CS9840

Learning and Computer Vision Prof. Olga Veksler

> Lecture 9 Boosting

Some slides are due to Robin Dhamankar Vandi Verma & Sebastian Thrun

Today

- New Machine Learning Topics:
 - Ensemble Learning
 - Bagging
 - Boosting

Ensemble Learning: Bagging and Boosting

- So far talked about design of a single classifier **f**(**x**) that generalizes well
- From statistics, know that it is good to average your predictions, reduces variance
- Bagging is based on ensemble learning ideas
 - averaging predictors together
- Boosting was inspired by bagging

Bagging

- How generate different classifiers if have one "basic" classifier **f**(**x**)?
 - train **f**(**x**) on different collections of training data
- Generate a random sample from training set by selecting *I* elements (out of *N* elements available) with replacement
- If I = N, the new sampled dataset has, on average, 63.2% of training examples
 - each example has probability of $1-(1-1/N)^N$ of being selected at least once
 - For $N \rightarrow \infty$, this converges to (1-1/e) or 0.632 [Bauer and Kohavi, 1999]
- Repeat sampling procedure, getting a sequence of k independent training collections
- Train classifiers f₁(x), f₂(x), ..., f_k(x) for each of these training sets, using the same classification algorithm f(x)
- The *bagged classifier* $\mathbf{f}_{FINAL}(\mathbf{x})$ combines individual predictions

 $\mathbf{f}_{FINAL}(\mathbf{x}) = sign[1/k \Sigma \mathbf{f}_{i}(\mathbf{x})]$

Boosting: Motivation

- Hard to design accurate classifier which generalizes well
- Easy to find many rule of thumb or weak classifiers
 - a classifier is weak if it is slightly better than random guessing
 - example: if an email has word "money" classify it as spam, otherwise classify it as not spam
 - likely to be better than random guessing
- How combine weak classifiers to produce an accurate classifier?
 - Question people have been working on since 1980's
 - Ada-Boost (1996) was the first practical boosting algorithm
- Boosting
 - Assign different weights to training samples in a "smart" way so that different classifiers pay more attention to different samples
 - Weighted majority voting, the weight of individual classifier is proportional to its accuracy
 - Ada-boost was influenced by bagging, and it is superior to bagging

Ada Boost

- Assume 2-class problem, with labels +1 and -1
 - **y**ⁱ in {-1,1}
- Ada boost produces a discriminant function:

$$\mathbf{g}(\mathbf{x}) = \sum_{\mathbf{t}=1}^{\mathbf{h}} \alpha_{\mathbf{t}} \mathbf{h}_{\mathbf{t}}(\mathbf{x}) = \alpha_{1} \mathbf{h}_{1}(\mathbf{x}) + \alpha_{2} \mathbf{h}_{2}(\mathbf{x}) + \dots \alpha_{T} \mathbf{h}_{T}(\mathbf{x})$$

- Where **h**_t(**x**) is a weak classifier, for example:
 - $\mathbf{h}_{\mathbf{t}}(\mathbf{x}) = \begin{cases} -1 & \text{if email has word "money"} \\ 1 & \text{if email does not have word "money"} \end{cases}$
- The final classifier is the sign of the discriminant function
 f_{final}(x) = sign[g(x)]

Idea Behind Ada Boost

- Algorithm is iterative
- Maintains distribution of weights over the training examples
- Initially weights are equal
- Main Idea: at successive iterations, the weight of misclassified examples is increased
- This forces the algorithm to concentrate on examples that have not been classified correctly so far

Idea Behind Ada Boost

- Examples of high weight are shown more often at later rounds
- Face/nonface classification problem:

best weak classifier:

change weights:

Round 1

Idea Behind Ada Boost

Round 3

- out of all available weak classifiers, we choose the one that works best on the data we have at round 3
- we assume there is always a weak classifier better than random (better than 50% error)

- image is half of the data given to the classifier
- chosen weak classifier has to classify this image correctly

More Comments on Ada Boost

- Ada boost is simple to implement, provided you have an implementation of a "weak learner"
- Will work as long as the "basic" classifier h_t(x) is at least slightly better than random
 - will work if the error rate of $h_t(x)$ is less than 0.5
 - 0.5 is the error rate of a random guessing for 2-class problem
- Can be applied to boost any classifier, not necessarily weak
 - but there may be no benefits in boosting a "strong" classifier

Ada Boost for 2 Classes

Initialization step: for each example x, set $D(x) = \frac{1}{N}$, where N is the number of examples Iteration step (for t = 1...T):

- 1. Find best weak classifier $h_t(x)$ using weights D(x)
- 2. Compute the error rate $\boldsymbol{\varepsilon}_{t}$ as $\boldsymbol{\varepsilon}_{t} = \sum_{i=1}^{N} \mathbf{D}(\mathbf{x}^{i}) \cdot \mathbf{I}[\mathbf{y}^{i} \neq \mathbf{h}_{t}(\mathbf{x}^{i})]$

$$\begin{cases} 1 & \text{if } \mathbf{y}^{i} \neq \mathbf{h}_{t}(\mathbf{x}^{i}) \\ 0 & \text{otherwise} \end{cases}$$

> _

3. compute weight α_t of classifier h_t

$$\alpha_{t} = \log ((1 - \varepsilon_{t}) / \varepsilon_{t})$$

- 4. For each \mathbf{x}^i , $\mathbf{D}(\mathbf{x}^i) = \mathbf{D}(\mathbf{x}^i) \cdot \exp(\alpha_t \cdot \mathbf{I}[\mathbf{y}^i \neq \mathbf{h}_t(\mathbf{x}^i)])$
- 5. Normalize **D**(**x**ⁱ) so that

$$\sum_{i=1}^{N} D(x^{i}) = 1$$

$$\mathbf{f}_{final}(\mathbf{x}) = sign \left[\sum \alpha_t \mathbf{h}_t(\mathbf{x})\right]$$

- 1. Find best weak classifier $h_t(x)$ using weights D(x)
 - some classifiers accept weighted samples, not all
 - if classifier does not take weighted samples, sample from the training samples according to the distribution **D**(**x**)

1/16 1/4 1/16 1/16 1/4 1/16 1/4

• Draw **k** samples, each **x** with probability equal to **D**(**x**):

re-sampled examples

- 1. Find best weak classifier **h**_t(**x**) using weights **D**(**x**)
- Give to the classifier the re-sampled examples:

• To find the best weak classifier, go through **all** weak classifiers, and find the one that gives the smallest error on the re-sampled examples

weak
classifiers
$$h_1(x)$$
 $h_2(x)$ $h_3(x)$ $h_m(x)$ errors:0.460.360.160.43the best classifier $h_t(x)$
to choose at iteration t

2. Compute $\mathbf{\epsilon}_t$ the error rate as

$$\boldsymbol{\varepsilon}_{t} = \sum_{i=1}^{N} \mathbf{D}(\mathbf{x}^{i}) \cdot \mathbf{I}[\mathbf{y}^{i} \neq \mathbf{h}_{t}(\mathbf{x}^{i})] = \begin{cases} 1 & \text{if } \mathbf{y}^{i} \neq \mathbf{h}_{t}(\mathbf{x}^{i}) \\ 0 & \text{otherwise} \end{cases}$$

- ε_t is the weight of all misclassified examples added
 - the error rate is computed over original examples, not the re-sampled examples
- If a weak classifier is better than random, then $\varepsilon_t < \frac{1}{2}$

3. compute weight α_t of classifier \mathbf{h}_t $\alpha_t = \log ((1 - \boldsymbol{\epsilon}_t) / \boldsymbol{\epsilon}_t)$

In example from previous slide:

$$\epsilon_t = \frac{5}{16} \implies \alpha_t = \log \frac{1 - \frac{5}{16}}{\frac{5}{16}} = \log \frac{11}{5} \approx 0.8$$

- Recall that $\mathbf{\varepsilon}_{t} < \frac{1}{2}$
- Thus $(1 \boldsymbol{\epsilon}_t) / \boldsymbol{\epsilon}_t > 1 \implies \boldsymbol{\alpha}_t > 0$
- The smaller is $\mathbf{\epsilon}_t$, the larger is $\mathbf{\alpha}_t$, and thus the more importance (weight) classifier $\mathbf{h}_t(x)$

final(**x**) = sign [$\sum \alpha_t \mathbf{h}_t (\mathbf{x})$]

4. For each \mathbf{x}^i , $\mathbf{D}(\mathbf{x}^i) = \mathbf{D}(\mathbf{x}^i) \cdot \exp(\alpha_t \cdot \mathbf{I}[\mathbf{y}^i \neq \mathbf{h}_t(\mathbf{x}^i)])$

from previous slide $\alpha_t = 0.8$

weight of misclassified examples is increased

5. Normalize $D(x^i)$ so that $\sum D(x^i) = 1$

from previous slide:

1/16 1/4 1/16 0.14 0.56 1/16 1/4

after normalization

AdaBoost Example

• Initialization: all examples have equal weights

from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire

AdaBoost Example: Round 1

AdaBoost Example: Round 2

AdaBoost Example: Round 3

AdaBoost Example

 $\mathbf{f}_{\text{final}}(\mathbf{x}) = \mathbf{sign}\left(0.42\,\mathbf{sign}(3 - \mathbf{x}_{1}) + 0.65\,\mathbf{sign}(7 - \mathbf{x}_{1}) + 0.92\,\mathbf{sign}(\mathbf{x}_{2} - 4)\right)$

• Decision boundary non-linear

AdaBoost Comments

• Can show that training error drops exponentially fast

$$\mathsf{Err}_{\mathsf{train}} \leq \mathsf{exp} \Big(- 2 \sum_{\mathsf{t}} \gamma_{\mathsf{t}}^2 \Big)$$

- Here $\gamma_t = \varepsilon_t 1/2$, where ε_t is classification error at round **t**
- Example: let errors for the first four rounds be, 0.3, 0.14, 0.06, 0.03, 0.01 respectively

$$\mathbf{Err}_{\mathsf{train}} \le \exp\left[-2\left(0.2^2 + 0.36^2 + 0.44^2 + 0.47^2 + 0.49^2\right)\right] \approx 0.19$$

AdaBoost Comments

- More interested in the generalization properties of f_{FINAL}(x), rather than training error
- AdaBoost shown excellent generalization properties in practice
 - the more rounds, the more complex is the final classifier, so overfitting is expected as the training proceeds, eventually
 - but in the beginning researchers observed no overfitting of the data
 - It turns out it does overfit data eventually, if you run it really long
- It can be shown that boosting increases the margins of training examples, as iterations proceed
 - larger margins help better generalization
 - margins continue to increase even when training error reaches zero
 - helps to explain empirically observed phenomena: test error continues to drop even after training error reaches zero

AdaBoost Example

zero training error

- zero training error
- larger margins helps better genarlization

Margin Distribution

Iteration number	5	100	1000
training error	0.0	0.0	0.0
test error	8.4	3.3	3.1
%margins≤0.5	7.7	0.0	0.0
Minimum margin	0.14	0.52	0.55

Exponential Loss vs. Squared Error Loss

- Can show Adaboost minimizes exponential loss
- Exponential loss encourages large margins

Practical Advantages of AdaBoost

- Can construct arbitrarily complex decision regions
- Fast
- Simple
- Has only one parameter to tune, **T**
- Flexible: can be combined with any classifier
- provably effective (assuming weak learner)
 - shift in mind set: goal now is merely to find hypotheses that are better than random guessing

Caveats

- AdaBoost can fail if
 - weak hypothesis too complex (overfitting)
 - weak hypothesis too weak ($\gamma_t \rightarrow 0$ too quickly),
 - underfitting
- empirically, AdaBoost seems especially susceptible to noise
 - noise is the data with wrong labels