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SVM 

• Said to start in 1979 with Vladimir 
Vapnik’s paper 

• Major developments throughout 1990’s 
• Elegant theory  

• Has good generalization properties 

• Have been applied to diverse problems 
very successfully  in the last 15-20 years  



Linear Discriminant Functions 

g(x) = wtx + w0           

( )
( ) 20

10
classxxg
classxxg

∈⇒<
∈⇒>

• which separating hyperplane should we choose? 



Margin Intuition 
• Training data is just a subset of of all possible data 
• Suppose hyperplane is close to sample xi 

• If sample is close to sample xi, it is likely to be on the wrong side 

xi 

• Poor generalization 



Margin Intuition 
• Hyperplane as far as possible from any sample 

xi 

• More likely that new samples close to old samples classified 
correctly 

• Good generalization 



SVM 
• Idea: maximize distance to the closest example 

xi xi 

smaller distance larger distance 

• For the optimal hyperplane 
• distance to the closest negative example = distance to the closest positive 

example 



SVM: Linearly Separable Case 
• SVM:  maximize the margin 

• margin is twice the absolute value of distance b of  the closest 
example to the separating hyperplane  

• Better generalization 
• in practice and in theory 



SVM: Linearly Separable Case 

• Support vectors are samples closest to separating hyperplane  
• they are the most difficult patterns to classify, intuitively 
• optimal hyperplane is completely defined by support vectors 

• do not know which samples are support vectors beforehand 



SVM: Formula for the Margin 
• g(x) = wtx + w0 x 

• absolute distance between x and the 
boundary g(x) = 0 
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 be an example closest to the boundary.  Set 
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• Now the largest margin hyperplane is unique 



SVM: Formula for the Margin 

• now distance from closest sample xi to g(x) = 0  is 
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• Thus the margin is  
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SVM: Optimal Hyperplane 
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• Convert our problem to   

  minimize  

constrained to 
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• J(w) is a convex function, thus it has a single global minimum   



SVM: Optimal Hyperplane 
• Use Kuhn-Tucker theorem to convert our problem to: 

  maximize  
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• α  = {α1,…, αn} are new variables, one for each sample 
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• Rewrite LD(α) using  n by n matrix H: 

j
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• where the value in the i th row and j th column of H is  



SVM: Optimal Hyperplane 

• Use Kuhn-Tucker theorem to convert our problem to: 

  maximize  

 
constrained to 
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•   α  = {α1,…,α n} are new variables, one for each sample 
 • LD(α) can be optimized by quadratic programming 

• LD(α) formulated in terms of α 
• depends on w and w0  



SVM: Optimal Hyperplane 

• Final discriminant function: 
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• After finding the optimal  α  = {α1,…, αn}  

• solve for w0 using any αi > 0    and  ( )[ ] 010 =−+α wxwz i
t
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• where S is the set of support vectors 
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• for every sample i, one of the following must hold 

•  αi = 0 (sample i  is not a support vector) 
•  αi ≠ 0 and  zi(wtxi+w0 - 1) = 0 (sample i  is support vector) 
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SVM: Optimal Hyperplane 

  maximize  

 
constrained to 
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•  LD(α) depends on the number of samples, not on dimension of 
samples 

• samples  appear  only  through  the  dot  products j
t
i xx

• Will become important when looking for a nonlinear discriminant 
function 



SVM: Non Separable Case 

• Linear classifier still be appropriate when data is not linearly 
separable, but almost linearly separable 

outliers 

• Can adapt SVM to almost linearly separable case 



SVM: Non Separable Case 
• Introduce non-negative slack variables  ξ1,…, ξn   

• one for each sample 
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•  ξi  measures deviation from 
the ideal position for sample xi 
•  ξi >1:   xi  is on the wrong side of 

the  hyperplane 
• 0< ξi <1:  xi  is on the right side of 

the hyperplane but within the 
region of maximum margin 

ξi > 1 

0< ξi <1 
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SVM: Non Separable Case 

• Wish to minimize 

• where ( )
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•  β  measures relative weight of first and second terms 
• if β is small, we allow a lot of samples not in ideal position 
• if β  is large, we allow very few samples not in ideal position 
• choosing β appropriately is important 
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not in ideal location 



SVM: Non Separable Case 

large β, few samples not  in 
ideal position 
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small β, many samples not  in 
ideal position 

# of samples 
not in ideal location 



SVM: Non Separable Case 

• where ( )
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• Minimization problem is NP-hard due to discontinuity of  I(ξi) 
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SVM: Non Separable Case 
• Instead we minimize 
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examples 

• Use Kuhn-Tucker theorem to converted to 

  maximize  

 
constrained to 
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Non Linear Mapping 
• Cover’s theorem:   

• “pattern-classification problem cast in a high dimensional space non-linearly is 
more likely to be linearly separable than in a low-dimensional space”  

• Not linearly separable in 1D 

0 1 2 3 4 -2 -3 

• Lift to 2D space with h(x) = (x,x2 ) 



Non Linear Mapping 

• To solve a non linear problem with a linear classifier 
1. Project data x to high dimension using function ϕ(x) 
2. Find a linear discriminant function for transformed data ϕ(x) 
3. Final nonlinear discriminant function is g(x) = wt ϕ(x) +w0 
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 ϕ(x) = (x,x2 ) 

• In 2D, discriminant function is linear 
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• In 1D, discriminant function is not linear ( ) 0
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Non Linear Mapping: Another Example 



Non Linear SVM 

• Can use any linear classifier after lifting data into a higher 
dimensional space 

• However we will have to deal with the “curse of dimensionality” 
1. poor generalization to test data  
2. computationally expensive 

 
• SVM avoids the “curse of dimensionality” by 

• enforcing largest margin permits good generalization 
• computation in the higher dimensional case is performed only 

implicitly through the use of kernel functions 



Non Linear SVM: Kernels 

• Recall SVM optimization 
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• Optimization depends on samples xi only through the dot 
product  xi

txj  

• If we lift xi  to high dimension using φ(x), need to compute high 
dimensional product φ(xi)tφ(xj) 
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• Idea: find kernel function K(xi,xj) s.t.  K(xi,xj) = φ(xi)tφ(xj) 

K(xi,xj) 



Non Linear SVM: Kernels 

• Kernel trick 
• only need to compute K(xi,xj) instead of φ(xi)tφ(xj) 
• no need to lift data in high dimension explicitely, 

computation is performed in the original dimension 
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Non Linear SVM: Kernels 

• Suppose we have 2 features and K(x,y) = (xty)2 

• Which mapping φ(x) does it correspond to? 
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Non Linear SVM: Kernels 

• How to choose kernel K(xi,xj)? 
• K(xi,xj) should  correspond to  product φ(xi)tφ(xj)  in a higher 

dimensional space 
• Mercer’s condition states which kernel function can be 

expressed as  dot product of two vectors 
• Kernel’s not satisfying Mercer’s condition can be sometimes 

used, but no geometrical interpretation 

• Common choices satisfying Mercer’s condition 
• Polynomial kernel ( ) ( )p

j
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• Gaussian radial Basis kernel (data is lifted in infinite dimensions) 
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Non Linear SVM 

• Choose ϕ(x) so that the first (“0”th) dimension is the augmented 
dimension with feature value fixed to 1 

( ) ( ) ( ) ( ) ( )[ ]txxxxx 21211=ϕ

• search for separating hyperplane in high dimension 

( ) 00 =+ϕ wxw

• Threshold w0 gets folded into  vector w 
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Non Linear SVM 

• Thus seeking hyperplane  

( ) 0=ϕ xw

• Or, equivalently, a hyperplane that goes through the 
origin in high dimensions 

• removes only one degree of freedom 
• but we  introduced many new degrees when lifted the data 

in high dimension 



Non Linear SVM Recepie 

• Choose kernel K(xi,xj)  
• implicitly chooses function φ(xi)  that takes xi  to a higher dimensional space 
• gives dot product in the high dimensional space  

• Start with x1,…,xn in original feature space of dimension d 

• Find  largest margin linear classifier in the higher dimensional 
space by using quadratic programming package to solve 
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Non Linear SVM Recipe 

• Linear discriminant function in the high dimensional space 
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• where S is the set of support vectors 
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• Non linear discriminant function in the original space: 
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• Decide class 1 if g(x ) > 0, otherwise decide class 2  
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Non Linear SVM 
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• Nonlinear discriminant function 

( ) ∑=xg
most important 

training samples, 
i.e. support vectors 

weight of support  
vector  xi 

1 similarity  
between x and 

support vector xi 
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SVM Example: XOR Problem 

• Class 2: x3 = [1,1], x4 = [-1,-1]  

• Class 1: x1 = [1,-1], x2 = [-1,1]  

• Use polynomial kernel of degree 2 
• K(xi,xj) = (xi 

t
 xj + 1)2 

• Kernel corresponds to mapping 
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SVM Example: XOR Problem 

• Rewrite ( ) αα−α=α ∑
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• Solution to the above is α1= α2 = α3 = α4 = 0.25 

• all samples are support vectors 
• satisfies the constraints 00, 4321 =α−α−α+αα≤∀ andi i



SVM Example: XOR Problem 

• Weight vector w  is: 
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• Nonlinear discriminant function is 
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• by plugging in  x1 = [1,-1], x2 = [-1,1], x3 = [1,1], x4 = [-1,-1]  



SVM Example: XOR Problem 
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Degree 3 Polynomial Kernel 

• Left: In linearly separable case, decision boundary is roughly 
linear, indicating that dimensionality is controlled 

• Right: nonseparable case is handled by a polynomial of degree 3 



SVM as Unconstrained Minimization 
• SVM formulated as constrained optimization, minimize 
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SVM as Unconstrained Minimization 

weights 
regularization 

loss function 

• SVM objective can be rewritten as unconstrained optimization 

( ) ( )( )∑
=

−β+=
n

i
ii xfzwwJ

1

2 1,0max
2
1

 
• zi f(xi) > 1 :  xi  is on the right side 

of the  hyperplane and outside 
margin, no loss 

• zi f(xi) = 1 :   xi  on the margin, no 
loss 

• zi f(xi) < 1 :  xi  is inside margin, or 
on the wrong side of the 
hyperplane, contributes to loss 



SVM: Hinge Loss 
• SVM uses Hinge loss per sample xi 
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• Hinge loss encourages classification with a margin of 1 
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SVM: Hinge Loss 
• Can optimize with gradient descent, convex function 
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SVM Summary 
• Advantages: 

• nice theory 
• good generalization properties 
• objective function has no local minima 
• can be used to find non linear discriminant functions 
• often works well in practice, even if not a lot of training data 

 
• Disadvantages:  

• tends to be slower than other methods 
• quadratic programming is computationally expensive 
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