CS9840

Machine Learning in Computer Vision Olga Veksler

Lecture 3

A Few Computer Vision Concepts

Some Slides are from Cornelia, Fermüller, Mubarak Shah, Gary Bradski, Sebastian Thrun, Derek Hoiem

Outline

- Computer Vision Concepts
 - Filtering
 - Edge Detection
 - Image Features
 - Template Matching

Digital Grayscale Image

1	10	9	54	7	54	72
	13	52	26	42	6	57
	8	2	50	23	54	9
	22	76	57	86	24	86
	9	54	57	26	65	59
	35	68	98	65	45	78
	5	0	34	7	86	7

Digital Grayscale Image

- Image is array f(x,y)
 - approximates continuous function *f*(*x*,*y*) from R² to R:
- *f*(*x*,*y*) is the **intensity** or **grayscale** at position (*x*,*y*)
 - proportional to brightness of the real world point it images
 - standard range: 0, 1, 2,..., 255

Digital Color Image

- Color image is three functions pasted together
- Write this as a vectorvalued function:

200

Digital Color Image

• Can consider color image as 3 separate images: R, G, B

G

Image filtering

- Given f(x,y) filtering computes a new image g(x,y)
 - As function of local neighborhood at each position (*x*,*y*), example:

 $g(x,y) = f(x,y) + f(x-1,y) \times f(x,y-1)$

 Linear filtering: function is a weighted sum (or difference) of pixel values

 $g(x,y) = f(x,y) + 2 \times f(x-1,y-1) - 3 \times f(x+1,y+1)$

- Applications:
 - Enhance images
 - denoise, resize, increase contrast, ...
 - Extract information from images
 - Texture, edges, distinctive points ...
 - Detect patterns
 - Template matching

1	2	4	2	8					
9	2	2	7	5					
2	8	1	3	9					
4	3	2	7	2					
2	2 2 2 6 1								
8 3 2 5 4									
$q(1,3) = 3 + 4 \times 8 = 35$									

 $g(4,5) = 4 + 5 \times 1 = 9$

 $g(3,1) = 7 + 2 \times 4 - 3 \times 9 = -12$

f(x,y)

g(x,y)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f(x,y)

g(x,y)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10				

f(x,y)

g(x,y)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

f(x,y)

g(x,y)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

f(x,y)

g(x,y)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

f(x,y)

g(x,y)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

f(x,y)

sharp border

		-	-		-		-		
0	0	0	0	0	2	0	0	0	0
0	0	0	0	0	0	Q	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	С	0	0	0	0	0
0	0	90	0	С	0	0	0	0	0
0	0	0	0	С	0	0	0	0	0

g(x,y)

sticking out

not sticking out

Correlation Filtering

• Write as equation, averaging window (2k+1)x(2k+1)

$$g(i,j) = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} f(i+u,j+v)$$

uniform weight for
each pixel loop over all pixels in
neighborhood around pixel f(i,j)

-k,-k

2k+1

Generalize by allowing different weights for different pixels in the neighborhood

$$g(i,j) = \sum_{u=-k}^{n} \sum_{v=-k}^{n} H[u,v]f(i+u,j+v)$$

non-uniform weight for each pixel

Correlation filtering

$$g(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]f(i+u,j+v)$$

- This is called cross-correlation, denoted $g = H \otimes f$
- Filtering an image: replace each pixel with a linear combination of its neighbors
- The filter kernel or mask *H* is gives the weights in linear combination

Averaging Filter

• What is kernel *H* for the moving average example?

f(x,y)

$$H[u,v] = ? \qquad g(x,y)$$

0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	-
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

1 9

box filter

 $g = H \otimes f$

Smoothing by Averaging

- Pictorial representation of box filter:
 - white means large value, black means low value

original

filtered

• What if the mask is larger than 3x3 ?

Effect of Average Filter

Gaussian noise

Salt and Pepper noise

7 × 7

9 × 9

 11×11

Gaussian Filter

• Want nearest pixels to have the most influence

f(x,y)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$H[U,V]$$

$$\frac{1}{1} \begin{array}{ccc} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 16 & 1 & 2 & 1 \end{array}$$

115....

This kernel *H* is an approximation of a 2d Gaussian function:

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}}$$

Gaussian Filters: Mask Size

- Gaussian has infinite domain, discrete filters use finite mask
 - larger mask contributes to more smoothing

Gaussian filters: Variance

- Variance (σ) also contributes to the extent of smoothing
 - larger σ gives less rapidly decreasing weights \rightarrow can construct a larger mask • with non-negligible weights
 - σ = 2 with 30 x 30 kernel

0.04 0.03

0.02

0.01

x 10

σ = 5 with 30 x 30 kernel

Average vs. Gaussian Filter

mean filter

Gaussian filter

More Average vs. Gaussian Filter

Properties of Smoothing Filters

- Values positive
- Sum to 1
 - constant regions same as input
 - overall image brightness stays unchanged
- Amount of smoothing proportional to mask size
 - larger mask means more extensive smoothing

Convolution

- Convolution:
 - Flip the mask in both dimensions
 - bottom to top, right to left
 - Then apply cross-correlation

$$g(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]f(i-u,j-v)$$

• Notation for convolution: $g = H^*f$

Convolution vs. Correlation

• Convolution: g = H*f

$$g(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]f(i-u,j-v)$$

• Correlation: $g = H \otimes f$

$$g(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]f(i+u,j+v)$$

- For Gaussian or box filter, how the outputs differ?
- If the input is an impulse signal, how the outputs differ?

Edge Detection

- Convert intensity image into binary (0 or 1) image that marks **prominent** curves
- What is a prominent curve?
 - no exact definition
 - intuitively, it is a place where abrupt changes occur

- Why perform edge detection?
 - edges are stable to lighting and other changes, makes them good features for object recognition, etc.
 - more compact representation than intensity

Derivatives and Edges

• An edge is a place of rapid change in intensity

Derivatives with Convolution

For 2D function *f(x,y)*, partial derivative in horizontal direction

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

• For discrete data, approximate

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

- Similarly, approximate vertical partial derivative (wrt y)
- How to implement as correlation?

Image Partial Derivatives

Which is with respect to x?

 $\frac{\partial f(x,y)}{\partial x}$

Finite Difference Filters

Other filters for derivative approximation

Prewitt:
$$H_x = \frac{1}{6} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 $H_y = \frac{1}{6} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$
Sobel: $H_x = \frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$ $H_y = \frac{1}{8} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

Image Gradient

- Combine both partial derivatives into vector $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ image gradient
- Gradient points in the direction of most rapid increase in intensity

• **Direction** perpendicular to edge:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} \middle/ \frac{\partial f}{\partial x} \right)$$

gradient orientation

• Edge strength

$$\left\|\nabla f\right\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

gradient magnitude

Application: Gradient-domain Image Editing

• Goal: solve for pixel values in the target region to match gradients of the source region while keeping background pixels the same

cloning

sources/destinations

seamless cloning

P. Perez, M. Gangnet, A. Blake, Poisson Image Editing, SIGGRAPH 2003

Sobel Filter for Vertical Gradient Component

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Sobel Filter for Horizontal Gradient Component

1	2	1	
0	0	0	
-1	-2	-1	

Sobel

Horizontal Edge (absolute value)

Edge Detection

canny edge detector

- Smooth image
 - gets rid of noise and small detail
- Compute Image gradient (with Sobel filter, etc)
- Pixels with large gradient magnitude are marked as edges
- Can also apply non-maximum suppression to "thin" the edges and other post-processing

What does this Mask Detect?

• Masks "looks like" the feature it's trying to detect

2	2	-4	-4	2	2
2	2	-4	-4	2	2
2	2	-4	-4	2	2
2	2	-4	-4	2	2
2	2	-4	-4	2	2

strong negative response strong positive response

What Does this Mask Detect?

2	2	-2	-2
2	2	-2	-2
-2	-2	2	2
-2	-2	2	2

strong negative response

strong positive response

Image Features

- Edge features capture places where something interesting is happening
 - large change in image intensity
- Edges is just one type of image features or "interest points"
- Various type of corner features, etc. are popular in vision
- Other features:

corners

stable regions

SIFT

Template matching

- Goal: find 📷 in image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized Cross Correlation

Method 0: Correlation

- Goal: find 💽 in image
- Filter the image with H = "eye patch"

$$g[m,n] = \sum_{k \in I} H[k,I] f[m+k,n+I]$$

f = image H = filter

What went wrong?

Input

Filtered Image

Method 1: zero-mean Correlation

- Goal: find 🔤 in image
- Filter the image with zero-mean eye

$$g[m,n] = \sum_{k,l} (H[k,l] - \overline{H}) (f[m+k,n+l])$$
mean of template H

Input

Filtered Image (scaled)

Thresholded Image

Method 3: Sum of Squared Differences

• Goal: find 💽 in image

$$g[m,n] = \sum_{k,l} (H[k,l] - f[m+k,n+l])^2$$

Input

1- sqrt(SSD)

Thresholded Image Slide Credit: D. Hoeim

Problem with SSD

• SSD is sensitive to changes in brightness

Input

1- sqrt(SSD)

Method 3: Normalized Cross-Correlation

Goal: find
 in image

Method 3: Normalized Cross-Correlation

Thresholded Image

Normalized X-Correlation

Comparison

- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, but invariant to local average intensity and contrast