CS9840
 Machine Learning in Computer Vision Olga Veksler

Lecture 3

A Few Computer Vision Concepts

Some Slides are from Cornelia, Fermüller, Mubarak Shah, Gary Bradski, Sebastian Thrun, Derek Hoiem

Outline

- Computer Vision Concepts
- Filtering
- Edge Detection
- Image Features
- Template Matching

Digital Grayscale Image

10	9	54	7	54	72
13	52	26	42	6	57
8	2	50	23	54	9
22	76	57	86	24	86
9	54	57	26	65	59
35	68	98	65	45	78
5	0	34	7	86	7

Slide Credit: D. Hoeim

Digital Grayscale Image

- Image is array $f(x, y)$
- approximates continuous function $f(x, y)$ from R^{2} to R :
- $f(x, y)$ is the intensity or grayscale at position (x, y)
- proportional to brightness of the real world point it images
- standard range: 0, 1, 2,...., 255

Digital Color Image

- Color image is three functions pasted together
- Write this as a vectorvalued function:

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

Digital Color Image

- Can consider color image as 3 separate images: R, G, B

Image filtering

- Given $f(x, y)$ filtering computes a new image $g(x, y)$
- As function of local neighborhood at each position (x, y), example:

$$
g(x, y)=f(x, y)+f(x-1, y) \times f(x, y-1)
$$

- Linear filtering: function is a weighted sum (or difference) of pixel values

$$
g(x, y)=f(x, y)+2 \times f(x-1, y-1)-3 x f(x+1, y+1)
$$

- Applications:
- Enhance images
- denoise, resize, increase contrast, ...
- Extract information from images
- Texture, edges, distinctive points ...
- Detect patterns
- Template matching

1	2	4	2	8
9	2	2	7	5
2	8	1	3	9
4	3	2	7	2
2	2	2	6	1
8	3	2	5	4

$g(1,3)=3+4 \times 8=35$
$g(4,5)=4+5 \times 1=9$
$g(3,1)=7+2 \times 4-3 \times 9=-12$

Image Filtering: Moving Average

$f(x, y)$
$g(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

				$\|l\| l\|l\| l \mid$		
0						

Image Filtering: Moving Average

$f(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10							

Image Filtering: Moving Average

$f(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20						

Image Filtering: Moving Average

$$
f(x, y)
$$

$g(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30					

Image Filtering: Moving Average

$$
f(x, y)
$$

$g(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30				

Image Filtering: Moving Average

$$
f(x, y)
$$

$g(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30		
	0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20		
10	20	30	30	30	30	20	10		
10	10	10	0	0	0	0	0		

Image Filtering: Moving Average

$$
f(x, y)
$$

sharp border

0	0	0	0	0	2	0	0	0	0
0	0	0	0	0	0	2	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

sticking out
$g(x, y)$
border washed out

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10		
	10	10	10	1	0	0	0	0	

not sticking out

Correlation Filtering

- Write as equation, averaging window $(2 k+1) x(2 k+1)$

$$
g(i, j)=\frac{1}{(2 k+1)^{2}} \underbrace{\sum_{u=-k}^{k} \sum_{v=-k}^{k} f(i+u, j+v)}_{\begin{array}{c}
\text { uniform weight for } \\
\text { each pixel }
\end{array}}
$$

- Generalize by allowing different weights for different pixels in the neighborhood

$$
g(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} \underbrace{H[u, v]}_{\substack{\text { non-uniform weight } \\ \text { for each pixel }}} f(i+u, j+v)
$$

Correlation filtering

$$
g(i, j)=\sum_{u=k}^{K} \sum_{v=-k}^{K} H[u, v] f(i+u, j+v)
$$

- This is called cross-correlation, denoted $g=H \otimes f$
- Filtering an image: replace each pixel with a linear combination of its neighbors
- The filter kernel or mask H is gives the weights in linear combination

Averaging Filter

- What is kernel H for the moving average example?

$$
f(x, y)
$$

$$
H[u, v]=? \quad g(x, y)
$$

 box filter

Smoothing by Averaging

- Pictorial representation of box filter: \square
- white means large value, black means low value

original

filtered
- What if the mask is larger than 3×3 ?

Effect of Average Filter

Gaussian noise
7×7

Salt and Pepper noise

Gaussian Filter

- Want nearest pixels to have the most influence

$f(x, y)$									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$H[u, v]$

$\frac{1}{16}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

This kernel H is an approximation of a 2 d Gaussian function:

$$
h(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{\sigma^{2}}}
$$

Gaussian Filters: Mask Size

- Gaussian has infinite domain, discrete filters use finite mask
- larger mask contributes to more smoothing

$$
\sigma=5 \text { with } 10 \times 10 \text { mask }
$$

$\sigma=5$ with 30×30 mask

Gaussian filters: Variance

- Variance (σ) also contributes to the extent of smoothing
- larger σ gives less rapidly decreasing weights \rightarrow can construct a larger mask with non-negligible weights
$\sigma=2$ with 30×30 kernel
$\sigma=5$ with 30×30 kernel

$\sigma=8$ with 30×30 kernel

Average vs. Gaussian Filter

mean filter

Gaussian filter

More Average vs. Gaussian Filter

Properties of Smoothing Filters

- Values positive
- Sum to 1
- constant regions same as input
- overall image brightness stays unchanged
- Amount of smoothing proportional to mask size
- larger mask means more extensive smoothing

Convolution

- Convolution:
- Flip the mask in both dimensions
- bottom to top, right to left

- Then apply cross-correlation

$$
g(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] f(i-u, j-v)
$$

flipped

- Notation for convolution: $g=H^{*} f$

Convolution vs. Correlation

- Convolution: $\mathrm{g}=\mathrm{H}^{*} \mathrm{f}$

$$
g(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] f(i-u, j-v)
$$

- Correlation: $\mathrm{g}=\mathrm{H} \otimes f$

$$
g(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] f(i+u, j+v)
$$

- For Gaussian or box filter, how the outputs differ?
- If the input is an impulse signal, how the outputs differ?

Edge Detection

- Convert intensity image into binary (0 or 1) image that marks prominent curves
- What is a prominent curve?
- no exact definition
- intuitively, it is a place where abrupt changes occur

- Why perform edge detection?
- edges are stable to lighting and other changes, makes them good features for object recognition, etc.
- more compact representation than intensity

Derivatives and Edges

- An edge is a place of rapid change in intensity

Derivatives with Convolution

- For 2D function $f(x, y)$, partial derivative in horizontal direction

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon, y)-f(x, y)}{\varepsilon}
$$

- For discrete data, approximate

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y)-f(x, y)}{1}
$$

- Similarly, approximate vertical partial derivative (wrt y)
- How to implement as correlation?

Image Partial Derivatives

Which is with respect to x ?

$\frac{\partial f(x, y)}{\partial x}$
$\frac{\partial f(x, y)}{\partial y}$

\[

\]

$$
\begin{array}{|r|r|}
\hline-1 \\
\hline 1 & \text { or } \\
\hline
\end{array}
$$

Finite Difference Filters

- Other filters for derivative approximation

Prewitt: $\quad H_{x}=\frac{1}{6}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -1 | 0 | 1 |
| -1 | 0 | 1 |

Sobel:

$$
H_{x}=\frac{1}{-8} \begin{array}{|c|c|c|}
\hline-1 & 0 & 1 \\
\hline-2 & 0 & 2 \\
\hline-1 & 0 & 1 \\
\hline
\end{array}
$$

$$
H_{y}=\frac{1}{8} \begin{array}{|c|c|c|}
\hline 1 & 2 & 1 \\
\hline 0 & 0 & 0 \\
\hline-1 & -2 & -1 \\
\hline
\end{array}
$$

Image Gradient

- Combine both partial derivatives into vector $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ image gradient
- Gradient points in the direction of most rapid increase in intensity

- Direction perpendicular to edge:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

gradient orientation

- Edge strength

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

gradient magnitude

Application: Gradient-domain Image Editing

- Goal: solve for pixel values in the target region to match gradients of the source region while keeping background pixels the same

cloning

seamless cloning
sources/destinations
P. Perez, M. Gangnet, A. Blake, Poisson Image Editing, SIGGRAPH 2003

Sobel Filter for Vertical Gradient Component

Vertical Edge (absolute value)

Slide Credit: D. Hoeim

Sobel Filter for Horizontal Gradient Component

Horizontal Edge (absolute value)

Slide Credit: D. Hoeim

Edge Detection

- Smooth image

canny edge detector
- gets rid of noise and small detail
- Compute Image gradient (with Sobel filter, etc)
- Pixels with large gradient magnitude are marked as edges
- Can also apply non-maximum suppression to "thin" the edges and other post-processing

What does this Mask Detect?

- Masks "looks like" the feature it's trying to detect

2	2	-4	-4	2	2
2	2	-4	-4	2	2
2	2	-4	-4	2	2
2	2	-4	-4	2	2
2	2	-4	-4	2	2

What Does this Mask Detect?

strong negative response

2	2	-2	-2
2	2	-2	-2
-2	-2	2	2
-2	-2	2	2

strong positive response

Image Features

- Edge features capture places where something interesting is happening
- large change in image intensity
- Edges is just one type of image features or "interest points"
- Various type of corner features, etc. are popular in vision
- Other features:

corners

stable regions

SIFT

Template matching

- Goal: find in image
- Main challenge: What is a good similarity or distance measure between two patches?
- Correlation
- Zero-mean correlation
- Sum Square Difference
- Normalized Cross

Correlation

Method 0: Correlation

- Goal: find in image
- Filter the image with $\mathrm{H}=$ "eye patch"

$$
g[m, n]=\sum_{k, l} H[k, l] f[m+k, n+l]
$$

Input

Filtered Image

What went wrong?

Slide Credit: D. Hoeim

Method 1: zero-mean Correlation

- Goal: find in image
- Filter the image with zero-mean eye

$$
g[m, n]=\sum_{k, l}(H[k, l]-\bar{H}) \underbrace{(f[m+k, n+l)}_{\text {mean of template } \mathrm{H}}
$$

Input

Filtered Image (scaled)

Thresholded Image
Slide Credit: D. Hoeim

Method 3: Sum of Squared Differences

- Goal: find in image

$$
g[m, n]=\sum_{k, l}(H[k, l]-f[m+k, n+l])^{2}
$$

Input

1- sqrt(SSD)

Thresholded Image Slide Credit: D. Hoeim

Problem with SSD

- SSD is sensitive to changes in brightness

Slide Credit: D. Hoeim

Method 3: Normalized Cross-Correlation

- Goal: find in image

$$
g[m, n]=\frac{\sum_{k, l}(H[k, l]-\bar{H})\left(f[m+k, n+l]-\bar{f}_{m, n}\right)}{\left(\sum_{k, l}(H[k, l]-\bar{H})^{2} \sum_{k, l}\left(f[m+k, n+l]-\bar{f}_{m, n}\right)^{2}\right)^{0.5}}
$$

Method 3: Normalized Cross-Correlation

Input

Thresholded Image

Comparison

- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, but invariant to local average intensity and contrast

