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Today 
• Optimization with Gradient descent 
• Linear Classifier 

• Two classes  
• Multiple classes 
• Perceptron Criterion Function 

• Batch perceptron rule 
• Single sample perceptron rule 

• Minimum Squared Error (MSE) rule 
• Pseudoinverse 

• Generalized Linear Classifier 
• Gradient Descent Based learning 
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Optimization 
• How to minimize a function of a single variable 

J(x) =(x-5)2 

• From calculus, take derivative, set it to 0 

• Solve the resulting equation 
• maybe easy or hard to solve 

• Example above is easy  
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Optimization 
• How to minimize a function of many variables 

J(x) = J(x1,…, xd) 

• From calculus, take partial derivatives, set them to 0 
gradient 

• Solve the resulting system of d equations 
• It may not be possible to solve the system of equations 

above analytically 



Optimization: Gradient Direction 

x2 
x1 

J(x1, x2) 

Picture from Andrew Ng 

• Gradient ∇J(x) points in the direction of steepest 
increase of function J(x) 

• - ∇J(x) points in the direction of steepest decrease 



Gradient Direction in 2D 

• J(x1, x2) =(x1-5)2+(x2-10)2 
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• Let a = [10, 5] 
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Gradient Descent: Step Size 

• J(x1, x2) =(x1-5)2+(x2-10)2 
• Which step size to take? 
• Controlled by parameter α  

• called learning rate 
• From previous example: 

• a = [10   5] 
• -∇J(a) = [-10  10] 

• Let α = 0.2 

a 

[-10, 10] 

global min 

x1 
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10 
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• a - α ∇J(a) =  [10   5]+0.2 [-10  10]=[8  7] 
• J(10, 5) = 50 
• J(8,7) = 18 



J(x) 

x 

Gradient Descent Algorithm 

x(1) x(2) 

-∇J(x(1)) 
-∇J(x(2)) 

x(k) 

-∇J(x(k))≈0 

k = 1   
x(1) = any initial guess 
choose α, ε 
while α||∇J(x(k))|| > ε 
 x(k+1) = x (k) - α ∇J(x(k)) 
 k = k + 1   



Gradient Descent: Local Minimum 

• Not guaranteed to find global minimum 
• gets stuck in local minimum 

J(x) 

x 
x(1) x(2) 

-∇J(x(1)) 

-∇J(x(2)) 

x(k) 

-∇J(x(k))=0 

global minimum 

• Still gradient descent is very popular because it is 
simple and applicable to any differentiable function 



x  
 

How to Set Learning Rate α? 

• If α  too large, may 
overshoot the local 
minimum and possibly 
never even converge 

J(x) 

x 

• If α  too small, too 
many iterations to 
converge 

x(2) x(1) 

 
 
x(4) x(3) 

• It  helps to compute J(x) as a function of iteration 
number, to make  sure we are properly minimizing it 

J(x) 



How to Set Learning Rate α? 
J(x) 

x 

• As we approach local 
minimum, often gradient 
gets smaller 

• Step size may get smaller 
automatically, even if α is 
fixed 

• So it may be unnecessary 
to decrease α over time in 
order not to overshoot a 
local minimum 

slope gets smaller 



Variable Learning Rate 

k = 1   
x(1) = any initial guess 
choose α, ε 
while α||∇J(x(k))|| > ε 
 x(k+1) = x (k) - α ∇J(x(k)) 
 k = k + 1   

• If desired, can change learning rate α at each iteration 

k = 1   
x(1) = any initial guess 
choose  ε 
while α||∇J(x(k))|| > ε 
 choose α(k)  
 x(k+1) = x (k) - α(k) ∇J(x(k)) 
 k = k + 1   



Variable Learning Rate 

k = 1   
x(1) = any initial guess 
choose α, ε 
while α||∇J(x(k))|| > ε 
 x(k+1) = x (k) - α ∇J(x(k)) 
 k = k + 1   

• Usually don’t keep track of all intermediate solutions 

x = any initial guess 
choose α, ε 
while α||∇J(x)|| > ε 
 x = x  - α ∇J(x) 
  



Learning Rate 
• Monitor learning rate by looking at how fast the 

objective function decreases 

J(x) 

number of iterations 

very high learning rate 

 high learning rate 

low learning rate 

good learning rate 



Advanced Optimization Methods 

• There are more advanced gradient-based 
optimization methods 

• Such as conjugate gradient 
• automatically pick a good learning rate α  
• usually converge faster 
• however more complex to understand and 

implement 
• in Matlab, use fminunc for various advanced 

optimization methods 
 

 



Supervised Learning Review 

• Training samples (or examples) 
     x1, x2, … xn 

• Each example is typically multi-dimensional 
• xi= [xi

1,xi
2 ,…, xi

d]  
• xi  is often called a feature vector 

• Know desired output for each example 
 

    y1, y2,… yn 

 

• regression:      continuous y 
• classification:  finite y 



Supervised Learning Review 

• Wish to design a machine  f(x,w)  s.t.                    
   f(x,w) = y  
• How do we choose f? 

• last time studied kNN classifier 
• this lecture in on liner classifier 
• many other choices 

• w is multidimensional vector of weights (also called 
parameters)  

    w = [w1,w2,…wk] 
• By modifying w, the machine  “learns” 



Training and Testing Phases 

• Divide all labeled samples x1, x2,…, xn  into 
training and test sets 

• Training phase 
• Uses training samples 
• goal is to “teach” the machine  
• find weights w s.t. f(xi,w) = yi “as much as possible”  

• “as much as possible” needs to be defined 

• Testing phase  
• Uses only test samples 
• for evaluating how well our machine works on 

unseen examples 
 



Loss Function 
• How to quantify   “f(xi,w) = yi as much as possible”? 
• f(x,w) has to be “close” to the true output y 
• Define Loss (or Error, or Criterion) function L 
• First define per-sample loss L(xi,yi,w) 
• Examples of loss function 

• for classification, L(xi,yi,w)  = I[f(xi,w) ≠ yi] 
•  I[true] = 1, I[false] = 0  

• for regression, L(xi,yi,w) = || f(xi,w) - yi ||2 , 
• how far is the estimated output from the correct one? 

• Then loss function L = Σi L(xi,yi,w) 
• classification: counts number of misclassified examples 
• regression: sums distances to the correct output 



Linear Machine: Regression 

• f(x,w) = w0+Σi=1,2,...d wixi 

• In vector notation  
• x= [x1,x2,…,xd] 
• f(x,w) = w0+wtx 

• This is standard linear regression 
• line fitting 

• assume L(xi,yi,w) = ||f(xi,w) - yi||2 

 
 

x 

y 

• optimal w can be found by solving 
a system of linear  equations 

 w* = [Σxi (xi )T]-1 Σyixi 
 



Linear Machine: Classification 
• First consider the two-class case 
• Choose encoding 

• y  =   1  for the first class       
• y  =  -1  for the second class 

• Linear classifier 
•  -∞ ≤  w0+x1w1 + … + xdwd  ≤ ∞ 
• we need f(x,w) to be either  +1   or   -1 
• let  g(x,w) = w0+x1w1 + … + xdwd = w0+wtx 
• let   f(x,w) = sign(g(x,w)) 

•   1  if  g(x,w) is positive 
•  -1 if  g(x,w) is negative 
• other choices for  g(x,w) are also used 

• g(x,w) is called the discriminant  function 

 

g(x) 
x 

-1 

1 
f(x) 



bad boundary 

Linear Classifier: Decision Boundary 

• f(x,w) = sign(g(x,w)) = sign(w0+x1w1 + … + xdwd) 
• Decision boundary is linear 
• Find the best linear boundary to separate two classes 
• Search for best w = [w0,w1,…,wd] to minimize training error 

better boundary 



More on Linear Discriminant Function (LDF) 

• LDF: g(x,w) = w0+x1w1 + … + xdwd 
• Written using vector notation   g(x) = wtx + w0           

x1 

x2
 

weight vector bias or threshold 

decision boundary 
g(x) = 0 g(x) > 0 

decision 
region for 

class 1 

g(x) < 0 
decision region 

for class 2 



More on Linear Discriminant Function (LDF) 

• Decision boundary: g(x,w) = w0+x1w1 + … + xdwd = 0 
• This is a hyperplane, by definition 

• a point in 1D 
• a line in 2D 
• a plane in 3D 
• a hyperplane in higher dimensions 



• Have m classes 
• Define m  linear discriminant functions 

gi(x) = wi
tx + wi0  for i = 1, 2, … m 

Multiple Classes 

• Assign x  to class i  if 
gi(x)  >  gj(x) for all j ≠ i  

• Let Ri be the decision region for class i  
• all examples in Ri get assigned class i   

g2(x) > g1(x) 
g2(x) > g3(x) 

R1 
R2 

R3 

g1(x) > g2(x) 
g1(x) > g3(x) 

g3(x) > g1(x) 
g3(x) > g2(x) 



Multiple Classes 
• Can be shown that decision regions are convex 
• In particular, they must be spatially contiguous 



Failure Cases for Linear Classifier 
• Thus applicability of linear classifiers is limited to 

mostly unimodal distributions, such as Gaussian 
• Not unimodal data 

• Need non-contiguous 
decision regions 

• Linear classifier will fail 



Linear Classifiers 
• Give simple decision boundary 

• try simpler models first 
• can still overfit in very high dimensions 

• Optimal for certain type of data 
•  Gaussian distributions with equal covariance 

• May not be optimal for other data distributions, but 
they are very simple to use 
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Fitting Parameters w 

• Linear discriminant function g(x) = wtx + w0 
 

• Can rewrite it  g(x) = [w0    wt]        =  atz  = g(z) 
 

1 
x 
new 

feature  
vector z 

new weight  
vector a 

• z is called augmented feature vector 
• new problem equivalent to the old   g(z) = atz  
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g(z) > 0 

g(z) < 0 z 

g(z) = 0 

Augmented Feature Vector 

• Feature augmenting is done to simplify notation 
• The rest of this lecture assumes augmented features  

• given samples x1,…, xn  convert them to augmented samples 
z1,…, zn  by adding  a new dimension of value 1  

• g(z) = atz 
 



Training Error 
• Assume we have 2 classes 
• Samples z1,…, zn

  some  in class 1, some in class 2 
• Use samples to determine weights a in g(z) = atz 
• Want to minimize number of misclassified samples 

 

                                                     g(zi) > 0     ∀zi
 class 1 

                                                     g(zi) < 0     ∀zi
 class 2 

 

• Thus training error is 0 if 

• Recall that 
 

                           g(zi) > 0  ⇒ class 1 
                           g(zi) < 0  ⇒ class 2 
 

 



Simplifying Notation Further 
                                                     atzi > 0     ∀zi

 class 1 
                                                     atzi < 0     ∀zi

 class 2 
 

• Thus training error is 0 if 

                                                     atzi     >  0  ∀zi
 class 1 

                                                     at(-zi) > 0  ∀zi
 class 2 

 

• Equivalently, training error is 0 if 

• Problem “normalization”: 
1. replace all examples zi from class 2 by –zi 
2. seek weights a s.t. atzi > 0 for ∀zi

  

• If exists, such a is called a separating or solution vector 
• Original samples x1,… xn can also be linearly separated 



before normalization 

 seek a hyperplane that 
separates samples from 
different categories 

 seek hyperplane that puts 
normalized samples on the 
same (positive) side  

Effect of Normalization 

after normalization 
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Solution Region 
• Find weight vector a s.t. for all samples z1,…,zn 

• If there is one such a, then there are infinitely many a 



a 

Solution Region 

• Solution region: the set of all possible solutions for a  



Design a Loss Function 

• Find weight vector a s.t. ∀z1,…, zn , at zi
  > 0  

• Design a loss function L(a), which is minimum 
when a is a solution vector 

• Let Z(a) be the set of examples misclassified by a 
Z(a) = { zi | at zi

 < 0 } 
• Natural choice: number of misclassified examples 

L(a) = |Z(a)| 
• Unfortunately, cannot minimize                                      

with gradient descent 
• piecewise constant, gradient zero                                               

or does not exist 

 
 

a 

L(a) 
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Perceptron Loss Function 
• Better choice: Perceptron loss function 

• If z is misclassified, atz < 0 
• Thus L(a) ≥ 0  
• Lp(a) is proportional to the sum 

of distances of misclassified 
examples to decision boundary 

• Lp(a) is piecewise linear and 
suitable for gradient descent 

a 

L(a) 



• Gradient of Lp(a) is ( ) ( )
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∑
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• Gradient decent update rule for Lp(a) is: 
( ) ( )
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kk zαaa 1

• called batch rule because it is based on all examples 

• cannot  solve ∇Lp(a) = 0 analytically because of Z(a) 
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• Recall update rule for gradient descent 
 x(k+1)= x(k+1)– α ∇L(x(k)) 

Optimizing with Gradient Descent 



• Gradient decent single sample rule for Lp(a) is 
 a(k+1) =a(k) +α⋅zM 

• zM is one sample misclassified by a(k) 

• Geometric Interpretation: 

• must have a consistent way to visit samples 

• zM  misclassified by a(k) 

( )( ) 0≤M
tk za a(k) 

• zM is on the wrong side of 
decision boundary 

• adding α⋅zM  to a moves  decision 
boundary in the right direction  

Perceptron Single Sample Rule 

zM 

a(k+1) 

αzM 



 if α is too large, previously 
correctly classified sample zi

  is 
now misclassified 

Perceptron Single Sample Rule 

a(k) zM 

a(k+1) 

zi 

a(k) 

 if α is too small,  zM  is still 
misclassified 

zM 

a(k+1) 



1. Classes are linearly separable 
• with fixed learning rate, both single sample and batch rules converge to a 

correct solution a 
• can be any a in the solution space 

2. Classes are not linearly separable 
• with fixed learning rate, both single sample and batch do not converge 
• can ensure convergence with appropriate variable learning rate 

• α → 0  as  k → ∞ 
• example, inverse linear:  α = c/k, where c is any constant 

• also converges in the linearly separable case   
• no guarantee that we stop at a good point, but there are good reasons 

to choose inverse linear learning rate 

• Practical Issue: both single sample and batch algorithms converge 
faster if features are roughly on the same scale 
• see kNN lecture on feature normalization 

 

 

 

Convergence of Perceptron Rules 



• True gradient descent, full 
gradient computed 

• Smoother gradient because 
all samples are used  

• Takes longer to converge 

Batch 
• Only partial gradient is 

computed 
• Noisier gradient, therefore 

may concentrates more than 
necessary on any isolated 
training examples (those 
could be noise) 

• Converges faster 

Single Sample 

Batch  vs. Single Sample Rules 



• Suppose we have examples: 
• class 1:  [2,1], [4,3], [3,5] 
• class 2: [1,3] , [5,6] 
• not linearly separable 
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Non-Linearly Separable Case 

• Still wish an approximate separation 
• Good line choice is shown in green 
• Let us run gradient descent 

• Add extra feature and “normalize” 



• atz1 = [1 1 1] · [1 2 1]t  > 0       
• atz2 = [1 1 1] · [1 4 3]t  > 0      
• atz3 = [1 1 1] · [1 3 5]t  > 0      

• single sample perceptron rule 
• Initial weights a(1) = [1  1  1] 
• This is line x1 + x2 + 1 = 0 
• Use fixed learning rate α = 1 
• Rule is:   a(k+1) =a(k) + zM 
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Non-Linearly Separable Case 



• atz4
 = [1 1 1] · [-1 -1 -3]t  =  -5 <  0 

• Update:  a(2) = a(1) + zM = [1  1  1] + [-1  -1  -3] = [0  0  -2]    
 
 • atz5

 = [0 0 -2] · [-1 -5 -6]t  = 12 > 0 
• atz1

 = [0 0 -2] · [1 2 1]t  < 0 
• Update:  a(3) = a(2) + zM = [0  0  -2] + [1  2  1] = [1  2  -1] 

 
 

• a(1) = [1  1  1] 
• rule is:   a(k+1) =a(k) + zM 
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Non-Linearly Separable Case 



• a(3) = [1  2  -1] 
• rule is:   a(k+1) =a(k) + zM 
 

 
 
 • atz2

 = [1 4 3] · [1  2 -1]t  =  6 > 0 
• atz3

 = [1 3 5] · [1  2 -1]t  =  2 > 0 
• atz4

 = [-1 -1 -3] · [1  2 -1]t  =  0 
• Update:  a(4)  = a(3) + zM = [1   2  -1] + [-1  -1  -3] = [0  1  -4] 

 
 
















=

1
2
1

1z















=

3
4
1

2z















=

5
3
1

3z
















−
−
−

=
6
5
1

5z
















−
−
−

=
3
1
1

4z

Non-Linearly Separable Case 



• Can continue this forever 
• there is no solution vector a satisfying for all atzi > 0 for all i 

• Need to stop at a good point 

• Solutions at iterations 
900 through 915  

• Some are good some 
are not 

• How do we stop at a 
good solution? 

Non-Linearly Separable Case 



Linear Classifier: Multiple Classes 
• Can extend to m class case 
• Augment samples with 1 as the first feature 

• but no “normalization” 

• Define m discriminant functions  
gi(x) = wi

tx    for i = 1, 2, … m 
• Assign x to i that gives maximum gi(x) 

  x 

g1(x) 

g2(x) 

g3(x) 

g4(x) 
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pile all outputs 
into one vector 

decide class 4 



Linear Classifier: Multiple Classes 
• Could use one dimensional output yi  ∊ {1,2,3,…m} 

 

got this 
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• Convenient to use multi-dimensional outputs 
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  x 

g1(x) 
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• For training, if 

sample is of class i,  
want output vector 
to be  0 everywhere 
except position i, 
where it should be 1 

x is of class 2 



Linear Classifier: Multiple Classes 
• Assign x to i that gives maximum gi(x)= wi

tx  

  x 

g1(x)=w1
tx  

 
g2(x)=w2

tx  

g3(x)=w3
tx  

g4(x)=w4
tx  

w2
tx  

w3
tx  

w4
tx  

w1
tx  

  x 

• In matrix notation 



















−

−
−

172
254
239
742

















4
7
1



















−

−
=

43
47

4
2w1 

w2 
w3 
w4 

x W Wx 
• Assign x to class that corresponds to largest row of Wx  



Linear Multiclass Classifier: Loss Function 
• Assign sample  xi to class that corresponds to largest row of Wxi 
• Loss function?  
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• Can use  quadratic loss per sample xi  as  ½|| Wxi - yi
 ||2  

• for  example above, loss (22 + 42 + 472 +442)/2 

• total  loss on all training samples L(W) =  ½ Σi || Wxi - yi ||2  
• gradient of the loss 

• batch gradient descent updates 

( ) ( )ti

i
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Linear  Multiclass: Quadratic Loss 
• Consider gradient descent update, single sample x with  α = 1 
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Linear Multiclass: Quadratic Loss 



















−

=



















−



















−

=−

17
23

3
0

0
0
1
0

17
23

4
0

yWxneed to decrease 
ok 

need to increase 

[ ]


















−−−
−−
−

=



















−



















−

−
−

=



















−

−



















−

−
−

=

354419
446419
4126
742

321
321
321
321

172
254
239
742

231

17
23

3
0

172
254
239
742

W

• update rule 

0· (                     ) 
3· (                     ) 

23·(                    ) 
-17·(                    ) 



















−
−

=

221
299

38
0

Wx

• With new W 



Linear Multiclass: Perceptron Loss Function 
• Assign sample  xi to class that corresponds to largest row of Wxi 
• Another loss function? 
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• Perceptron loss on sample xi: Li(W) = maxk[(Wxi)k-(Wxi)c], where 
• (Wxi)k  is the entry in row k of vector  Wxi  

• c is the correct class of sample xi 

• in words, find the largest entry in Wxi, subtract from it the entry in the row 
corresponding to the true class of sample xi   

• loss is zero if correct classification, positive otherwise 
• for the example above, loss is 47-(-43)= 90 since sample is of class 4 
 



Linear Multiclass: Perceptron Loss Function 

Wxi 
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( ) 0=∇ WLi

•  Li(W) = maxk[(Wxi)k-(Wxi)c] 
 • Gradient, single sample rule 
• let c be the correct row, and r be  row 

where Wxi gives the largest output 
• if r = c,  

• for the example,  ( )
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Linear Multiclass: Perceptron Loss Function 

• For the example,  ( )
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Three Approaches to Classification 
1. Directly design discriminant function f(x,w)  for classification 

• design differentiable loss function that makes intuitive sense 
• find w that minimize loss function 
• Choose class that maximizes discriminant function 

2. Model conditional class probabilities P(class=k|x,w) 
• Choose loss function with probabilistic interpretation and minimize it 

• Loss function is usually (–log probability) 
• Parameters w are tuned so as to maximize probability of the training data 

• Choose class that maximizes discriminant function 

3. Model probability of training data x under class-specific 
generative models p(x,w) 

• Use training data to fit parameters w for each class independently 
• i.e. fit Gaussians to samples from each class 

• Choose the class that makes x most probable 



Linear Machine: Logistic Regression 
• Has probabilistic interpretation 
• Model P(class 1|x,w) and P(class 2|x,w) 
• Uses logistic sigmoid function 

• denote classes with 1 and 0 now 
• yi = 1 for class 1, yi = 0 for class 2 

• g(x,w) = wTx 
• let   f(x,w) = Ϭ(g(x,w)) = Ϭ(wTx) 

• assume x is augmented with 1 

 
 

( )
( )a

a
−+

=σ
exp1

1

• bigger 0.5 if wTx is positive, decide class 1 
• less  0.5 if wTx is negative, decide class 2 

• Probabilistic interpretation 
• P(class 1|x,w) = Ϭ(wTx) 
• P(class 2|x,w) = 1 - P(class 1|x,w ) 

• Despite the name, logistic regression is used for classification, not regression 
• Side note: sigmoid is a continuous function, good for gradient descent 

 



Linear Machine: Logistic Regression 

• f(x,w) = Ϭ(wTx) 
• Probabilistic interpretation 

• P(class 1|x,w) = Ϭ(wTx) 
• P(class 2|x,w) = 1 - P(class 1|x,w ) 

 ( )
( )a

a
−+

=σ
exp1

1 
• Per sample loss function:  -log( P( yi|xi)  )  

• if sample xi of class 1, loss is –log(Ϭ(wTxi)) 
• if sample xi of class 2, loss is –log(1-Ϭ(wTxi)) 

• Convex, can be optimized  exactly with 
gradient descent 

• Gradient descent update rule 
 ( )( ) j

j

jtj xxwyww ∑ σ−α+=



Linear Machine: Softmax Regression 
• In case of m classes, define m functions  

gi(x) = wi
tx    for i = 1, 2, … m 

• Instead of raw scores   
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Linear Machine: Softmax Regression 
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 if sample of class 2,  
take –log of the 
number in row 2 for 
the loss 
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• Also optimize under -log( Pr( yi|xi) ) loss function 
 

 
 



Linear Machine: Softmax Regression 

 
• Update rule for weight matrix W 
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• Define softmax(a) function for vector a as 
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x1 

x2 • Can use other discriminant functions, 
like quadratics 

            g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2 

• Methodology is almost the same as 
in the linear case 
•  f(x)   = sign(w0+w1x1+w2x2+w12x1x2 +w11x1

2 + w22x2
2) 

•      z   =        [ 1        x1        x2            x1 x2         x1
2           x2

2] 
•      a   =       [ w0      w1       w2         w12           w11

          w22] 
• “normalization”:  multiply negative class samples by -1 
• all the other procedures remain the same, i.e. gradient 

descent to minimize Perceptron loss function, any 
other loss function 

  

Generalized Linear Classifier 



Generalized Linear Classifier 
• In general, to the liner function: 

g(x,w) = w0+Σi=1…d wixi 
• can add quadratic terms: 

g(x,w) = w0+Σi=1...d wixi+Σi=1...d Σj=1,..d wijxixj 
 • This is still a linear function in its parameters w 

• g(y,v) = v0+vty 
v0 = w0 

    y = [x1     x2 …   xd    x1x1   x1x2    …   xdxd] 

    v = [w1    w2 … wd    w11    w12    …   wdd] 
 

• Can use all the same training methods as before 

 



Generalized Linear Classifier 
• Generalized linear classifier 

 g(x,w) = w0+Σi=1…m wihi(x) 
• h(x) are called basis function, can be arbitrary functions 

• in strictly linear case, hi(x)= xi 
 

 
• Linear function in its parameters w 

 g(x,w) = w0+wth 
h = [h1(x)   h2(x)   …  hm(x)] 

[w1    …   wm] 

• Can use all the same training methods as before 
 
 



Generalized Linear Classifier 
• Usually face severe overfitting 

• too many degrees of freedom 
• boundary can “curve” to fit to the noise in the data 

• Regression example 



Generalized Linear Classifier 
• Helps to regularize by keeping w small 

• small w means the boundary is not as curvy 

• Regression example 



Generalized Linear Classifier 
• Helps to regularize by keeping w small 

• small w means the boundary is not as curvy 

• For example, add  λ||w||2 to the loss function 
• Recall quadratic loss function 

 L=½Σi|| f(xi,w) - yi ||2  

• Regularized version 

L = ½Σi || f(xi,w) - yi ||2 +λ||w||2  

• Regression example, 
polynomial coefficients 
for degree M = 9 



Generalized Linear Classifier 
• How to set λ? 
• With validation or cross-validation 

• Consider polynomial of degree M=9 regression 

Training 
Validation 

Er
ro

r 



 Learning by Gradient Descent 

• Can have classifiers even more general than generalized 
linear  

• Suppose we suspect that the machine has to have 
functional form f(x,w), not necessarily linear 

• Pick differentiable per-sample loss function L(xi,yi,w) 
• Need to find w that minimizes L = Σi L(xi,yi,w) 
• Use gradient-based minimization: 

• Batch rule: w = w - αL(w) 
• Or single sample rule: W = W - αL (xi,yi,w) 
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