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SVM
Some pictures from C. Burges



SVM

Said to start in 1979 with Vladimir
Vapnik’s paper

Major developments throughout 1990’s
Elegant theory

e Has good generalization properties

Have been applied to diverse problems
very successfully in the last 15-20 years



Linear Discriminant Functions

g(x) = wix + wy,

g(x)>0 =xeclass 1

g(x)<0 =xeclass?2

e which separating hyperplane should we choose?



Margin Intuition

e Training data is just a subset of of all possible data
e Suppose hyperplane is close to sample x,
e |f sampleis close to sample x;, it is likely to be on the wrong side

e Poor generalization



Margin Intuition

e Hyperplane as far as possible from any sample

e More likely that new samples close to old samples classified
correctly

e Good generalization



SVM

e |dea: maximize distance to the closest example
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e For the optimal hyperplane

e distance to the closest negative example = distance to the closest positive
example



SVM: Linearly Separable Case

e SVM: maximize the margin

A

e margin is twice the absolute value of distance b of the closest
example to the separating hyperplane

e Better generalization
e in practice and in theory



SVM: Linearly Separable Case

e Support vectors are samples closest to separating hyperplane
e they are the most difficult patterns to classify, intuitively
e optimal hyperplane is completely defined by support vectors
e do not know which samples are support vectors beforehand



SVM: Formula for the Margin

g(x) = wix + wy,

absolute distance between x and the
boundary g(x) =0
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distance is unchanged for hyperplane g,(x)=a g (x)

‘ocwtx+ocwo‘ ‘w X+W,

Jocw| |wi

Let x, be an example closest to the boundary. Set
‘wtxi +w0‘:1

Now the largest margin hyperplane is unique



SVM: Formula for the Margin

e For uniqueness, set ‘w‘xi +wo‘ =1 for any example x; closest to
the boundary

e now distance from closest sample x.to g(x) =0 is

e Thus the margin is

m=_2_
|wi




SVM: Optimal Hyperplane

. . 2
e Maximize margin m=—

| | wi
e subject to constraints
{wtxi +w,>1 if x, is positive example

w'x, +w,<-1 if x is negative example

o Lot z =1 if x is positive example
z =—1 if x, is negative example

e Convert our problem to

minimize J(w)=1HwH2
2

constrainedto  z'(w'x, +w,)>1 Vi

e J(w) is a convex function, thus it has a single global minimum



SVM: Optimal Hyperplane

e Use Kuhn-Tucker theorem to convert our problem to:

maximize L, (a)= Zoc ——ZZOL OLZ,Z XX,

Iljl

constrained to 0,20 Vi and ) o,z;=0

e a ={a,,.., 0,}are new variables, one for each sample

e Rewrite Ly(@) using n by n matrix H:

LD(oc)zzn:oci —% : |H
i=1

e where the value in the i th row and j th column of H is

H. —zlzjxlxj



SVM: Optimal Hyperplane

Use Kuhn-Tucker theorem to convert our problem to:

maximize L, ( Zoc ——ZZa,an,sz,xJ

|1]1

constrained to o, >0 Vi and Zocizi:

a ={a,,..,a .} are new variables, one for each sample
L,(a) can be optimized by quadratic programming

L (a) formulated in terms of a

e depends onw and w,



SVM: Optimal Hyperplane

o After finding the optimal a ={a,..., o}

e for every sample i, one of the following must hold

® o, =0(samplei is not a support vector)

e o, #0and z(w'x+w,-1) =0 (sample i is support vector)

* compute w=> o,zx,
i=1
e solve forwyusingany a; >0 and «; [Zi(wtxi +w0)—1]=0
1

I
W,=——W X,

Z

e Final discriminant function:

g(x):(éaizixi)tx+wo

e where Sis the set of support vectors

S={x|a, =0}



SVM: Optimal Hyperplane

maximize Zoc ——ZZalanlszli

|1]1

constrained to o,>20 Vi and Zocizi:

* Ly(a) depends on the number of samples, not on dimension of
samples

e samples appear only through the dot products xitxj

e Will become important when looking for a nonlinear discriminant
function



SVM: Non Separable Case

e Linear classifier still be appropriate when data is not linearly
separable, but almost linearly separable

outliers

e Can adapt SVM to almost linearly separable case



SVM: Non Separable Case

e Introduce non-negative slack variables &, ..., &,
e one for each sample

e Change constraints from zi(wtxi+w0)21 Vi to
zi(wtxi+w0)21—§i Vi

& measures deviation from ‘
the ideal position for sample x;

e £ >1: x isonthe wrong side of
the hyperplane

e 0<§ <1: x, is on the right side of

the hyperplane but within the
region of maximum margin

L




SVM: Non Separable Case

e \Wish to minimize

1 , n # of samples
j(w’all“"gn):EHWH +B;|(§i > O) not in ideal location

e where I(E,\i > O): {(:; :: 2 Zg

e constrained to zi(wtxi+w0)21—§i and & >0 Vi

[ measures relative weight of first and second terms
e if B is small, we allow a lot of samples not in ideal position
e if B islarge, we allow very few samples not in ideal position
e choosing 3 appropriately is important



SVM: Non Separable Case

B 1 , L # of samples
J(W":li""gn)_ ) HWH +B§|(§i > O) not in ideal location

large 3, few samples not in small B, many samples not in
ideal position ideal position



SVM: Non Separable Case

e Minimization problem is NP-hard due to discontinuity of 1(§;)

1 L # of samples
J(W:‘ilr---'ﬁn):EHWH 2+B§|(§i >O) not in ideal location

1 if& >0
0 if& <0

e constrained to zi(wtxi+wo)21—§i and ¢&; 20 Vi

e where (g > o):{



SVM: Non Separable Case

Instead we minimize

a measure of

( w,&,,...,E —HWH +BZ§ # of misclassified
examples

zi(wtxi + wo)z 1-& Vi

e constrained to
.20 Vi

Use Kuhn-Tucker theorem to converted to

maximize Za __Zza'

|111

i=1

0LZ;Z X X,

constrainedto 0sa;<p Vi and Zocizizo

e find w using wW=) azx,
i=1

e solve for wyusing any O <a; < B and oci[zi(wtxi +wo)—1]

0



Non Linear Mapping

e Cover’s theorem:

e “pattern-classification problem cast in a high dimensional space non-linearly is
more likely to be linearly separable than in a low-dimensional space”

e Not linearly separablein 1D e Lift to 2D space with h(x) = (x,x?)

HSa8—0 0 0ak
O O

-3 -2 O 1 2 3 4
/O




Non Linear Mapping

e Tosolve a non linear problem with a linear classifier
1. Project data x to high dimension using function @(x)
2. Find a linear discriminant function for transformed data @(x)
3. Final nonlinear discriminant function is g(x) = wt @(x) +w,

@(x) = (x,x*) \

]
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e In 2D, discriminant function is linear

ey ¥ ]x<1>
Bl |, @ |7 Wall ) | TWo

* In 1D, discriminant function is not linear  g(x)=w,x+w,x* +w,



Non Linear Mapping: Another Example




Non Linear SVM

e (Can use any linear classifier after lifting data into a higher
dimensional space

e However we will have to deal with the “curse of dimensionality”
1. poor generalization to test data
2. computationally expensive

e SVM avoids the “curse of dimensionality” by
e enforcing largest margin permits good generalization

e computation in the higher dimensional case is performed only
implicitly through the use of kernel functions



Non Linear SVM: Kernels

Recall SVM optimization

maximize Zoc ——ZZoc,oclzlszli

|111

Optimization depends on samples x; only through the dot
product x.!x

If we lift x; to high dimension using ¢@(x), need to compute high
dimensional product (p(x,-)t(p(xj)

maximize L,( Zoc ——ZZa,a z2.0(x, ) olx,)

i=1 j=1
K(x|lx )

Idea: find kernel function K(x;,x;) s.t. K(x;%;) = ¢@(x;) ¢ (x;)



Non Linear SVM: Kernels

maximize L, (OC):ZH:OH _%iiaiaizizjq)(xi)t(p(xj)
i—1

i1 jo1
K(Xi,Xj)

e Kernel trick
* only need to compute K(x;x;) instead of ¢(x;)'¢(x;)

e no need to lift data in high dimension explicitely,
computation is performed in the original dimension



Non Linear SVM: Kernels

K

Suppose we have 2 features and K(x,y) = (x'y)?

Which mapping ¢(x) does it correspond to?

v)=(e'yf = U" (2)]{ ()Dzz(x<1>y<1>+x<z>y<z>)z
=(X(1 D) 24 2(x Wy @ Yx@y@ ) 4 (x @y @ F
“[6f vaxex® (FJly e Vayeyeye (]

Thus

o(x)




Non Linear SVM: Kernels

How to choose kernel K(x;,x;)?

*  K(x;,x;) should correspond to product ¢(x;)'¢(x;) in a higher
dimensional space

e Mercer’s condition states which kernel function can be
expressed as dot product of two vectors

e Kernel’s not satisfying Mercer’s condition can be sometimes
used, but no geometrical interpretation

Common choices satisfying Mercer’s condition

e Polynomial kernel K(xi,xj)z(xitxj+1)p

e Gaussian radial Basis kernel (data is lifted in infinite dimensions)

K(xi,xj)zexp(— = Hxi —xszj

262




Non Linear SVM

e search for separating hyperplane in high dimension

wq)(x)+ w,=0

e  Choose @(x) so that the first (“0”th) dimension is the augmented
dimension with feature value fixed to 1

(p(x):[l x@ 5@ x(l)x(z)]‘

e Threshold w, gets folded into vector w

w, w]|1]-o

¢ (x)



Non Linear SVM

e Thus seeking hyperplane

wo(x)=0

e Or, equivalently, a hyperplane that goes through the
origin in high dimensions
e removes only one degree of freedom

e but we introduced many new degrees when lifted the data
in high dimension



Non Linear SVM Recepie

Start with x,,...,x,, in original feature space of dimension d

Choose kernel K(x;,x;)
. implicitly chooses function ¢(x;) that takes x; to a higher dimensional space
. gives dot product in the high dimensional space

Find largest margin linear classifier in the higher dimensional
space by using quadratic programming package to solve

maximize Lo ( Zo‘ ——ZZOL.OL.Z.Z,K(X X; )

|111

constrained to 0<o. <P Vi and Zocizizo
i=1




Non Linear SVM Recipe

e Weight vector win the high dimensional space

w=Y azolx)

X; €S

e where S is the set of support vectors
S={x, |0, #0]

e Linear discriminant function in the high dimensional space

g((p(X)) = Wt(P(x) = [Zaiziq)(xi )J (P(x)

X;€S

e Non linear discriminant function in the original space:

te)~{ Saotn)| o)~ Como't o) - Sorakto, 0

X;€S X; €S X; €S

e Decideclass 1if g(x) >0, otherwise decide class 2



Non Linear SVM

Nonlinear discriminant function

g(x) = Z O Z; K(xi,x)
X; €S
g(x) _ Z weight of support | |F1 be,f\'l\r/g'é?]”;\énd
vector X; support vector x.

most important
_training samples, 1
l.e. support vectors K(xi,x):exp —
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SVM Example: XOR Problem

e C(Class1:x,=1[1,-1], x,=[-1,1]
e C(Class2:x;=[1,1], x,=[-1,-1] u O

e  Use polynomial kernel of degree 2
o K(x;,x) = (x;*x;+ 1) O L

e Kernel corresponds to mapping

(x):[l V2x® 2x® J2xWx® (X(l))2 (x(z))z]t

4
e Need to maximize L[,(Ot)=Zoci —ZZoc,oc,z,zJ(xi‘xj +1)2
i=1

|111

constrained to 0<a, Vi and o, +a,—a,—a, =0



SVM Example: XOR Problem

Rewrite

o where

9 1
1 9
-1 -1

Take derivative with respect to oo and setitto 0

1

1
1
_1_

Solution to the above is ;= a, = a3 = a, = 0.25

9
1
-1

-1

1
9
-1
-1

-1
-1
9
1

-1
-1
1
9

Il
@)

-1 -1

-1
-1
9
1

-1
-1
1
9

satisfies the constraints Vi, 0<a, and o, +a, —o, —a, =0

all samples are support vectors




SVM Example: XOR Problem

(X)=[1 \/Ex(l) ﬁx(Z) ﬁx(l)x(z) (x(l))z (x(z))z]t

Weight vector w is:

w= iocizi(p(xi) = 0.25(p(x, )+ ¢(x, ) - 9(x;) - o(x, )
B o 0o 0o 2 0 o

* by plugglng in X, = [1)_1]1 X, = [_111]1 X3 = [1)1]) Xq= [_1)_1]

Nonlinear discriminant function is

g0 =wol)= > wia(x) = V2(/2x"x) = 21



SVM Example: XOR Problem

g(x)=—-2x"x®?

decision boundaries nonlinear decision boundary is linear



Degree 3 Polynomial Kernel

e Left: Inlinearly separable case, decision boundary is roughly
linear, indicating that dimensionality is controlled

e Right: nonseparable case is handled by a polynomial of degree 3



SVM as Unconstrained Minimization

SVM formulated as constrained optimization, minimize
(AP —HWH +BZi

zi(w X; +w0)21—§i Vi

e constrained to .
g =0 Vi

Let us name f(x,) =w'x, +w,
2f(x.)>1-¢ Vi

The constraint can be rewritten as _
=0 Vi

Which implies &, = maX(O,l = Zif(xa))

SVM objective can be rewritten as unconstrained optimization

w,E,,...,E )= —HWH +BZmax01 z.f(x,))

i=1
| J

weights loss function
regularization




SVM as Unconstrained Minimization

SVM objective can be rewritten as unconstrained optimization

Jw)= %HWH + BZmax(O, 1-2zf(x,))

weights

\ J

| ]
loss function

regularization

e z f(x)>1: x; ison the right side
of the hyperplane and outside

margin, no loss

e zf(x)=1: x, onthe margin, no
loss

e z f(x)<1: x; isinside margin, or
on the wrong side of the
hyperplane, contributes to loss

A

A




SVM: Hinge Loss

SVM uses Hinge loss per sample x;

L, (xi ) - max(O, 1- zif(xi ))

— Hinge loss

L(xi) — Zero-one loss
— Logistic loss

Hinge loss encourages classification with a margin of 1



SVM: Hinge Loss

e (Can optimize with gradient descent, convex function

Jw)= %HWH + BZmax(O, 1-2zf(x,))

e Gradient L(x;)
\

w—a(w-Bzx,) if zf(x)<1

e Gradient descent, single W = ,
W — OlW otherwise

sample



SVM Summary

e Advantages:
e nice theory
e good generalization properties
e objective function has no local minima
e can be used to find non linear discriminant functions
e often works well in practice, even if not a lot of training data

e Disadvantages:
e tends to be slower than other methods
e quadratic programming is computationally expensive
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