CS9840

Learning and Computer Vision Prof. Olga Veksler

Lecture 7 Linear Machines

Today

- Optimization with Gradient descent
- Linear Classifier
 - Two classes
 - Multiple classes
 - Perceptron Criterion Function
 - Batch perceptron rule
 - Single sample perceptron rule
 - Minimum Squared Error (MSE) rule
 - Pseudoinverse
- Generalized Linear Classifier
- Gradient Descent Based learning

Optimization

- How to minimize a function of a single variable
 J(x) = (x-5)²
- From calculus, take derivative, set it to 0

$$\frac{d}{dx}J(x) = 0$$

- Solve the resulting equation
 - maybe easy or hard to solve
- Example above is easy

$$\frac{d}{dx}J(x) = 2(x-5) = 0 \implies x = 5$$

Optimization

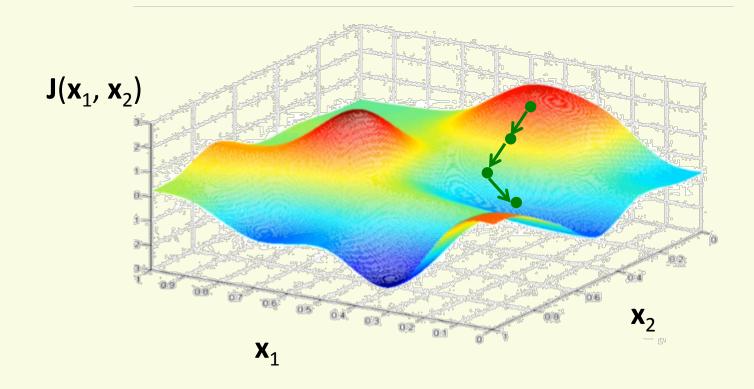
- How to minimize a function of many variables
 J(x) = J(x₁,..., x_d)
- From calculus, take partial derivatives, set them to 0

gradient

$$\begin{bmatrix} \frac{\partial}{\partial x_{1}} J(x) \\ \vdots \\ \frac{\partial}{\partial x_{d}} J(x) \end{bmatrix} = \nabla J(x) = 0$$

- Solve the resulting system of **d** equations
- It may not be possible to solve the system of equations above analytically

Optimization: Gradient Direction



- Gradient \(\nabla J(\mathbf{x})\) points in the direction of steepest increase of function \(\mathbf{J}(\mathbf{x})\)
- $-\nabla J(\mathbf{x})$ points in the direction of steepest decrease

Gradient Direction in 2D

•
$$J(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 - 5)^2 + (\mathbf{x}_2 - 10)^2$$

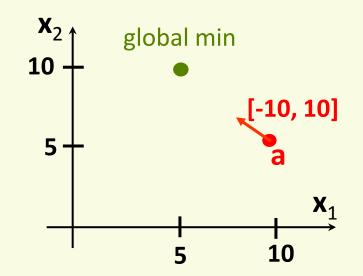
•
$$\frac{\partial}{\partial \mathbf{x}_1} \mathbf{J}(\mathbf{x}) = \mathbf{2}(\mathbf{x}_1 - \mathbf{5})$$

• $\frac{\partial}{\partial \mathbf{x}_2} \mathbf{J}(\mathbf{x}) = \mathbf{2}(\mathbf{x}_2 - \mathbf{10})$

• Let **a** = [10, 5]

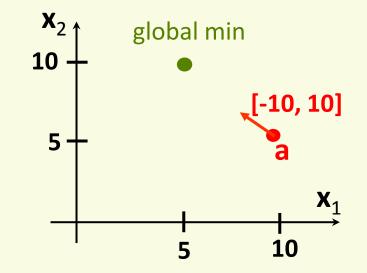
•
$$-\frac{\partial}{\partial x_1} J(a) = -10$$

• $-\frac{\partial}{\partial x_2} J(a) = 10$



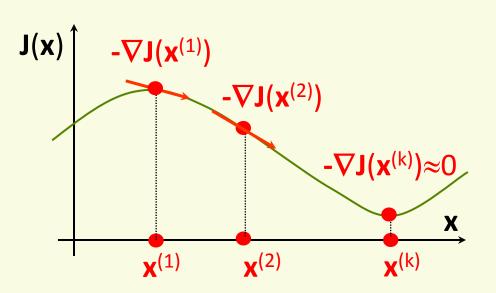
Gradient Descent: Step Size

- $J(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 5)^2 + (\mathbf{x}_2 10)^2$
- Which step size to take?
- Controlled by parameter α
 - called learning rate
- From previous example:
 - **a** = [10 5]
 - $-\nabla J(a) = [-10 \ 10]$
- Let $\alpha = 0.2$
- $\mathbf{a} \alpha \nabla \mathbf{J}(\mathbf{a}) = [10 \ 5] + 0.2 [-10 \ 10] = [8 \ 7]$
- **J**(10, 5) = 50
- J(8,7) = 18



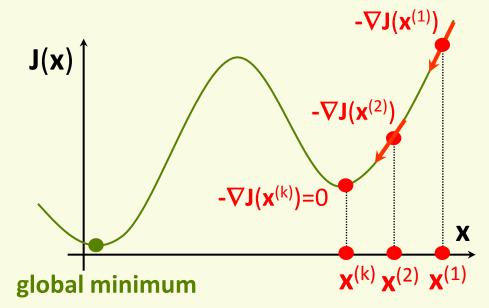
Gradient Descent Algorithm

k = 1 $x^{(1)} = any initial guess$ $choose \alpha, \epsilon$ $while \alpha ||\nabla J(x^{(k)})|| > \epsilon$ $x^{(k+1)} = x^{(k)} - \alpha \nabla J(x^{(k)})$ k = k + 1



Gradient Descent: Local Minimum

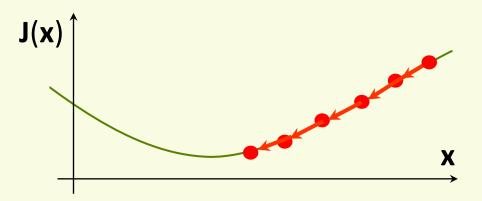
- Not guaranteed to find global minimum
 - gets stuck in local minimum



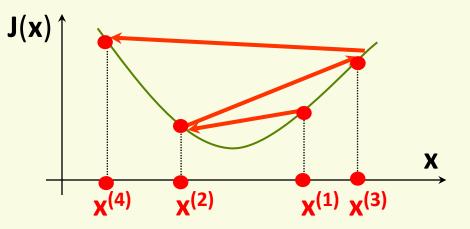
• Still gradient descent is very popular because it is simple and applicable to any differentiable function

How to Set Learning Rate α ?

 If α too small, too many iterations to converge



 If α too large, may overshoot the local minimum and possibly never even converge



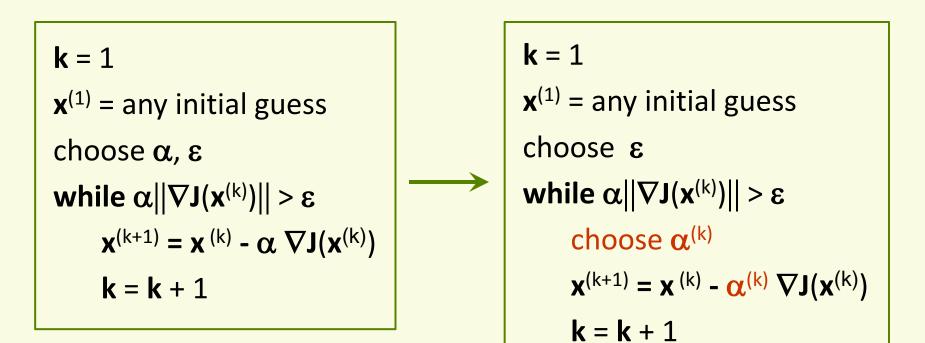
 It helps to compute J(x) as a function of iteration number, to make sure we are properly minimizing it

How to Set Learning Rate α ?

- As we approach local minimum, often gradient gets smaller
- Step size may get smaller automatically, even if α is fixed
- So it may be unnecessary to decrease α over time in order not to overshoot a local minimum

Variable Learning Rate

• If desired, can change learning rate α at each iteration



Variable Learning Rate

• Usually don't keep track of all intermediate solutions

```
k = 1

x^{(1)} = any initial guess

choose \alpha, \epsilon

while \alpha ||\nabla J(x^{(k)})|| > \epsilon

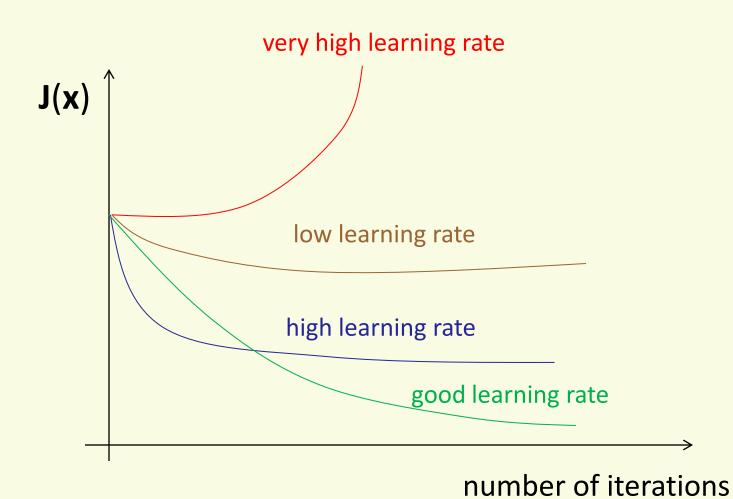
x^{(k+1)} = x^{(k)} - \alpha \nabla J(x^{(k)})

k = k + 1
```

x = any initial guess choose α , ε while $\alpha ||\nabla J(x)|| > \varepsilon$ $x = x - \alpha \nabla J(x)$

Learning Rate

 Monitor learning rate by looking at how fast the objective function decreases



Advanced Optimization Methods

- There are more advanced gradient-based optimization methods
- Such as conjugate gradient
 - automatically pick a good learning rate $\boldsymbol{\alpha}$
 - usually converge faster
 - however more complex to understand and implement
 - in Matlab, use **fminunc** for various advanced optimization methods

Supervised Learning Review

• Training samples (or examples)

- Each example is typically multi-dimensional
 - $\mathbf{x}^{i} = [\mathbf{x}^{i}_{1}, \mathbf{x}^{i}_{2}, ..., \mathbf{x}^{i}_{d}]$
 - **x**ⁱ is often called a *feature vector*
- Know desired output for each example

- regression: continuous **y**
- classification: finite **y**

Supervised Learning Review

- Wish to design a machine f(x,w) s.t.
 f(x,w) = y
 - How do we choose **f**?
 - last time studied kNN classifier
 - this lecture in on liner classifier
 - many other choices
 - **w** is multidimensional vector of weights (also called *parameters*)

$$w = [w_1, w_2, ..., w_k]$$

• By modifying **w**, the machine "learns"

Training and Testing Phases

- Divide all labeled samples x¹, x²,..., xⁿ into training and test sets
- Training phase
 - Uses training samples
 - goal is to "teach" the machine
 - find weights w s.t. f(xⁱ,w) = yⁱ "as much as possible"
 - "as much as possible" needs to be defined
- Testing phase
 - Uses only test samples
 - for evaluating how well our machine works on unseen examples

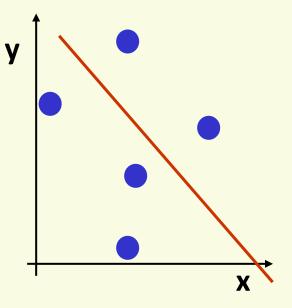
Loss Function

- How to quantify "**f**(**x**^{*i*},**w**) = **y**^{*i*} as much as possible"?
- **f**(**x**,**w**) has to be "close" to the true output **y**
- Define Loss (or Error, or Criterion) function L
- First define per-sample loss L(xⁱ,yⁱ,w)
- Examples of loss function
 - for classification, $L(x^i, y^i, w) = I[f(x^i, w) \neq y^i]$
 - I[true] = 1, I[false] = 0
 - for regression, $\mathbf{L}(\mathbf{x}^{i},\mathbf{y}^{i},\mathbf{w}) = ||\mathbf{f}(\mathbf{x}^{i},\mathbf{w}) \mathbf{y}^{i}||^{2}$,
 - how far is the estimated output from the correct one?
- Then loss function $\mathbf{L} = \Sigma_i \mathbf{L}(\mathbf{x}^i, \mathbf{y}^i, \mathbf{w})$
 - classification: counts number of misclassified examples
 - regression: sums distances to the correct output

Linear Machine: Regression

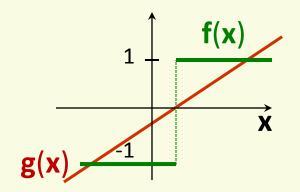
- $f(x,w) = w_0 + \sum_{i=1,2,...d} w_i x_i$
- In vector notation
 - $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_d]$
 - $\mathbf{f}(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \mathbf{w}^t \mathbf{x}$
- This is standard linear regression
 - line fitting
 - assume $\mathbf{L}(\mathbf{x}^{i},\mathbf{y}^{i},\mathbf{w}) = ||\mathbf{f}(\mathbf{x}^{i},\mathbf{w}) \mathbf{y}^{i}||^{2}$
- optimal w can be found by solving a system of linear equations

$$\mathbf{w}^* = [\Sigma \mathbf{x}^i \ (\mathbf{x}^i)^T]^{-1} \Sigma \mathbf{y}^i \mathbf{x}^i$$

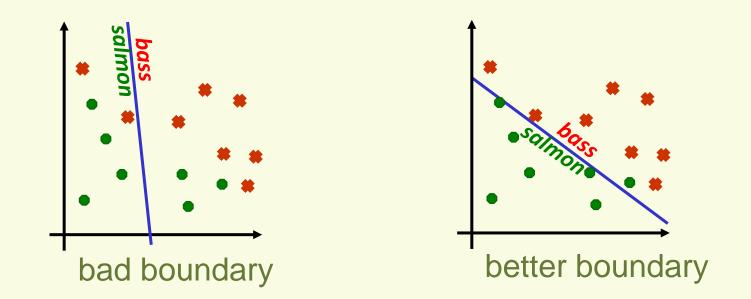


Linear Machine: Classification

- First consider the two-class case
- Choose encoding
 - **y** = 1 for the first class
 - **y** = -1 for the second class
- Linear classifier
 - $-\infty \leq \mathbf{w}_0 + \mathbf{x}_1 \mathbf{w}_1 + \dots + \mathbf{x}_d \mathbf{w}_d \leq \infty$
 - we need f(x, w) to be either +1 or -1
 - let $g(x,w) = w_0 + x_1 w_1 + ... + x_d w_d = w_0 + w^t x$
 - let f(x,w) = sign(g(x,w))
 - 1 if **g(x,w)** is positive
 - -1 if g(x,w) is negative
 - other choices for g(x,w) are also used
 - g(x,w) is called the discriminant function



Linear Classifier: Decision Boundary



- $\mathbf{f}(\mathbf{x},\mathbf{w}) = \operatorname{sign}(\mathbf{g}(\mathbf{x},\mathbf{w})) = \operatorname{sign}(\mathbf{w}_0 + \mathbf{x}_1\mathbf{w}_1 + \dots + \mathbf{x}_d\mathbf{w}_d)$
- Decision boundary is linear
- Find the best linear boundary to separate two classes
- Search for best $\mathbf{w} = [\mathbf{w}_0, \mathbf{w}_1, \dots, \mathbf{w}_d]$ to minimize training error

More on Linear Discriminant Function (LDF)

- LDF: $g(x,w) = w_0 + x_1 w_1 + ... + x_d w_d$
- Written using vector notation $\mathbf{g}(\mathbf{x}) = \mathbf{w}^{\mathsf{t}}\mathbf{x} + \mathbf{w}_{\mathsf{0}}$

decision boundary g(x) > 0 $\boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{0}$ **X**₂ decision region for class 1 g(x) < 0**X**₁ decision region for class 2

weight vector bias or threshold

More on Linear Discriminant Function (LDF)

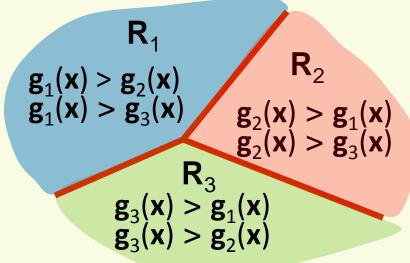
- Decision boundary: $\mathbf{g}(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \mathbf{x}_1 \mathbf{w}_1 + \dots + \mathbf{x}_d \mathbf{w}_d = 0$
- This is a hyperplane, by definition
 - a point in 1D
 - a line in 2D
 - a plane in 3D
 - a hyperplane in higher dimensions

Multiple Classes

- Have **m** classes
- Define **m** linear discriminant functions $\mathbf{g}_{i}(\mathbf{x}) = \mathbf{w}_{i}^{t}\mathbf{x} + \mathbf{w}_{i0}$ for $\mathbf{i} = 1, 2, ... \mathbf{m}$
- Assign **x** to class **i** if

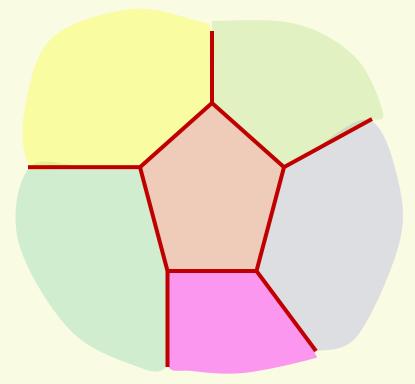
 $\mathbf{g}_{i}(\mathbf{x}) > \mathbf{g}_{j}(\mathbf{x})$ for all $\mathbf{j} \neq \mathbf{i}$

- Let **R**_i be the decision region for class **i**
 - all examples in R_i get assigned class i



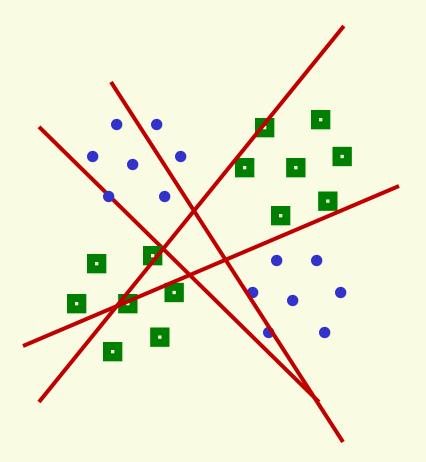
Multiple Classes

- Can be shown that decision regions are convex
- In particular, they must be spatially contiguous



Failure Cases for Linear Classifier

- Thus applicability of linear classifiers is limited to mostly unimodal distributions, such as Gaussian
- Not unimodal data
- Need non-contiguous decision regions
- Linear classifier will fail



Linear Classifiers

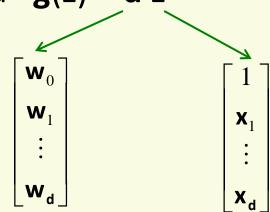
- Give simple decision boundary
 - try simpler models first
 - can still overfit in very high dimensions
- Optimal for certain type of data
 - Gaussian distributions with equal covariance
- May not be optimal for other data distributions, but they are very simple to use

Fitting Parameters w

- Linear discriminant function g(x) = w^tx + w₀
- Can rewrite it $\mathbf{g}(\mathbf{x}) = \begin{bmatrix} \mathbf{w}_0 & \mathbf{w}^T \\ \mathbf{w}_0 & \mathbf{w}^T \end{bmatrix} \begin{bmatrix} 1 \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \mathbf{a}^T \mathbf{z} = \mathbf{g}(\mathbf{z})$

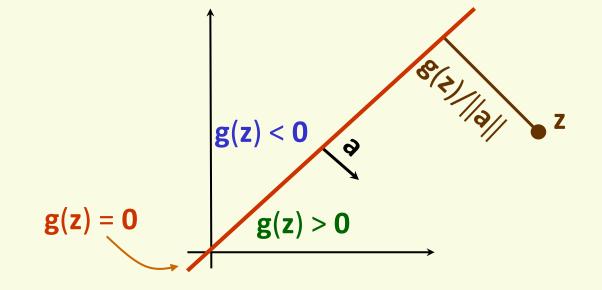
feature vector **z**

- z is called augmented feature vector
- new problem equivalent to the old $g(z) = a^{t}z$



Augmented Feature Vector

- Feature augmenting is done to simplify notation
- The rest of this lecture assumes augmented features
 - given samples x¹,..., xⁿ convert them to augmented samples z¹,..., zⁿ by adding a new dimension of value 1
- g(z) = a^tz



Training Error

- Assume we have 2 classes
- Samples z¹,..., zⁿ some in class 1, some in class 2
- Use samples to determine weights a in g(z) = a^tz
- Want to minimize number of misclassified samples

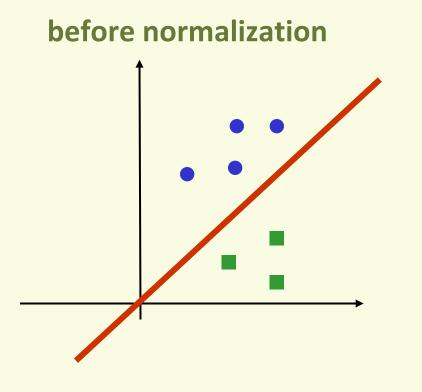
• Recall that
$$\begin{cases} g(\mathbf{z}^i) > 0 \implies \text{class 1} \\ g(\mathbf{z}^i) < 0 \implies \text{class 2} \end{cases}$$

• Thus training error is 0 if $\begin{cases} g(z^i) > 0 & \forall z^i \text{ class } 1 \\ g(z^i) < 0 & \forall z^i \text{ class } 2 \end{cases}$

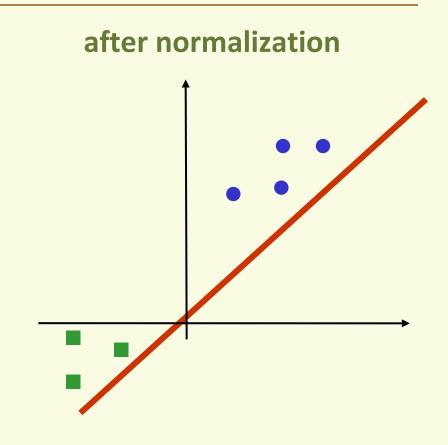
Simplifying Notation Further

- Thus training error is 0 if $\begin{cases} a^{t}z^{i} > 0 & \forall z^{i} \text{ class } 1 \\ a^{t}z^{i} < 0 & \forall z^{i} \text{ class } 2 \end{cases}$
- Equivalently, training error is 0 if $\begin{cases} a^{t}z^{i} > 0 \ \forall z^{i} \text{ class 1} \\ a^{t}(-z^{i}) > 0 \ \forall z^{i} \text{ class 2} \end{cases}$
- Problem "normalization":
 - 1. replace all examples z^i from class 2 by $-z^i$
 - 2. seek weights **a** s.t. $\mathbf{a}^{t}\mathbf{z}^{i} > 0$ for $\forall \mathbf{z}^{i}$
- If exists, such a is called a *separating* or *solution* vector
- Original samples **x**¹,... **x**ⁿ can also be linearly separated

Effect of Normalization



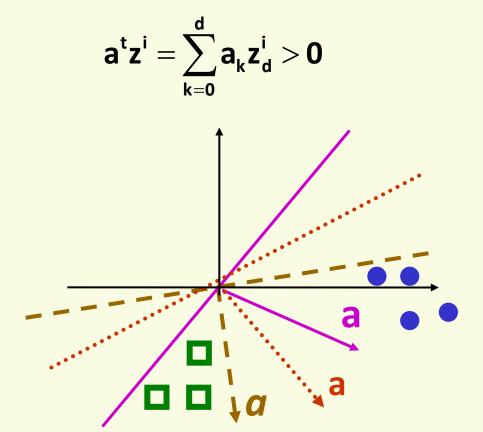
seek a hyperplane that separates samples from different categories



seek hyperplane that puts normalized samples on the same (positive) side

Solution Region

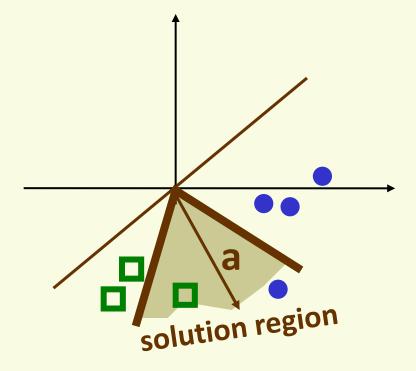
• Find weight vector **a** s.t. for all samples **z**¹,...,**z**ⁿ



• If there is one such **a**, then there are infinitely many **a**

Solution Region

• Solution region: the set of all possible solutions for **a**



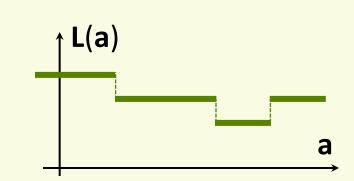
Design a Loss Function

- Find weight vector **a** s.t. $\forall z^1,..., z^n$, $a^t z^i > 0$
- Design a loss function L(a), which is minimum when a is a solution vector
- Let Z(a) be the set of examples misclassified by a
 Z(a) = { zⁱ | a^t zⁱ < 0 }

• Natural choice: number of misclassified examples

L(a) = |Z(a)|

- Unfortunately, cannot minimize with gradient descent
 - piecewise constant, gradient zero or does not exist

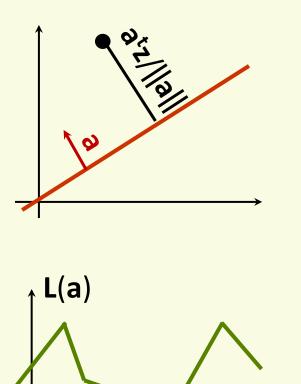


Perceptron Loss Function

Better choice: Perceptron loss function

$$L_p(a) = \sum_{z \in Z(a)} (-a^t z)$$

- If z is misclassified, a^tz < 0
- Thus L(a) ≥ 0
- L_p(a) is proportional to the sum of distances of misclassified examples to decision boundary
- L_p(a) is piecewise linear and suitable for gradient descent



Optimizing with Gradient Descent

$$\mathbf{L}_{\mathbf{p}}(\mathbf{a}) = \sum_{\mathbf{z} \in \mathbf{Z}(\mathbf{a})} \left(- \mathbf{a}^{\mathsf{t}} \mathbf{z} \right)$$

- Gradient of $L_p(a)$ is $\nabla L_p(a) = \sum_{z \in Z(a)} (-z)$
 - cannot solve $\nabla L_p(a) = 0$ analytically because of Z(a)
- Recall update rule for gradient descent

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k+1)} - \alpha \nabla \mathbf{L}(\mathbf{x}^{(k)})$$

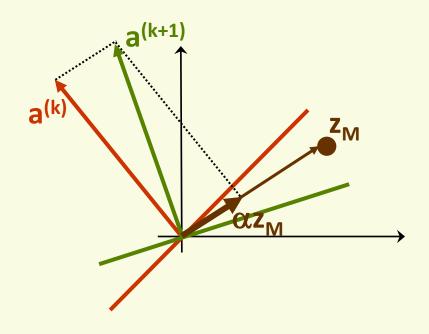
• Gradient decent update rule for $L_p(a)$ is:

$$\mathbf{a}^{(\mathbf{k}+1)} = \mathbf{a}^{(\mathbf{k})} + \mathbf{\alpha} \sum_{\mathbf{z} \in \mathbf{Z}(\mathbf{a})} \mathbf{z}$$

• called **batch rule** because it is based on all examples

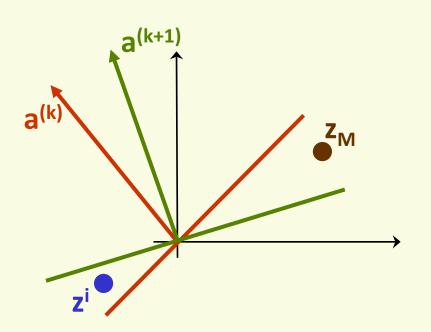
Perceptron Single Sample Rule

- Gradient decent single sample rule for $L_p(a)$ is $a^{(k+1)} = a^{(k)} + \alpha \cdot z_M$
 - **z_M** is one sample misclassified by **a**^(k)
 - must have a consistent way to visit samples
- Geometric Interpretation:
- $\mathbf{z}_{\mathbf{M}}$ misclassified by $\mathbf{a}^{(k)}$ $\left(\mathbf{a}^{(k)}\right)^{t} \mathbf{z}_{\mathbf{M}} \leq \mathbf{0}$
- z_M is on the wrong side of decision boundary
- adding α·z_M to a moves decision boundary in the right direction

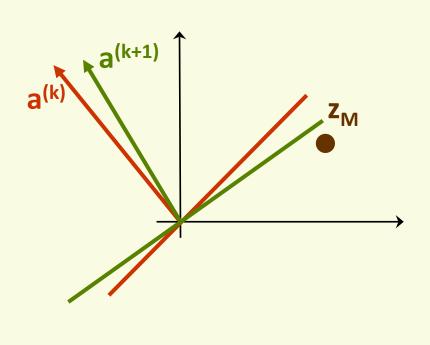


Perceptron Single Sample Rule

if α is too large, previously correctly classified sample **z**ⁱ is now misclassified



if $\pmb{\alpha}$ is too small, $\, \pmb{z}_{M}^{}$ is still misclassified



Convergence of Perceptron Rules

1. Classes are linearly separable

- with fixed learning rate, both single sample and batch rules converge to a correct solution **a**
- can be any **a** in the solution space
- 2. Classes are not linearly separable
 - with fixed learning rate, both single sample and batch do not converge
 - can ensure convergence with appropriate variable learning rate
 - $\alpha \rightarrow 0$ as $\mathbf{k} \rightarrow \infty$
 - example, inverse linear: $\alpha = c/k$, where c is any constant
 - also converges in the linearly separable case
 - no guarantee that we stop at a good point, but there are good reasons to choose inverse linear learning rate
- Practical Issue: both single sample and batch algorithms converge faster if features are roughly on the same scale
 - see kNN lecture on feature normalization

Batch vs. Single Sample Rules

Batch

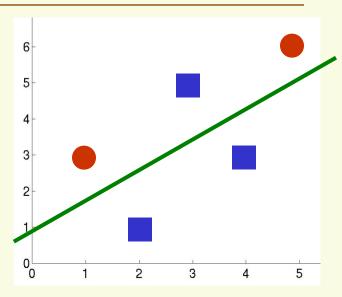
- True gradient descent, full gradient computed
- Smoother gradient because all samples are used
- Takes longer to converge

Single Sample

- Only partial gradient is computed
- Noisier gradient, therefore may concentrates more than necessary on any isolated training examples (those could be noise)
- Converges faster

- Suppose we have examples:
 - class 1: [2,1], [4,3], [3,5]
 - class 2: [1,3] , [5,6]
 - not linearly separable
- Still wish an approximate separation
- Good line choice is shown in green
- Let us run gradient descent
 - Add extra feature and "normalize"

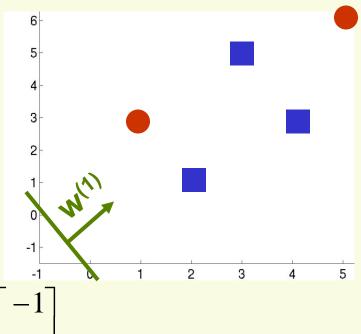
$$\mathbf{z}^{1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \qquad \mathbf{z}^{3} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \qquad \mathbf{z}^{4} = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \qquad \mathbf{z}^{5} = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$



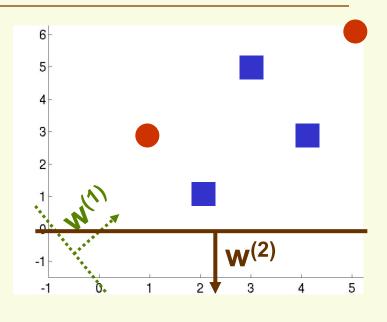
- single sample perceptron rule
- Initial weights **a**⁽¹⁾ = [1 1 1]
- This is line $\mathbf{x}_1 + \mathbf{x}_2 + 1 = 0$
- Use fixed learning rate $\alpha = 1$
- Rule is: $a^{(k+1)} = a^{(k)} + z_{M}$

$$\mathbf{z}^{1} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{1} \end{bmatrix} \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \mathbf{z}^{3} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \mathbf{z}^{4} = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \mathbf{z}^{5} = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$

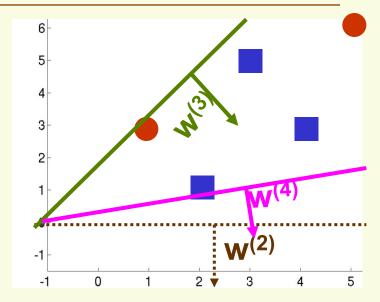
- $\mathbf{a}^{\mathsf{t}}\mathbf{z}^{\mathsf{1}} = [1 \ 1 \ 1] \cdot [1 \ 2 \ 1]^{t} > 0$
- $\mathbf{a}^{\mathsf{t}}\mathbf{z}^2 = [1\ 1\ 1] \cdot [1\ 4\ 3]^t > 0$
- $\mathbf{a}^{\mathsf{t}}\mathbf{z}^{\mathsf{3}} = [1\ 1\ 1] \cdot [1\ 3\ 5]^{\mathsf{t}} > 0$



- $a^{(1)} = [1 \ 1 \ 1]$
- rule is: **a**^(k+1) =**a**^(k) + **z**_M
- $\mathbf{z}^{1} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{1} \end{bmatrix} \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \mathbf{z}^{3} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \mathbf{z}^{4} = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \mathbf{z}^{5} = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$
- $\mathbf{a}^{t}\mathbf{z}^{4} = [1 \ 1 \ 1] \cdot [-1 \ -1 \ -3]^{t} = -5 < 0$
- Update: $\mathbf{a}^{(2)} = \mathbf{a}^{(1)} + \mathbf{z}_{M} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} -1 & -1 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -2 \end{bmatrix}$
- $\mathbf{a}^{t}\mathbf{z}^{5} = [0 \ 0 \ -2] \cdot [-1 \ -5 \ -6]^{t} = 12 > 0$
- $\mathbf{a}^{\mathsf{t}}\mathbf{z}^{\mathsf{1}} = [0 \ 0 \ -2] \cdot [1 \ 2 \ 1]^{t} < 0$
- Update: $\mathbf{a}^{(3)} = \mathbf{a}^{(2)} + \mathbf{z}_{M} = [0 \ 0 \ -2] + [1 \ 2 \ 1] = [1 \ 2 \ -1]$

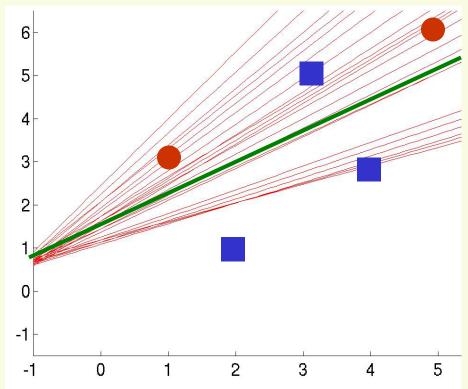


- $\mathbf{a}^{(3)} = [1 \ 2 \ -1]$
- rule is: a^(k+1) = a^(k) + z_M
 - $\mathbf{z}^{1} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{1} \end{bmatrix} \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \mathbf{z}^{3} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \mathbf{z}^{4} = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \mathbf{z}^{5} = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$



- $\mathbf{a}^{t}\mathbf{z}^{2} = [1 4 3] \cdot [1 2 1]^{t} = 6 > 0$
- $\mathbf{a}^{t}\mathbf{z}^{3} = [1 \ 3 \ 5] \cdot [1 \ 2 \ -1]^{t} = 2 > 0$
- $\mathbf{a}^{t}\mathbf{z}^{4} = [-1 \ -1 \ -3] \cdot [1 \ 2 \ -1]^{t} = 0$
- Update: $\mathbf{a}^{(4)} = \mathbf{a}^{(3)} + \mathbf{z}_{M} = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix} + \begin{bmatrix} -1 & -1 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -4 \end{bmatrix}$

- Can continue this forever
 - there is no solution vector a satisfying for all a^tz_i > 0 for all i
- Need to stop at a good point
- Solutions at iterations 900 through 915
- Some are good some are not
- How do we stop at a good solution?

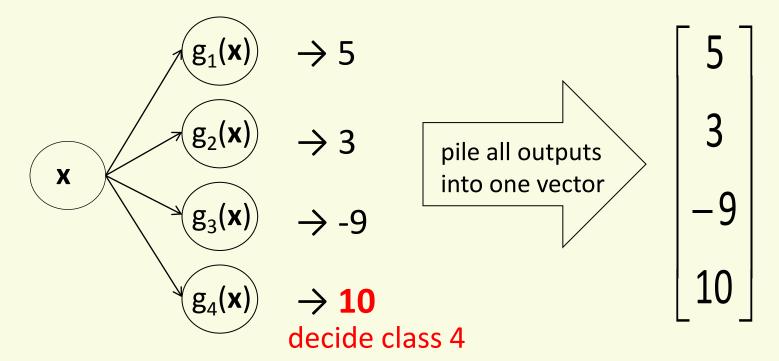


Linear Classifier: Multiple Classes

- Can extend to **m** class case
- Augment samples with 1 as the first feature
 - but no "normalization"
- Define **m** discriminant functions

$$g_i(x) = w_i^t x$$
 for $i = 1, 2, ... m$

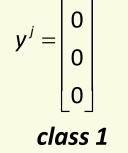
Assign x to i that gives maximum g_i(x)



Linear Classifier: Multiple Classes

- Could use one dimensional output $y_i \in \{1, 2, 3, ..., m\}$
- Convenient to use multi-dimensional outputs

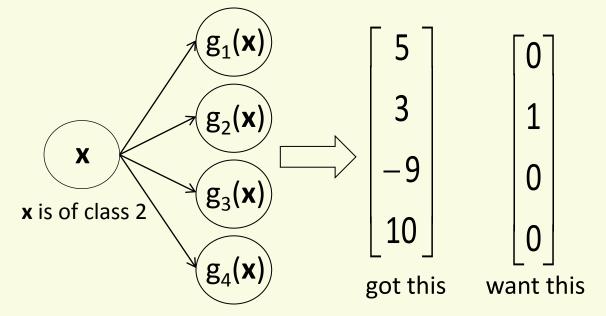
 $y^{j} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$



class 2

 $y^{j} = \begin{vmatrix} 0 \\ 1 \end{vmatrix}$

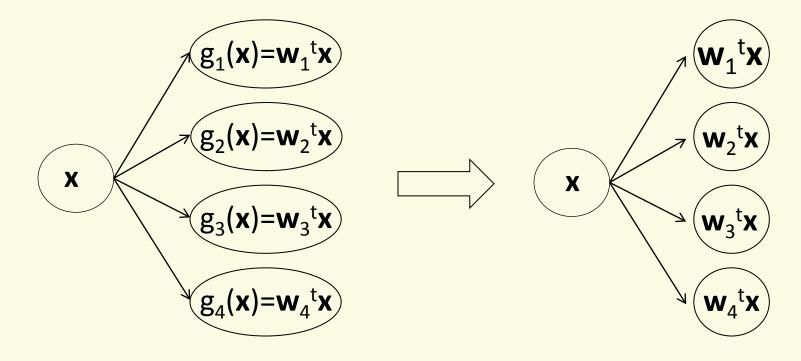
 For training, if sample is of class i, want output vector to be 0 everywhere except position i, where it should be 1



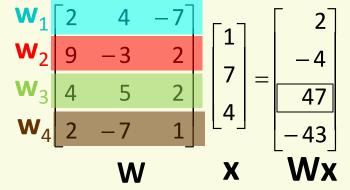
 $y^{j} =$

Linear Classifier: Multiple Classes

Assign x to i that gives maximum g_i(x) = w_i^tx



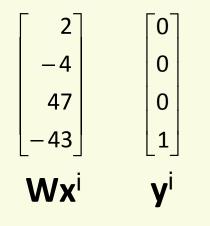
• In matrix notation



Assign x to class that corresponds to largest row of Wx

Linear Multiclass Classifier: Loss Function

- Assign sample xⁱ to class that corresponds to largest row of Wxⁱ
- Loss function?



- Can use quadratic loss per sample \mathbf{x}^{i} as $\frac{1}{2} \|\mathbf{W}\mathbf{x}^{i} \mathbf{y}^{i}\|^{2}$
 - for example above, loss $(2^2 + 4^2 + 47^2 + 44^2)/2$
 - total loss on all training samples $L(\mathbf{W}) = \frac{1}{2} \Sigma_i || \mathbf{W} \mathbf{x}^i \mathbf{y}^i ||^2$
 - gradient of the loss

$$\nabla \mathbf{L}(\mathbf{W}) = \sum_{i} (\mathbf{W} \mathbf{x}^{i} - \mathbf{y}^{i}) (\mathbf{x}^{i})^{t}$$

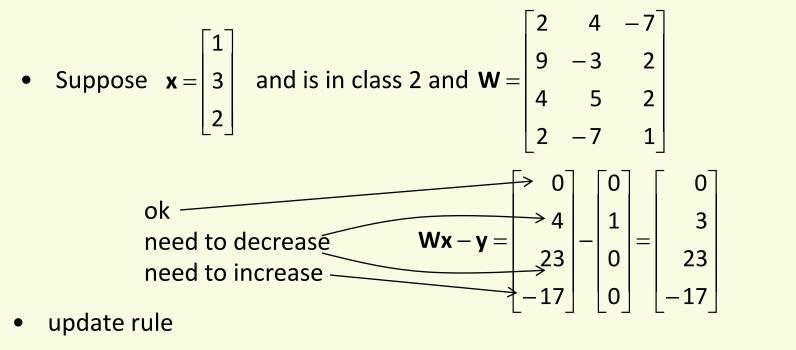
• batch gradient descent updates

$$\mathbf{W} = \mathbf{W} - \alpha \sum_{i} \left(\mathbf{W} \mathbf{x}^{i} - \mathbf{y}^{i} \right) \left(\mathbf{x}^{i} \right)^{t}$$

Linear Multiclass: Quadratic Loss

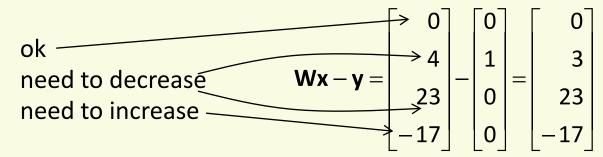
• Consider gradient descent update, single sample **x** with $\alpha = 1$

$$W = W - (Wx - y)x^{t}$$



$$\mathbf{W} = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 3 \\ 23 \\ -17 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix} - \begin{bmatrix} 0 \cdot (1 & 2 & 3) \\ 3 \cdot (1 & 2 & 3) \\ 23 \cdot (1 & 2 & 3) \\ -17 \cdot (1 & 2 & 3) \end{bmatrix}$$

Linear Multiclass: Quadratic Loss



• update rule

$$\mathbf{W} = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 3 \\ 23 \\ -17 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix} - \begin{bmatrix} 0 \cdot (1 & 2 & 3) \\ 3 \cdot (1 & 2 & 3) \\ 23 \cdot (1 & 2 & 3) \\ -17 \cdot (1 & 2 & 3) \end{bmatrix} = \begin{bmatrix} 2 & 4 & -7 \\ 6 & -12 & -4 \\ -19 & -64 & -44 \\ 19 & 44 & 35 \end{bmatrix}$$

• With new W

$$\mathbf{W}\mathbf{x} = \begin{bmatrix} 0\\ -38\\ -299\\ 221 \end{bmatrix}$$

Linear Multiclass: Perceptron Loss Function

- Assign sample xⁱ to class that corresponds to largest row of Wxⁱ
- Another loss function?

$$\begin{bmatrix}
2 \\
-4 \\
0 \\
47 \\
-43
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}$$

- Perceptron loss on sample \mathbf{x}^i : $\mathbf{L}_i(\mathbf{W}) = \max_{\mathbf{k}}[(\mathbf{W}\mathbf{x}^i)_k (\mathbf{W}\mathbf{x}^i)_c]$, where
 - (**Wx**ⁱ)_k is the entry in row **k** of vector **Wx**ⁱ
 - **c** is the correct class of sample **x**ⁱ
 - in words, find the largest entry in Wxⁱ, subtract from it the entry in the row corresponding to the true class of sample xⁱ
 - loss is zero if correct classification, positive otherwise
 - for the example above, loss is 47-(-43)= 90 since sample is of class 4

Linear Multiclass: Perceptron Loss Function

- $\mathbf{L}_{i}(\mathbf{W}) = \max_{\mathbf{k}} [(\mathbf{W}\mathbf{x}^{i})_{\mathbf{k}} (\mathbf{W}\mathbf{x}^{i})_{\mathbf{c}}]$
- Gradient, single sample rule
 - let c be the correct row, and r be row where Wxⁱ gives the largest output

• if
$$\mathbf{r} = \mathbf{c}$$
, $\nabla \mathbf{L}_{\mathbf{i}}(\mathbf{W}) = \mathbf{0}$

$$\mathbf{x}^{i} = \begin{bmatrix} 1\\3\\2 \end{bmatrix} \begin{bmatrix} 2\\-4\\47\\-43 \end{bmatrix} \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

• otherwise,
$$\nabla \mathbf{L}_{i}(\mathbf{W}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \mathbf{X}^{i} & \mathbf{V} \\ 0 & 0 & 0 & 0 \\ \mathbf{-X}^{i} & \mathbf{V} \end{bmatrix}$$
 row **r**
• for the example, $\nabla \mathbf{L}_{i}(\mathbf{W}) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 3 & 2 \\ -1 & -3 & -2 \end{bmatrix}$

Linear Multiclass: Perceptron Loss Function

• For the example,

$$\nabla \mathbf{L}_{\mathbf{i}}(\mathbf{W}) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 3 & 2 \\ -1 & -3 & -2 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
$$\mathbf{y}^{\mathbf{i}}$$
$$\mathbf{y}^{\mathbf{i}}$$

With
$$\alpha = 1$$
, new $\mathbf{W} = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 1 & 3 & 2 \\ -1 & -3 & -2 \end{bmatrix} = \begin{bmatrix} 9 \\ 9 \\ 3 \\ 3 \end{bmatrix}$

□

• With new weights:

$$\mathbf{W}\mathbf{x}^{\mathbf{i}} = \begin{bmatrix} \mathbf{0} \\ \mathbf{4} \\ \mathbf{9} \\ -\mathbf{3} \end{bmatrix}$$

• Compare to the old weights:

$$\mathbf{W}_{\mathsf{old}}\mathbf{x}^{\mathsf{i}} = \begin{bmatrix} 0\\ 4\\ 23\\ -17 \end{bmatrix}$$

3

-4

Three Approaches to Classification

- 1. Directly design discriminant function **f**(**x**,**w**) for classification
 - design differentiable loss function that makes intuitive sense
 - find **w** that minimize loss function
 - Choose class that maximizes discriminant function
- 2. Model conditional class probabilities P(class=k|x,w)
 - Choose loss function with probabilistic interpretation and minimize it
 - Loss function is usually (–log probability)
 - Parameters w are tuned so as to maximize probability of the training data
 - Choose class that maximizes discriminant function
- 3. Model probability of training data **x** under class-specific generative models p(**x**,**w**)
 - Use training data to fit parameters **w** for each class independently
 - i.e. fit Gaussians to samples from each class
 - Choose the class that makes **x** most probable

Linear Machine: Logistic Regression

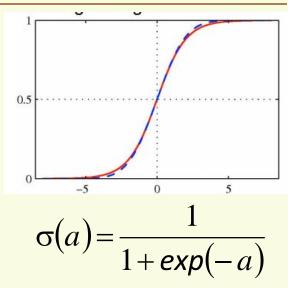
- Has probabilistic interpretation
- Model P(class 1|x,w) and P(class 2|x,w)
- Uses logistic sigmoid function
 - denote classes with 1 and 0 now
 - **y**ⁱ = 1 for class 1, **y**ⁱ = 0 for class 2
- $g(x,w) = w^T x$
- let $\mathbf{f}(\mathbf{x},\mathbf{w}) = \mathcal{O}(\mathbf{g}(\mathbf{x},\mathbf{w})) = \mathcal{O}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$
 - assume **x** is augmented with 1
 - bigger 0.5 if **w^Tx** is positive, decide class 1
 - less 0.5 if **w^Tx** is negative, decide class 2
- Probabilistic interpretation
 - $P(class 1|x,w) = G(w^Tx)$
 - **P**(class 2 | **x**, **w**) = 1 P(class 1 | **x**, **w**)
- Despite the name, logistic regression is used for classification, not regression
 - Side note: sigmoid is a continuous function, good for gradient descent



Linear Machine: Logistic Regression

- $f(x,w) = G(w^T x)$
- Probabilistic interpretation
 - $P(class 1|x,w) = G(w^Tx)$
 - **P**(class 2 | **x**, **w**) = 1 **P**(class 1 | **x**, **w**)
- Per sample loss function: -log(P(yⁱ | xⁱ))
 - if sample xⁱ of class 1, loss is -log(σ(w^Txⁱ))
 - if sample xⁱ of class 2, loss is -log(1-σ(w^Txⁱ))
- Convex, can be optimized exactly with gradient descent
- Gradient descent update rule

$$\boldsymbol{w} = \boldsymbol{w} + \alpha \sum_{j} \left(\boldsymbol{y}^{j} - \boldsymbol{\sigma} \left(\boldsymbol{w}^{t} \boldsymbol{x}^{j} \right) \right) \boldsymbol{x}^{j}$$

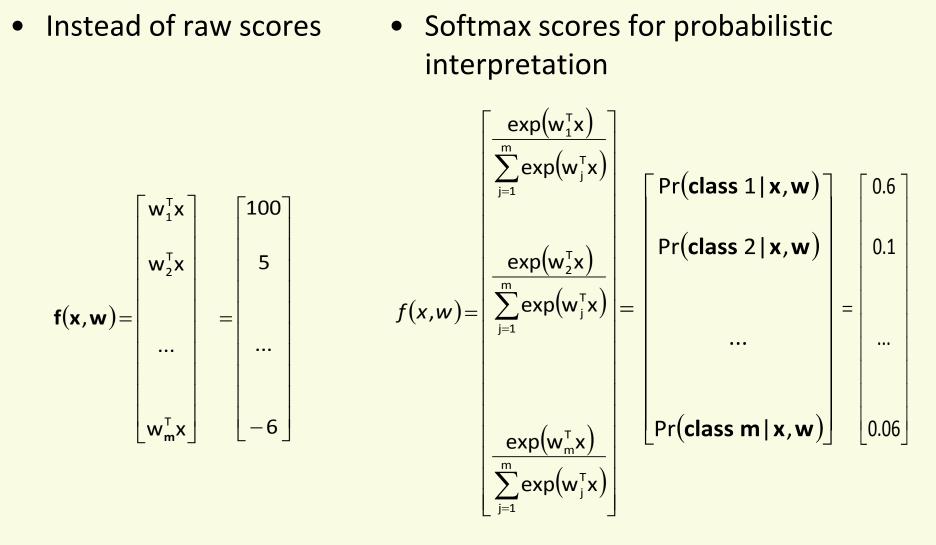


Linear Machine: Softmax Regression

In case of **m** classes, define **m** functions

$$g_i(x) = w_i^t x$$
 for $i = 1, 2, ... m$

- Instead of raw scores
- Softmax scores for probabilistic



Linear Machine: Softmax Regression

• Also optimize under -log(Pr(yⁱ | xⁱ)) loss function

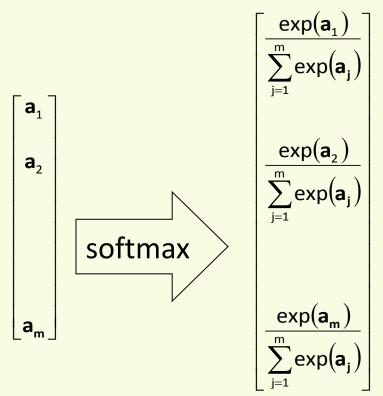
$$f(x,w) = \begin{bmatrix} \frac{\exp(w_1^{\mathsf{T}}x)}{\sum_{j=1}^{m} \exp(w_j^{\mathsf{T}}x)} \\ \frac{\exp(w_2^{\mathsf{T}}x)}{\sum_{j=1}^{m} \exp(w_j^{\mathsf{T}}x)} \\ \frac{\exp(w_1^{\mathsf{T}}x)}{\sum_{j=1}^{m} \exp(w_j^{\mathsf{T}}x)} \end{bmatrix} = \begin{bmatrix} \Pr(\operatorname{class} 1 | x, w) \\ \Pr(\operatorname{class} 2 | x, w) \\ \dots \\ \Pr(\operatorname{class} 2 | x, w) \\ \dots \\ \Pr(\operatorname{class} m | x, w) \end{bmatrix} \begin{pmatrix} 0.6 \\ 0.1 \\ \dots \\ 0.06 \end{bmatrix}$$

if sample of class 2, take -log of the number in row 2 for

the loss

Linear Machine: Softmax Regression

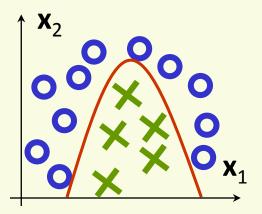
• Define softmax(**a**) function for vector **a** as



Update rule for weight matrix W

$$\mathbf{W} = \mathbf{W} + \alpha \sum_{j} \left(\mathbf{y}^{j} - \sigma \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{j} \right) \right) \left(\mathbf{x}^{j} \right)^{\mathsf{t}}$$

 Can use other discriminant functions, like quadratics g(x) = w₀+w₁x₁+w₂x₂+ w₁₂x₁x₂ +w₁₁x₁² +w₂₂x₂²



- Methodology is almost the same as in the linear case
 - $\mathbf{f}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \mathbf{w}_{12} \mathbf{x}_1 \mathbf{x}_2 + \mathbf{w}_{11} \mathbf{x}_1^2 + \mathbf{w}_{22} \mathbf{x}_2^2)$

•	z =	[1	\mathbf{X}_{1}	X ₂	$\mathbf{X}_1 \mathbf{X}_2$	x ₁ ²	x ₂ ²]
		г					٦

- **a** = $[\mathbf{w}_0 \ \mathbf{w}_1 \ \mathbf{w}_2 \ \mathbf{w}_{12} \ \mathbf{w}_{11} \ \mathbf{w}_{22}]$
- "normalization": multiply negative class samples by -1
- all the other procedures remain the same, i.e. gradient descent to minimize Perceptron loss function, any other loss function

• In general, to the liner function:

$$\mathbf{g}(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \sum_{i=1...d} \mathbf{w}_i \mathbf{x}_i$$

• can add quadratic terms:

$$\mathbf{g}(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \sum_{i=1...d} \mathbf{w}_i \mathbf{x}_i + \sum_{i=1...d} \sum_{j=1,...d} \mathbf{w}_{ij} \mathbf{x}_i \mathbf{x}_j$$

- This is still a linear function in its parameters w
- $\mathbf{g}(\mathbf{y},\mathbf{v}) = \mathbf{v}_0 + \mathbf{v}^t \mathbf{y}$

 $\mathbf{v}_{0} = \mathbf{w}_{0}$ $\mathbf{y} = [\mathbf{x}_{1} \ \mathbf{x}_{2} \dots \ \mathbf{x}_{d} \ \mathbf{x}_{1} \mathbf{x}_{1} \ \mathbf{x}_{1} \mathbf{x}_{2} \ \dots \ \mathbf{x}_{d} \mathbf{x}_{d}]$ $\mathbf{v} = [\mathbf{w}_{1} \ \mathbf{w}_{2} \dots \ \mathbf{w}_{d} \ \mathbf{w}_{11} \ \mathbf{w}_{12} \ \dots \ \mathbf{w}_{dd}]$

• Can use all the same training methods as before

• Generalized linear classifier

$$\mathbf{g}(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \sum_{i=1...m} \mathbf{w}_i \mathbf{h}_i(\mathbf{x})$$

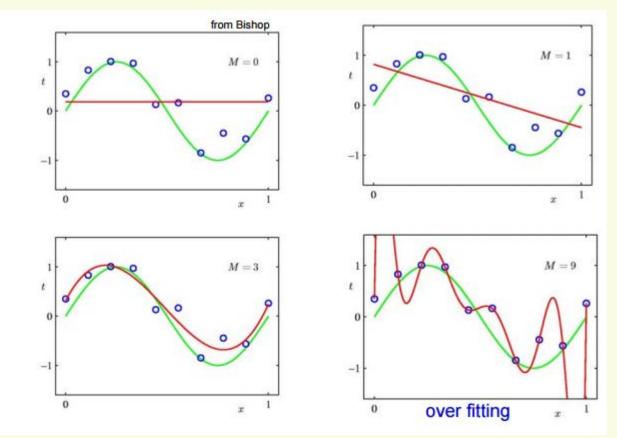
- h(x) are called basis function, can be arbitrary functions
 - in strictly linear case, h_i(x) = x_i
- Linear function in its parameters **w**

$$g(x,w) = w_0 + w^t h$$

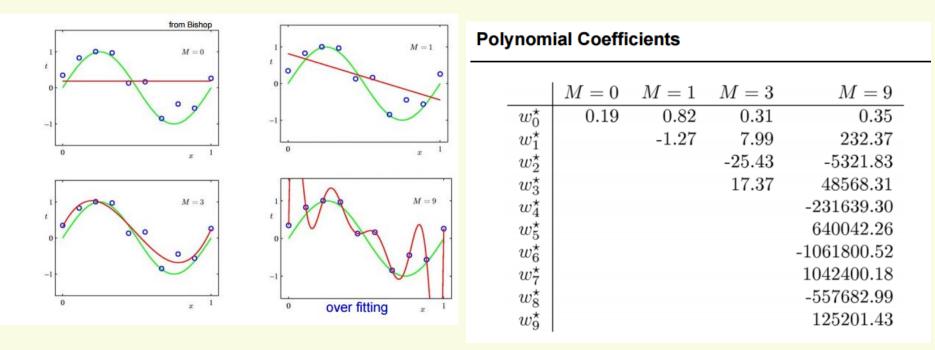
 $h = [h_1(x) h_2(x) \dots h_m(x)]$
 $[w_1 \dots w_m]$

• Can use all the same training methods as before

- Usually face severe overfitting
 - too many degrees of freedom
 - boundary can "curve" to fit to the noise in the data
- Regression example



- Helps to regularize by keeping w small
 - small **w** means the boundary is not as curvy
- Regression example



- Helps to *regularize* by keeping **w** small
 - small **w** means the boundary is not as curvy
- For example, add $\lambda ||w||^2$ to the loss function
- Recall quadratic loss function

$$L = \frac{1}{2} \sum_{i} || \mathbf{f}(\mathbf{x}^{i}, \mathbf{w}) - \mathbf{y}^{i} ||^{2}$$

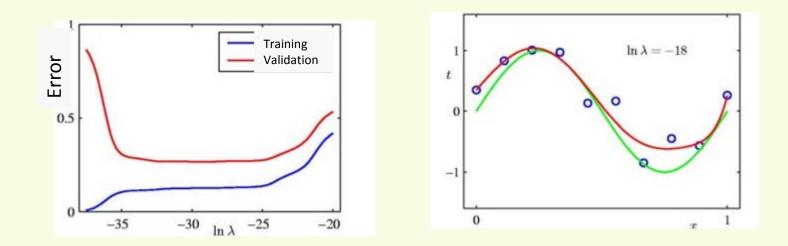
Regularized version

$$L = \frac{1}{2} \Sigma_i || f(x^i, w) - y^i ||^2 + \lambda ||w||^2$$

 Regression example, polynomial coefficients for degree M = 9

	$\ln\lambda=-\infty$	$\ln\lambda=-18$	$\ln\lambda=0$
w_0^\star	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^\star	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

- How to set λ ?
- With validation or cross-validation
- Consider polynomial of degree M=9 regression



Learning by Gradient Descent

- Can have classifiers even more general than generalized linear
- Suppose we suspect that the machine has to have functional form **f**(**x**,**w**), not necessarily linear
- Pick differentiable per-sample loss function **L**(**x**^{*i*}, **y**^{*i*}, **w**)
- Need to find w that minimizes $\mathbf{L} = \Sigma_i \mathbf{L}(\mathbf{x}^i, \mathbf{y}^i, \mathbf{w})$
- Use gradient-based minimization:
 - Batch rule: $\mathbf{w} = \mathbf{w} \alpha \nabla \mathbf{L}(\mathbf{w})$
 - Or single sample rule: W = W $\alpha \nabla L(\mathbf{x}^{i}, \mathbf{y}^{i}, \mathbf{w})$