
CS9840
Learning and Computer Vision

Prof. Olga Veksler

Lecture 7
Linear Machines

Today
• Optimization with Gradient descent
• Linear Classifier

• Two classes
• Multiple classes
• Perceptron Criterion Function

• Batch perceptron rule
• Single sample perceptron rule

• Minimum Squared Error (MSE) rule
• Pseudoinverse

• Generalized Linear Classifier
• Gradient Descent Based learning

() 0xJ
dx
d

=

Optimization
• How to minimize a function of a single variable

J(x) =(x-5)2

• From calculus, take derivative, set it to 0

• Solve the resulting equation
• maybe easy or hard to solve

• Example above is easy

() () 5x05x2xJ
dx
d

=⇒=−=

()

()
() 0xJ

xJ
x

xJ
x

d

1

=∇=





















∂
∂

∂
∂



Optimization
• How to minimize a function of many variables

J(x) = J(x1,…, xd)

• From calculus, take partial derivatives, set them to 0
gradient

• Solve the resulting system of d equations
• It may not be possible to solve the system of equations

above analytically

Optimization: Gradient Direction

x2
x1

J(x1, x2)

Picture from Andrew Ng

• Gradient ∇J(x) points in the direction of steepest
increase of function J(x)

• - ∇J(x) points in the direction of steepest decrease

Gradient Direction in 2D

• J(x1, x2) =(x1-5)2+(x2-10)2

() ()5x2xJ
x 1

1

−=
∂
∂•

() ()10x2xJ
x 2

2

−=
∂
∂

•

• Let a = [10, 5]
 () 10aJ

x1

−=
∂
∂

−•

() 10aJ
x2

=
∂
∂

−•

a

[-10, 10]

global min

x1

x2

5

10

10

5

Gradient Descent: Step Size

• J(x1, x2) =(x1-5)2+(x2-10)2
• Which step size to take?
• Controlled by parameter α

• called learning rate
• From previous example:

• a = [10 5]
• -∇J(a) = [-10 10]

• Let α = 0.2

a

[-10, 10]

global min

x1

x2

5

10

10

5

• a - α ∇J(a) = [10 5]+0.2 [-10 10]=[8 7]
• J(10, 5) = 50
• J(8,7) = 18

J(x)

x

Gradient Descent Algorithm

x(1) x(2)

-∇J(x(1))
-∇J(x(2))

x(k)

-∇J(x(k))≈0

k = 1
x(1) = any initial guess
choose α, ε
while α||∇J(x(k))|| > ε
 x(k+1) = x (k) - α ∇J(x(k))
 k = k + 1

Gradient Descent: Local Minimum

• Not guaranteed to find global minimum
• gets stuck in local minimum

J(x)

x
x(1) x(2)

-∇J(x(1))

-∇J(x(2))

x(k)

-∇J(x(k))=0

global minimum

• Still gradient descent is very popular because it is
simple and applicable to any differentiable function

x

How to Set Learning Rate α?

• If α too large, may
overshoot the local
minimum and possibly
never even converge

J(x)

x

• If α too small, too
many iterations to
converge

x(2) x(1)

x(4) x(3)

• It helps to compute J(x) as a function of iteration
number, to make sure we are properly minimizing it

J(x)

How to Set Learning Rate α?
J(x)

x

• As we approach local
minimum, often gradient
gets smaller

• Step size may get smaller
automatically, even if α is
fixed

• So it may be unnecessary
to decrease α over time in
order not to overshoot a
local minimum

slope gets smaller

Variable Learning Rate

k = 1
x(1) = any initial guess
choose α, ε
while α||∇J(x(k))|| > ε
 x(k+1) = x (k) - α ∇J(x(k))
 k = k + 1

• If desired, can change learning rate α at each iteration

k = 1
x(1) = any initial guess
choose ε
while α||∇J(x(k))|| > ε
 choose α(k)
 x(k+1) = x (k) - α(k) ∇J(x(k))
 k = k + 1

Variable Learning Rate

k = 1
x(1) = any initial guess
choose α, ε
while α||∇J(x(k))|| > ε
 x(k+1) = x (k) - α ∇J(x(k))
 k = k + 1

• Usually don’t keep track of all intermediate solutions

x = any initial guess
choose α, ε
while α||∇J(x)|| > ε
 x = x - α ∇J(x)

Learning Rate
• Monitor learning rate by looking at how fast the

objective function decreases

J(x)

number of iterations

very high learning rate

 high learning rate

low learning rate

good learning rate

Advanced Optimization Methods

• There are more advanced gradient-based
optimization methods

• Such as conjugate gradient
• automatically pick a good learning rate α
• usually converge faster
• however more complex to understand and

implement
• in Matlab, use fminunc for various advanced

optimization methods

Supervised Learning Review

• Training samples (or examples)
 x1, x2, … xn

• Each example is typically multi-dimensional
• xi= [xi

1,xi
2 ,…, xi

d]
• xi is often called a feature vector

• Know desired output for each example

 y1, y2,… yn

• regression: continuous y
• classification: finite y

Supervised Learning Review

• Wish to design a machine f(x,w) s.t.
 f(x,w) = y
• How do we choose f?

• last time studied kNN classifier
• this lecture in on liner classifier
• many other choices

• w is multidimensional vector of weights (also called
parameters)

 w = [w1,w2,…wk]
• By modifying w, the machine “learns”

Training and Testing Phases

• Divide all labeled samples x1, x2,…, xn into
training and test sets

• Training phase
• Uses training samples
• goal is to “teach” the machine
• find weights w s.t. f(xi,w) = yi “as much as possible”

• “as much as possible” needs to be defined

• Testing phase
• Uses only test samples
• for evaluating how well our machine works on

unseen examples

Loss Function
• How to quantify “f(xi,w) = yi as much as possible”?
• f(x,w) has to be “close” to the true output y
• Define Loss (or Error, or Criterion) function L
• First define per-sample loss L(xi,yi,w)
• Examples of loss function

• for classification, L(xi,yi,w) = I[f(xi,w) ≠ yi]
• I[true] = 1, I[false] = 0

• for regression, L(xi,yi,w) = || f(xi,w) - yi ||2 ,
• how far is the estimated output from the correct one?

• Then loss function L = Σi L(xi,yi,w)
• classification: counts number of misclassified examples
• regression: sums distances to the correct output

Linear Machine: Regression

• f(x,w) = w0+Σi=1,2,...d wixi

• In vector notation
• x= [x1,x2,…,xd]
• f(x,w) = w0+wtx

• This is standard linear regression
• line fitting

• assume L(xi,yi,w) = ||f(xi,w) - yi||2

x

y

• optimal w can be found by solving
a system of linear equations

 w* = [Σxi (xi)T]-1 Σyixi

Linear Machine: Classification
• First consider the two-class case
• Choose encoding

• y = 1 for the first class
• y = -1 for the second class

• Linear classifier
• -∞ ≤ w0+x1w1 + … + xdwd ≤ ∞
• we need f(x,w) to be either +1 or -1
• let g(x,w) = w0+x1w1 + … + xdwd = w0+wtx
• let f(x,w) = sign(g(x,w))

• 1 if g(x,w) is positive
• -1 if g(x,w) is negative
• other choices for g(x,w) are also used

• g(x,w) is called the discriminant function

g(x)
x

-1

1
f(x)

bad boundary

Linear Classifier: Decision Boundary

• f(x,w) = sign(g(x,w)) = sign(w0+x1w1 + … + xdwd)
• Decision boundary is linear
• Find the best linear boundary to separate two classes
• Search for best w = [w0,w1,…,wd] to minimize training error

better boundary

More on Linear Discriminant Function (LDF)

• LDF: g(x,w) = w0+x1w1 + … + xdwd
• Written using vector notation g(x) = wtx + w0

x1

x2

weight vector bias or threshold

decision boundary
g(x) = 0 g(x) > 0

decision
region for

class 1

g(x) < 0
decision region

for class 2

More on Linear Discriminant Function (LDF)

• Decision boundary: g(x,w) = w0+x1w1 + … + xdwd = 0
• This is a hyperplane, by definition

• a point in 1D
• a line in 2D
• a plane in 3D
• a hyperplane in higher dimensions

• Have m classes
• Define m linear discriminant functions

gi(x) = wi
tx + wi0 for i = 1, 2, … m

Multiple Classes

• Assign x to class i if
gi(x) > gj(x) for all j ≠ i

• Let Ri be the decision region for class i
• all examples in Ri get assigned class i

g2(x) > g1(x)
g2(x) > g3(x)

R1
R2

R3

g1(x) > g2(x)
g1(x) > g3(x)

g3(x) > g1(x)
g3(x) > g2(x)

Multiple Classes
• Can be shown that decision regions are convex
• In particular, they must be spatially contiguous

Failure Cases for Linear Classifier
• Thus applicability of linear classifiers is limited to

mostly unimodal distributions, such as Gaussian
• Not unimodal data

• Need non-contiguous
decision regions

• Linear classifier will fail

Linear Classifiers
• Give simple decision boundary

• try simpler models first
• can still overfit in very high dimensions

• Optimal for certain type of data
• Gaussian distributions with equal covariance

• May not be optimal for other data distributions, but
they are very simple to use



















dx

x

1

1

Fitting Parameters w

• Linear discriminant function g(x) = wtx + w0

• Can rewrite it g(x) = [w0 wt] = atz = g(z)

1
x
new

feature
vector z

new weight
vector a

• z is called augmented feature vector
• new problem equivalent to the old g(z) = atz



















dw

w
w


1

0

g(z) > 0

g(z) < 0 z

g(z) = 0

Augmented Feature Vector

• Feature augmenting is done to simplify notation
• The rest of this lecture assumes augmented features

• given samples x1,…, xn convert them to augmented samples
z1,…, zn by adding a new dimension of value 1

• g(z) = atz

Training Error
• Assume we have 2 classes
• Samples z1,…, zn

 some in class 1, some in class 2
• Use samples to determine weights a in g(z) = atz
• Want to minimize number of misclassified samples

 g(zi) > 0 ∀zi
 class 1

 g(zi) < 0 ∀zi
 class 2

• Thus training error is 0 if

• Recall that

 g(zi) > 0 ⇒ class 1
 g(zi) < 0 ⇒ class 2

Simplifying Notation Further
 atzi > 0 ∀zi

 class 1
 atzi < 0 ∀zi

 class 2

• Thus training error is 0 if

 atzi > 0 ∀zi
 class 1

 at(-zi) > 0 ∀zi
 class 2

• Equivalently, training error is 0 if

• Problem “normalization”:
1. replace all examples zi from class 2 by –zi
2. seek weights a s.t. atzi > 0 for ∀zi

• If exists, such a is called a separating or solution vector
• Original samples x1,… xn can also be linearly separated

before normalization

 seek a hyperplane that
separates samples from
different categories

 seek hyperplane that puts
normalized samples on the
same (positive) side

Effect of Normalization

after normalization

0zaza
d

0k

i
dk

it >=∑
=

a

a

 a

Solution Region
• Find weight vector a s.t. for all samples z1,…,zn

• If there is one such a, then there are infinitely many a

a

Solution Region

• Solution region: the set of all possible solutions for a

Design a Loss Function

• Find weight vector a s.t. ∀z1,…, zn , at zi
 > 0

• Design a loss function L(a), which is minimum
when a is a solution vector

• Let Z(a) be the set of examples misclassified by a
Z(a) = { zi | at zi

 < 0 }
• Natural choice: number of misclassified examples

L(a) = |Z(a)|
• Unfortunately, cannot minimize

with gradient descent
• piecewise constant, gradient zero

or does not exist

a

L(a)

() ()
()
∑
∈

−=
aZz

t
p zaaL

Perceptron Loss Function
• Better choice: Perceptron loss function

• If z is misclassified, atz < 0
• Thus L(a) ≥ 0
• Lp(a) is proportional to the sum

of distances of misclassified
examples to decision boundary

• Lp(a) is piecewise linear and
suitable for gradient descent

a

L(a)

• Gradient of Lp(a) is () ()
()
∑
∈

−=∇
aZz

p zaL

• Gradient decent update rule for Lp(a) is:
() ()

()
∑
∈

+ +=
aZz

kk zαaa 1

• called batch rule because it is based on all examples

• cannot solve ∇Lp(a) = 0 analytically because of Z(a)

() ()
()
∑
∈

−=
aZz

t
p zaaL

• Recall update rule for gradient descent
 x(k+1)= x(k+1)– α ∇L(x(k))

Optimizing with Gradient Descent

• Gradient decent single sample rule for Lp(a) is
 a(k+1) =a(k) +α⋅zM

• zM is one sample misclassified by a(k)

• Geometric Interpretation:

• must have a consistent way to visit samples

• zM misclassified by a(k)

()() 0≤M
tk za a(k)

• zM is on the wrong side of
decision boundary

• adding α⋅zM to a moves decision
boundary in the right direction

Perceptron Single Sample Rule

zM

a(k+1)

αzM

 if α is too large, previously
correctly classified sample zi

 is
now misclassified

Perceptron Single Sample Rule

a(k) zM

a(k+1)

zi

a(k)

 if α is too small, zM is still
misclassified

zM

a(k+1)

1. Classes are linearly separable
• with fixed learning rate, both single sample and batch rules converge to a

correct solution a
• can be any a in the solution space

2. Classes are not linearly separable
• with fixed learning rate, both single sample and batch do not converge
• can ensure convergence with appropriate variable learning rate

• α → 0 as k → ∞
• example, inverse linear: α = c/k, where c is any constant

• also converges in the linearly separable case
• no guarantee that we stop at a good point, but there are good reasons

to choose inverse linear learning rate

• Practical Issue: both single sample and batch algorithms converge
faster if features are roughly on the same scale
• see kNN lecture on feature normalization

Convergence of Perceptron Rules

• True gradient descent, full
gradient computed

• Smoother gradient because
all samples are used

• Takes longer to converge

Batch
• Only partial gradient is

computed
• Noisier gradient, therefore

may concentrates more than
necessary on any isolated
training examples (those
could be noise)

• Converges faster

Single Sample

Batch vs. Single Sample Rules

• Suppose we have examples:
• class 1: [2,1], [4,3], [3,5]
• class 2: [1,3] , [5,6]
• not linearly separable
















=

1
2
1

1z















=

3
4
1

2z















=

5
3
1

3z
















−
−
−

=
6
5
1

5z
















−
−
−

=
3
1
1

4z

Non-Linearly Separable Case

• Still wish an approximate separation
• Good line choice is shown in green
• Let us run gradient descent

• Add extra feature and “normalize”

• atz1 = [1 1 1] · [1 2 1]t > 0
• atz2 = [1 1 1] · [1 4 3]t > 0
• atz3 = [1 1 1] · [1 3 5]t > 0

• single sample perceptron rule
• Initial weights a(1) = [1 1 1]
• This is line x1 + x2 + 1 = 0
• Use fixed learning rate α = 1
• Rule is: a(k+1) =a(k) + zM
















=

1
2
1

1z















=

3
4
1

2z















=

5
3
1

3z
















−
−
−

=
6
5
1

5z
















−
−
−

=
3
1
1

4z

Non-Linearly Separable Case

• atz4
 = [1 1 1] · [-1 -1 -3]t = -5 < 0

• Update: a(2) = a(1) + zM = [1 1 1] + [-1 -1 -3] = [0 0 -2]

 • atz5

 = [0 0 -2] · [-1 -5 -6]t = 12 > 0
• atz1

 = [0 0 -2] · [1 2 1]t < 0
• Update: a(3) = a(2) + zM = [0 0 -2] + [1 2 1] = [1 2 -1]

• a(1) = [1 1 1]
• rule is: a(k+1) =a(k) + zM
















=

1
2
1

1z















=

3
4
1

2z















=

5
3
1

3z
















−
−
−

=
6
5
1

5z
















−
−
−

=
3
1
1

4z

Non-Linearly Separable Case

• a(3) = [1 2 -1]
• rule is: a(k+1) =a(k) + zM

 • atz2

 = [1 4 3] · [1 2 -1]t = 6 > 0
• atz3

 = [1 3 5] · [1 2 -1]t = 2 > 0
• atz4

 = [-1 -1 -3] · [1 2 -1]t = 0
• Update: a(4) = a(3) + zM = [1 2 -1] + [-1 -1 -3] = [0 1 -4]
















=

1
2
1

1z















=

3
4
1

2z















=

5
3
1

3z
















−
−
−

=
6
5
1

5z
















−
−
−

=
3
1
1

4z

Non-Linearly Separable Case

• Can continue this forever
• there is no solution vector a satisfying for all atzi > 0 for all i

• Need to stop at a good point

• Solutions at iterations
900 through 915

• Some are good some
are not

• How do we stop at a
good solution?

Non-Linearly Separable Case

Linear Classifier: Multiple Classes
• Can extend to m class case
• Augment samples with 1 as the first feature

• but no “normalization”

• Define m discriminant functions
gi(x) = wi

tx for i = 1, 2, … m
• Assign x to i that gives maximum gi(x)

 x

g1(x)

g2(x)

g3(x)

g4(x)


















−
10

9
3
5→ 5

→ 3

→ -9

→ 10

pile all outputs
into one vector

decide class 4

Linear Classifier: Multiple Classes
• Could use one dimensional output yi ∊ {1,2,3,…m}

got this



















0
0
1
0

want this

• Convenient to use multi-dimensional outputs



















=

0
0
0
1

jy

class 1



















=

0
0
1
0

jy

class 2



















=

0
1
0
0

jy

class 3



















=

1
0
0
0

jy

class 4

 x

g1(x)

g2(x)

g3(x)

g4(x)



















−
10

9
3
5

• For training, if

sample is of class i,
want output vector
to be 0 everywhere
except position i,
where it should be 1

x is of class 2

Linear Classifier: Multiple Classes
• Assign x to i that gives maximum gi(x)= wi

tx

 x

g1(x)=w1
tx

g2(x)=w2

tx

g3(x)=w3
tx

g4(x)=w4
tx

w2
tx

w3
tx

w4
tx

w1
tx

 x

• In matrix notation



















−

−
−

172
254
239
742

















4
7
1



















−

−
=

43
47

4
2w1

w2
w3
w4

x W Wx
• Assign x to class that corresponds to largest row of Wx

Linear Multiclass Classifier: Loss Function
• Assign sample xi to class that corresponds to largest row of Wxi
• Loss function?



















−

−

43
47

4
2

Wxi



















1
0
0
0

yi

() ()()∑ −=∇
i

tiii xyWxWL

• Can use quadratic loss per sample xi as ½|| Wxi - yi
 ||2

• for example above, loss (22 + 42 + 472 +442)/2

• total loss on all training samples L(W) = ½ Σi || Wxi - yi ||2
• gradient of the loss

• batch gradient descent updates

() ()ti

i

ii xyWxWW ∑ −α−=

Linear Multiclass: Quadratic Loss
• Consider gradient descent update, single sample x with α = 1

() txyWxWW −−=

• Suppose and is in class 2 and















=

2
3
1

x



















−

−
−

=

172
254
239
742

W



















−

=



















−



















−

=−

17
23

3
0

0
0
1
0

17
23

4
0

yWx
ok

need to increase
need to decrease

[]


















−



















−

−
−

=



















−

−



















−

−
−

=

321
321
321
321

172
254
239
742

231

17
23

3
0

172
254
239
742

W

0· ()
3· ()

23·()
-17·()

• update rule

Linear Multiclass: Quadratic Loss



















−

=



















−



















−

=−

17
23

3
0

0
0
1
0

17
23

4
0

yWxneed to decrease
ok

need to increase

[]


















−−−
−−
−

=



















−



















−

−
−

=



















−

−



















−

−
−

=

354419
446419
4126
742

321
321
321
321

172
254
239
742

231

17
23

3
0

172
254
239
742

W

• update rule

0· ()
3· ()

23·()
-17·()



















−
−

=

221
299

38
0

Wx

• With new W

Linear Multiclass: Perceptron Loss Function
• Assign sample xi to class that corresponds to largest row of Wxi
• Another loss function?



















−

−

43
47

4
2

Wxi



















1
0
0
0

yi

• Perceptron loss on sample xi: Li(W) = maxk[(Wxi)k-(Wxi)c], where
• (Wxi)k is the entry in row k of vector Wxi

• c is the correct class of sample xi

• in words, find the largest entry in Wxi, subtract from it the entry in the row
corresponding to the true class of sample xi

• loss is zero if correct classification, positive otherwise
• for the example above, loss is 47-(-43)= 90 since sample is of class 4

Linear Multiclass: Perceptron Loss Function

Wxi



















−

−

43
47

4
2



















1
0
0
0

yi
() 0=∇ WLi

• Li(W) = maxk[(Wxi)k-(Wxi)c]
 • Gradient, single sample rule
• let c be the correct row, and r be row

where Wxi gives the largest output
• if r = c,

• for the example, ()


















−−−

=∇

231
231
000
000

WLi

• otherwise, ()


















=∇
0000

0000

WLi

xi

-xi

row r

row c
















=

2
3
1

ix

Linear Multiclass: Perceptron Loss Function

• For the example, ()


















−−−

=∇

231
231
000
000

WLi



















−

=

3
9
4
0

iWx



















−

−
−

=



















−−−

−



















−

−
−

=

343
023
239
742

231
231
000
000

172
254
239
742

W• With α = 1, new

• With new weights:



















−

=

17
23

4
0

i
oldxW

• Compare to the old weights:



















1
0
0
0

yi
















=

2
3
1

ix

Three Approaches to Classification
1. Directly design discriminant function f(x,w) for classification

• design differentiable loss function that makes intuitive sense
• find w that minimize loss function
• Choose class that maximizes discriminant function

2. Model conditional class probabilities P(class=k|x,w)
• Choose loss function with probabilistic interpretation and minimize it

• Loss function is usually (–log probability)
• Parameters w are tuned so as to maximize probability of the training data

• Choose class that maximizes discriminant function

3. Model probability of training data x under class-specific
generative models p(x,w)

• Use training data to fit parameters w for each class independently
• i.e. fit Gaussians to samples from each class

• Choose the class that makes x most probable

Linear Machine: Logistic Regression
• Has probabilistic interpretation
• Model P(class 1|x,w) and P(class 2|x,w)
• Uses logistic sigmoid function

• denote classes with 1 and 0 now
• yi = 1 for class 1, yi = 0 for class 2

• g(x,w) = wTx
• let f(x,w) = Ϭ(g(x,w)) = Ϭ(wTx)

• assume x is augmented with 1

()
()a

a
−+

=σ
exp1

1

• bigger 0.5 if wTx is positive, decide class 1
• less 0.5 if wTx is negative, decide class 2

• Probabilistic interpretation
• P(class 1|x,w) = Ϭ(wTx)
• P(class 2|x,w) = 1 - P(class 1|x,w)

• Despite the name, logistic regression is used for classification, not regression
• Side note: sigmoid is a continuous function, good for gradient descent

Linear Machine: Logistic Regression

• f(x,w) = Ϭ(wTx)
• Probabilistic interpretation

• P(class 1|x,w) = Ϭ(wTx)
• P(class 2|x,w) = 1 - P(class 1|x,w)

 ()
()a

a
−+

=σ
exp1

1
• Per sample loss function: -log(P(yi|xi))

• if sample xi of class 1, loss is –log(Ϭ(wTxi))
• if sample xi of class 2, loss is –log(1-Ϭ(wTxi))

• Convex, can be optimized exactly with
gradient descent

• Gradient descent update rule
 ()() j

j

jtj xxwyww ∑ σ−α+=

Linear Machine: Softmax Regression
• In case of m classes, define m functions

gi(x) = wi
tx for i = 1, 2, … m

• Instead of raw scores

()































=

xw

...

xw

xw

,

T

T
2

T
1

m

wxf































−

=

6

...

5

100

• Softmax scores for probabilistic
interpretation

()

()
()

()
()

()
()















































=

∑

∑

∑

=

=

=

m

1j

T
j

T
m

m

1j

T
j

T
2

m

1j

T
j

T
1

xwexp

xwexp

xwexp

xwexp

xwexp

xwexp

,wxf

()

()

()





























=

wxmclass

wxclass

wxclass

,|Pr

...

,|2Pr

,|1Pr































=

06.0

...

1.0

6.0

Linear Machine: Softmax Regression

()

()

()





























=

wxmclass

wxclass

wxclass

,|Pr

...

,|2Pr

,|1Pr































=

06.0

...

1.0

6.0

 if sample of class 2,
take –log of the
number in row 2 for
the loss

()

()
()

()
()

()
()















































=

∑

∑

∑

=

=

=

m

1j

T
j

T
m

m

1j

T
j

T
2

m

1j

T
j

T
1

xwexp

xwexp

xwexp

xwexp

xwexp

xwexp

,wxf

• Also optimize under -log(Pr(yi|xi)) loss function

Linear Machine: Softmax Regression

• Update rule for weight matrix W

()
()

()
()

()
()










































∑

∑

∑

=

=

=

m

1j

m

1j

2

m

1j

1

exp

exp

exp

exp

exp

exp

j

m

j

j

a

a

a

a

a

a

• Define softmax(a) function for vector a as































ma

a

a

2

1

softmax

()() ()∑ σ−α+=
j

tjjTj xxwyWW

x1

x2 • Can use other discriminant functions,
like quadratics

 g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2

• Methodology is almost the same as
in the linear case
• f(x) = sign(w0+w1x1+w2x2+w12x1x2 +w11x1

2 + w22x2
2)

• z = [1 x1 x2 x1 x2 x1
2 x2

2]
• a = [w0 w1 w2 w12 w11

 w22]
• “normalization”: multiply negative class samples by -1
• all the other procedures remain the same, i.e. gradient

descent to minimize Perceptron loss function, any
other loss function

Generalized Linear Classifier

Generalized Linear Classifier
• In general, to the liner function:

g(x,w) = w0+Σi=1…d wixi
• can add quadratic terms:

g(x,w) = w0+Σi=1...d wixi+Σi=1...d Σj=1,..d wijxixj
 • This is still a linear function in its parameters w

• g(y,v) = v0+vty
v0 = w0

 y = [x1 x2 … xd x1x1 x1x2 … xdxd]

 v = [w1 w2 … wd w11 w12 … wdd]

• Can use all the same training methods as before

Generalized Linear Classifier
• Generalized linear classifier

 g(x,w) = w0+Σi=1…m wihi(x)
• h(x) are called basis function, can be arbitrary functions

• in strictly linear case, hi(x)= xi

• Linear function in its parameters w

 g(x,w) = w0+wth
h = [h1(x) h2(x) … hm(x)]

[w1 … wm]

• Can use all the same training methods as before

Generalized Linear Classifier
• Usually face severe overfitting

• too many degrees of freedom
• boundary can “curve” to fit to the noise in the data

• Regression example

Generalized Linear Classifier
• Helps to regularize by keeping w small

• small w means the boundary is not as curvy

• Regression example

Generalized Linear Classifier
• Helps to regularize by keeping w small

• small w means the boundary is not as curvy

• For example, add λ||w||2 to the loss function
• Recall quadratic loss function

 L=½Σi|| f(xi,w) - yi ||2

• Regularized version

L = ½Σi || f(xi,w) - yi ||2 +λ||w||2

• Regression example,
polynomial coefficients
for degree M = 9

Generalized Linear Classifier
• How to set λ?
• With validation or cross-validation

• Consider polynomial of degree M=9 regression

Training
Validation

Er
ro

r

 Learning by Gradient Descent

• Can have classifiers even more general than generalized
linear

• Suppose we suspect that the machine has to have
functional form f(x,w), not necessarily linear

• Pick differentiable per-sample loss function L(xi,yi,w)
• Need to find w that minimizes L = Σi L(xi,yi,w)
• Use gradient-based minimization:

• Batch rule: w = w - αL(w)
• Or single sample rule: W = W - αL (xi,yi,w)

	CS9840 �Learning and Computer Vision Prof. Olga Veksler
	Today
	Optimization
	Optimization
	Optimization: Gradient Direction
	Gradient Direction in 2D
	Gradient Descent: Step Size
	Gradient Descent Algorithm
	Gradient Descent: Local Minimum
	How to Set Learning Rate ?
	How to Set Learning Rate ?
	Variable Learning Rate
	Variable Learning Rate
	Learning Rate
	Advanced Optimization Methods
	Supervised Learning Review
	Supervised Learning Review
	Training and Testing Phases
	Loss Function
	Linear Machine: Regression
	Linear Machine: Classification
	Slide Number 22
	More on Linear Discriminant Function (LDF)
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Linear Classifiers
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Simplifying Notation Further
	Effect of Normalization
	Solution Region
	Solution Region
	Design a Loss Function
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Convergence of Perceptron Rules
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Linear Classifier: Multiple Classes
	Linear Classifier: Multiple Classes
	Linear Classifier: Multiple Classes
	Linear Multiclass Classifier: Loss Function
	Linear Multiclass: Quadratic Loss
	Linear Multiclass: Quadratic Loss
	Linear Multiclass: Perceptron Loss Function
	Linear Multiclass: Perceptron Loss Function
	Linear Multiclass: Perceptron Loss Function
	Three Approaches to Classification
	Linear Machine: Logistic Regression
	Linear Machine: Logistic Regression
	Linear Machine: Softmax Regression
	Linear Machine: Softmax Regression
	Linear Machine: Softmax Regression
	Slide Number 63
	Generalized Linear Classifier
	Generalized Linear Classifier
	Generalized Linear Classifier
	Generalized Linear Classifier
	Generalized Linear Classifier
	Generalized Linear Classifier
	 Learning by Gradient Descent

