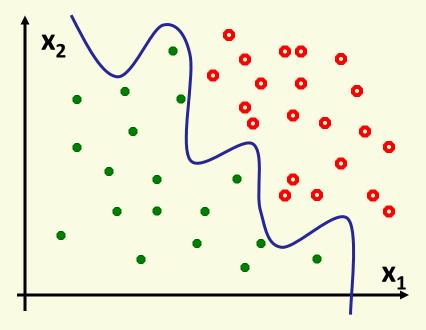
Training Stage: Linear Classifier



classification error 38%

classification error 4%

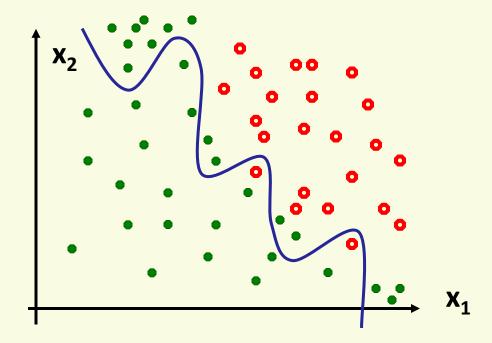
Training Stage: More Complex Classifier



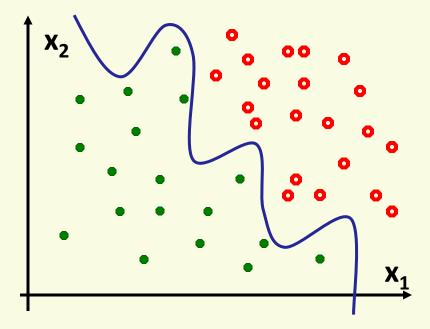
- for example if **f**(**x**) is a polynomial of high degree
- 0% classification error

Test Classifier on New Data

- The goal is for classifier to perform well on new data
- Test "wiggly" classifier on new data: 25% error



Overfitting



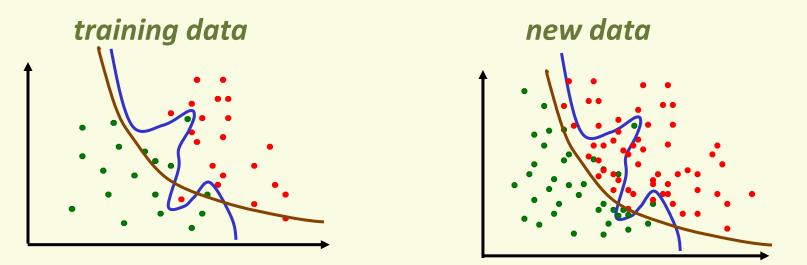
- Have only a limited amount of data for training
- Overfitting:
 - Complex model may have too many parameters to fit reliably with a limited amount of training data
 - Complex model may adapt too closely to the random "noise" of the training data

Overfitting: Extreme Example

- 2 class problem: face and non-face images
- Memorize (i.e. store) all the "face" images
- For a new image, see if it is one of the stored faces
 - if yes, output "face" as the classification result
 - If no, output "non-face"
 - also called "rote learning"
- **problem**: new "face" images are different from stored "face" examples
 - zero error on stored data, 50% error on test (new) data
 - decision boundary is very unsmooth
- Rote learning is memorization without generalization

slide is modified from Y. LeCun

Generalization



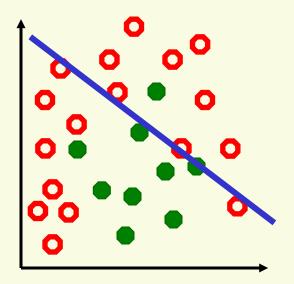
- The ability to produce correct outputs on previously unseen examples is called **generalization**
- Big question of learning theory: how to get good generalization with a limited number of examples
- Intuitive idea: favor simpler classifiers
 - William of Occam (1284-1347): "entities are not to be multiplied without necessity"
- Simpler decision boundary may not fit ideally to the training data but tends to generalize better to new data

Training and Testing

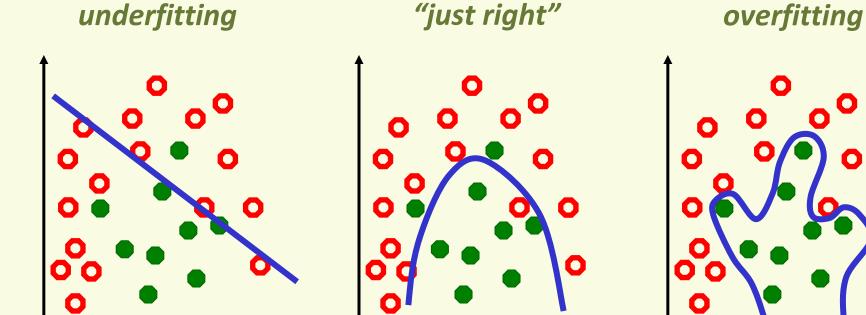
- How to diagnose overfitting?
- Divide all labeled samples x¹,x²,...xⁿ into training set and test set
- There are 2 phases, training and testing
 - Training phase is for "teaching" machine
 - tuning weights w
 - classification error on the training data is called training error
 - Testing phase is for evaluating how well machine works on unseen examples
 - classification error on the test data is called test error

Underfitting

- Can also underfit data, i.e. too simple decision boundary
 - chosen model is not expressive enough
- No linear decision boundary can well separate the samples
- Training error is too high
 - test error is, of course, also high



Underfitting → Overfitting

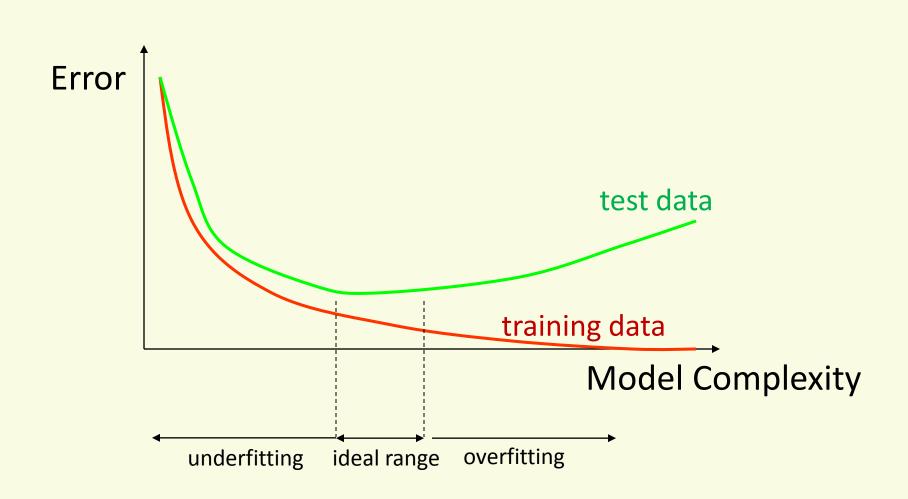


- high training error
- high test error •

- low training error
- low test error

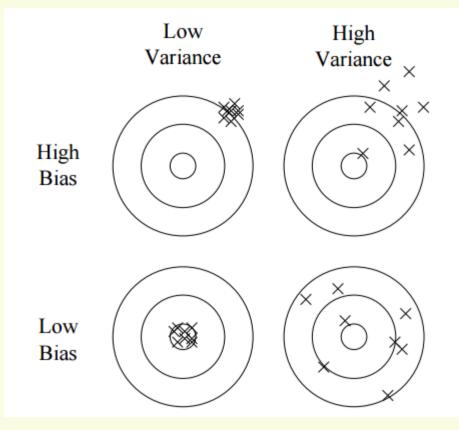
- low training error
- high test error

How Overfitting affects Prediction



Bias/Variance

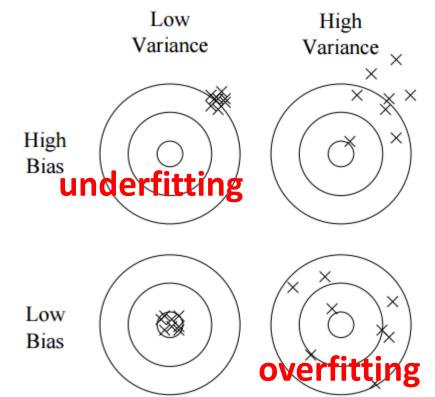
- High bias, informally, is the tendency to consistently learn the same wrong thing on different sets of training data
- High variance, informally, is the tendency to learn the wrong thing irrespective of the training data
- Dart throwing illustration



slide credit Pedro Domingos

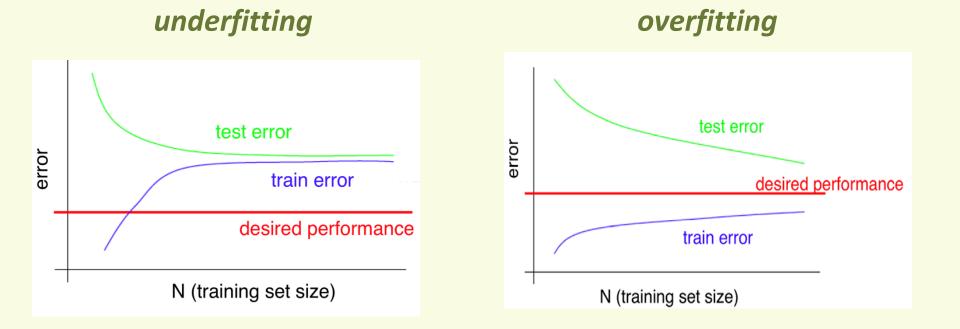
More on Overfitting/Underfitting

- Underfitting
 - fitted model has large deviation from true values
 - but different sets of training data give models that are similar
- Overfitting
 - fitted model has small deviation from true values
 - different sets of training data give models that are not similar



Learning Curve

• To diagnose overfitting/underfitting, useful to look at training/test error vs. number of samples called *learning curve*



slide is modified from Andrew Ng

Fixing Underfitting/Overfitting

- Underfitting
 - add more features (if underfitting)
 - use more complex **f**(**x**,**w**)
- Overfitting
 - remove features
 - collect more training data
 - use less complex f(x,w)

Sketch of Supervised Machine Learning

- Chose a hypothesis space f(x,w)
 - w are tunable weights
 - **x** is the input sample
 - tune w so that f(x,w) gives the correct label for training samples x
- Which hypothesis space **f**(**x**,**w**) to choose?
 - has to be expressive enough to model our problem well, i.e. to avoid *underfitting*
 - yet not to complicated to avoid *overfitting*

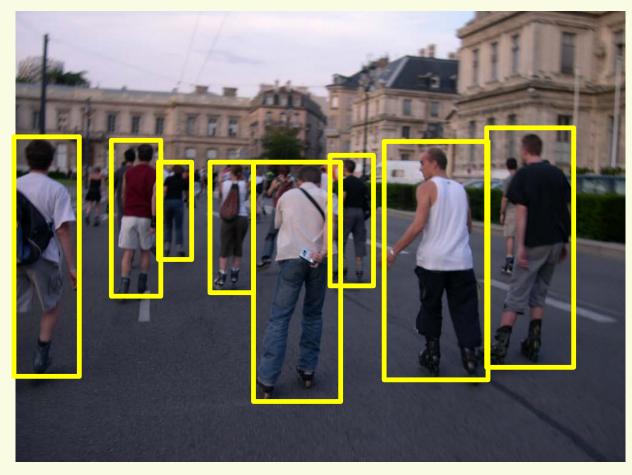
Classification System Design Overview

- Split data into training and test sets
- Preprocess data (i.e. segmenting fish from background)

- Extract possibly discriminating features
 - length, lightness, width, number of fins, etc.
- Classifier design
 - Choose model for classifier
 - Train classifier on training data
- Test classifier on test data

we mostly look at these steps in the course

- Objects of interest can appear at different scale and location in the image
- Example: Human Detection



• Train on examples of the same scale

- Apply the trained classifier to different locations
 - handles different locations

- Shrink image, apply the trained classifier to different locations
 - handles different scales

- Shrink more
 - also can enlarge image, if needed

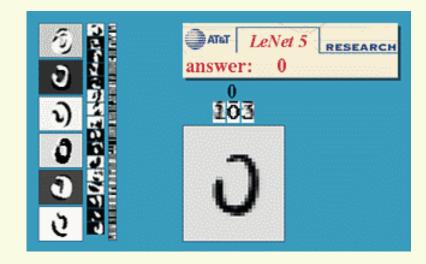
- Can also apply to different window sizes
 - shrink/enlarge windows to be the same size as training data

Application: Face Detection

- Objects image patches
- Classes "face" and "not face"

Optical character recognition (OCR)

- Objects images or image patches
- Classes digits 0, 1, ...,9



Digit recognition, AT&T labs http://www.research.att.com/~yann/ License plate readers

38 Slide Credit: D. Hoiem

Smile detection

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Sony Cyber-shot® T70 Digital Still Camera

39 Slide Credit: D. Hoiem

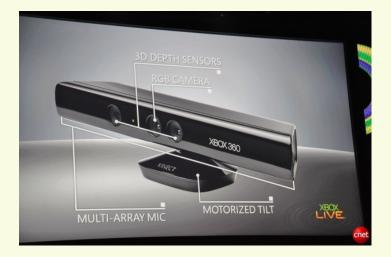
Object recognition in mobile phones

Point & Find, Nokia

40 Slide Credit: D. Hoiem

Interactive Games: Kinect

- Object Recognition: http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o
- Mario: <u>http://www.youtube.com/watch?v=8CTJL5IUjHg</u>
- **3D:** <u>http://www.youtube.com/watch?v=7QrnwoO1-8A</u>
- Robot: <u>http://www.youtube.com/watch?v=w8BmgtMKFbY</u>



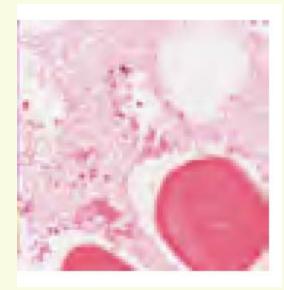
Slide Credit: D. Hoiem

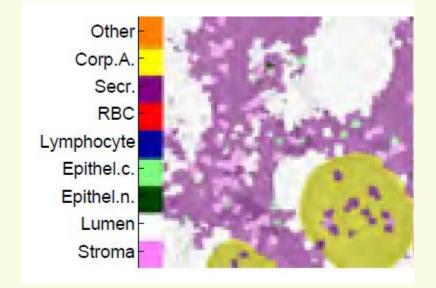
41

Application: Scene Classification

- Objects images
- Classes "mountain", "lake", "field"...

Application: Medical Image Processing





- Objects pixels
- Classes different tissue types, stroma, lument, etc.