CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler

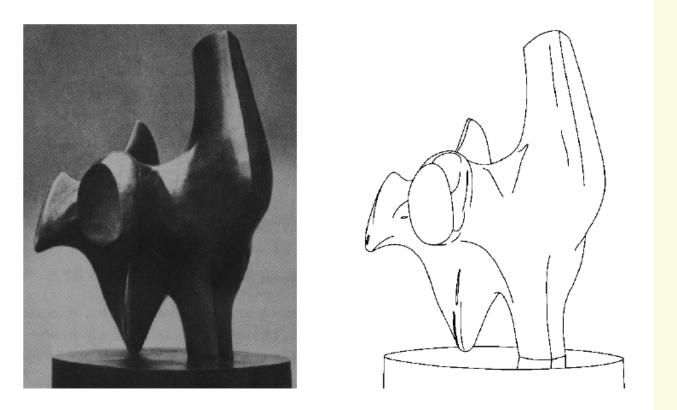
Lecture 13: Computer Vision Edge Detection

Slides are from Steve Seitz (UW), David Jacobs (UMD), D. Lowe (UBC), Hong Man

Outline

- Edge Detection
 - Edge types
 - Image Gradient
 - Canny Edge Detector

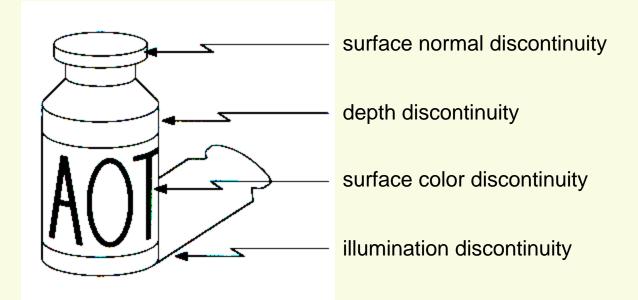
Edge detection



- Convert a 2D image into a set of "prominent" curves
 - What is a "prominent" curve or an edge? No exact definition. Intuitively, it's a place where abrupt changes occur
- Why?
 - Extracts salient features of the scene, useful for may applications
 - More compact representation than pixels

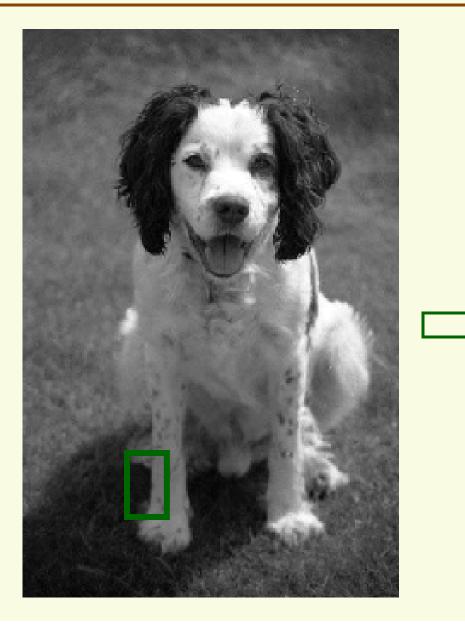
Edge detection

- Artists also do it
 - They do it much better, they have high level knowledge which edges are more perceptually important

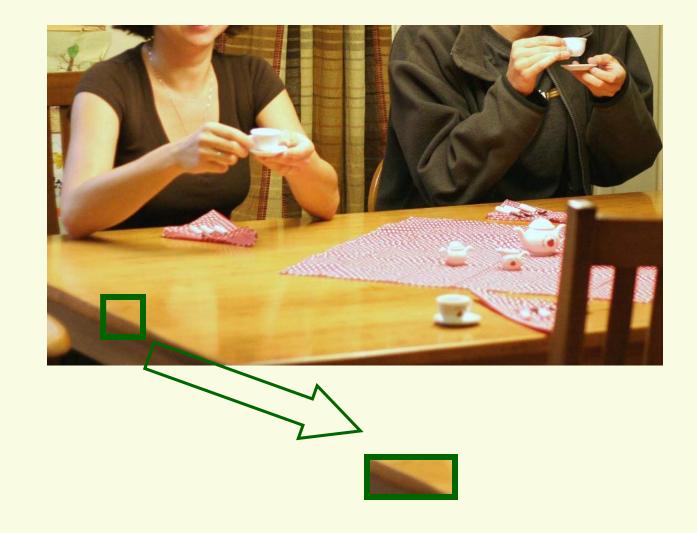


Edges are caused by a variety of factors

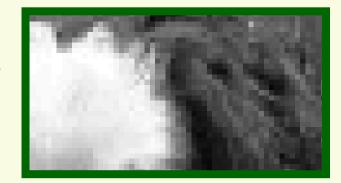
Depth Discontinuity



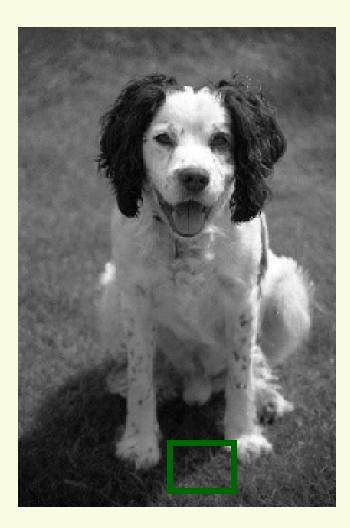
Surface Normal Discontinuity

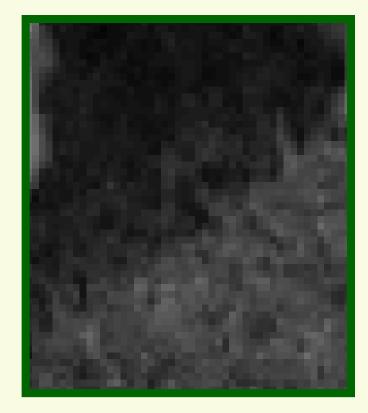


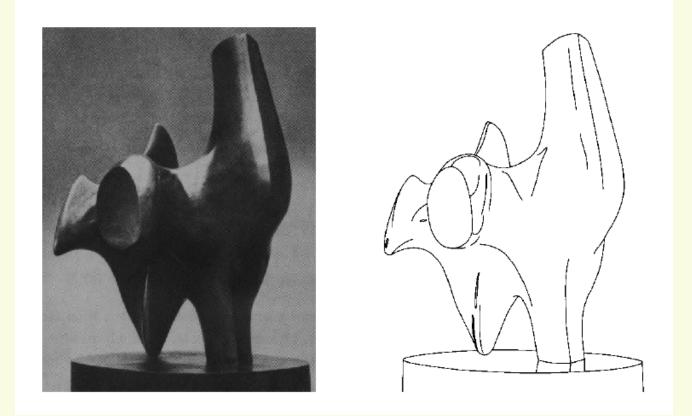
Surface Color Discontinuity



Illumination Discontinuity







How can you tell that a pixel is on an edge?

Image gradient

 $\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

 The gradient points in the direction of most rapid increase in intensity

 $\nabla f = \left[0, \frac{\partial f}{\partial u}\right]$

 $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

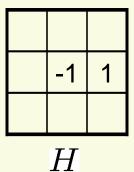
- gradient direction is perpendicular to edge
- The edge strength is given by the gradient magnitude

The discrete gradient

- How can we differentiate a *digital* image f(x,y)?
 - take discrete derivative (finite difference)

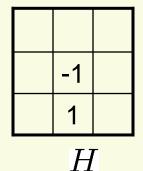
$$\frac{\partial f(x,y)}{\partial x} = f(x+1,y) - f(x,y)$$

How would you implement this as a convolution?



Similarly,

$$\frac{\partial f(x,y)}{\partial y} = f(x,y+1) - f(x,y)$$



The discrete gradient

 The discrete gradient simply detects changes between neighboring pixels

$$\frac{\partial f(x,y)}{\partial x} = f(x+1,y) - f(x,y)$$

change in vertical direction

 $\frac{\partial f(x,y)}{\partial y} = f(x,y+1) - f(x,y)$

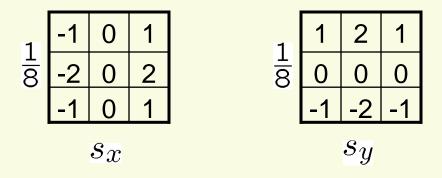
Basic edge detection algorithm:

image Gradient

$$f(x,y)$$
 Operator $f(x,y)$ Thresholding $Edge map$
 $g(x,y)$ $g(x,y)$ $E(x,y)$
 $E(x,y) = \begin{cases} 1 & |g(x,y)| > threshold \\ 0 & otherwise \end{cases}$

The Sobel operator

- Better approximations of the derivatives exist
 - The Sobel operators below are very commonly used



- The standard definition of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value, however

too many pixels are detected as edges due to noise

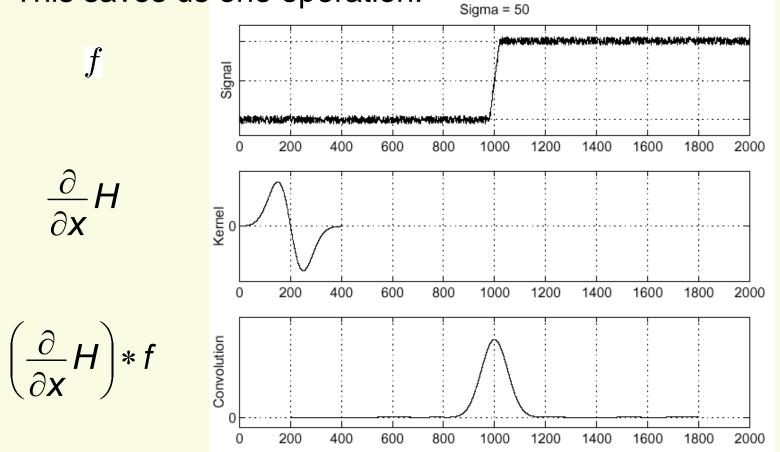
Effects of Noise

- How do we deal with noise?
- We already know, filter the noise out
 Using Gaussian kernel, for example
- First convolve image with a Gaussian filter
- Then convolve image with an edge detection filter (Sobel, for example)

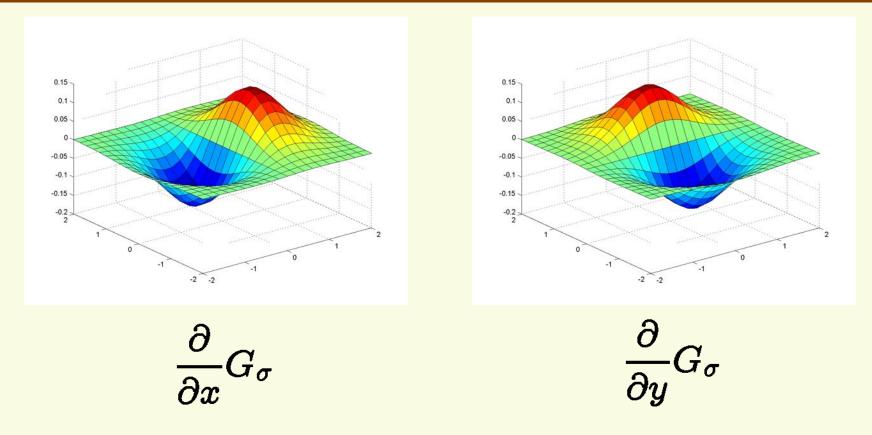
Derivative theorem of convolution

$$\frac{\partial}{\partial \mathbf{x}} (H * f) = \left(\frac{\partial}{\partial \mathbf{x}} H\right) * f$$

This saves us one operation:



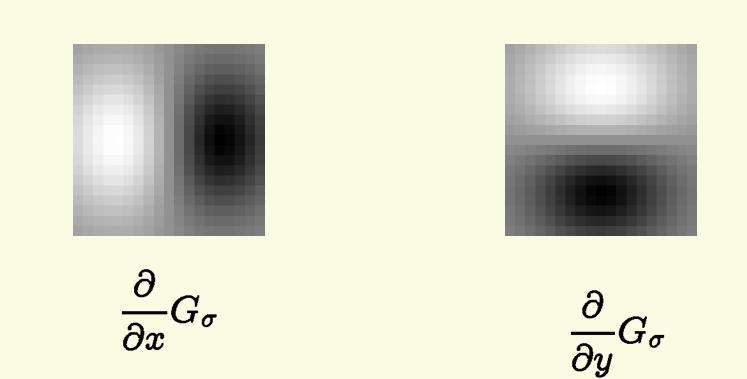
Derivative of Gaussian



Gradient magnitude is computed from these

Slide credit: Christopher Rasmussen

Derivative of Gaussian



Bright corresponds to positive values, dark to negative values

Derivative of Gaussian: Example

- Ignoring normalizing constant: $G_{\sigma}(x,y) = e^{-\frac{(x^2+y^2)}{2\sigma^2}}$
- Differentiate with respect to x and y $\begin{pmatrix} x^2+y^2 \end{pmatrix} \rightarrow \begin{pmatrix} x^2+y^2 \end{pmatrix} \begin{pmatrix} x^2-y^2 \end{pmatrix} \begin{pmatrix} x^2-y^2$

$$\frac{\partial}{\partial x}G_{\sigma}(x,y) = -\frac{x}{\sigma^2} \cdot e^{-\frac{x}{2\sigma^2}} \quad \frac{\partial}{\partial y}G_{\sigma}(x,y) = -\frac{y}{\sigma^2} \cdot e^{-\frac{2\sigma^2}{2\sigma^2}}$$

- Plug some values to get gradient detection masks H_xand H_y
 - for example, let σ = 5, and let (x,y) be in [-2x2][-2x2] window

(22)	(12)	(0.2)	(1 2)	(2.2)
(-2,2)	(-1,2)	(0,2)	(1,2)	(Z,Z)
(-2,1)	(-1,1)	(0,1)	(1,1)	(2,1)
(-2,0)	(-1,0)	(0,0)	(1,0)	(2,0)
(-2,-1)	(-1,-1)	(0,-1)	(1,-1)	(2,-1)
(-2,-2)	(-1,-2)	(0,-2)	(1,-2)	(2,-2)

χ								
0.04	0.08	0	-0.08	-0.04				
0.16	0.37	0	-0.37	-0.16				
0.27	0.61	0	-0.61	-0.27				
0.16	0.37	0	-0.37	-0.16				
0.04	0.08	0	-0.08	-0.04				

H _y								
-0.04	-0.04	-0.04	-0.04	-0.04				
-0.08	-0.08	-0.08	-0.08	-0.08				
0	0	0	0	0				
0.08	0.08	0.08	0.08	0.08				
0.04	0.04	0.04	0.04	0.04				

Derivative of Gaussian: Example

	0.04	0.08	0	-0.08	-0.04
	0.16	0.37	0	-0.37	-0.16
H _x	0.27	0.61	0	-0.61	-0.27
	0.16	0.37	0	-0.37	-0.16
	0.04	0.08	0	-0.08	-0.04

121	121	122	123	122	123
121	121	122	123	122	123
122	123	124	123	124	123
120	122	122	123	122	123
121	121	124	123	124	123
125	120	124	123	124	123

apply H_x to the red image pixel: -0.78 aply H_y to the red image pixel: 0.46

	-0.04	-0.04	-0.04	-0.04	-0.04
	-0.08	-0.08	-0.08	-0.08	-0.08
v	0	0	0	0	0
	0.08	0.08	0.08	0.08	0.08
	0.04	0.04	0.04	0.04	0.04

Н

121	121	122	123	20	20
121	121	122	123	22	22
122	123	124	123	24	21
120	122	122	123	22	22
121	121	124	123	24	23
125	120	124	123	24	24

apply H_x to the red image pixel: 217 aply H_y to the red image pixel: 0.69

Derivative of Gaussian: Example

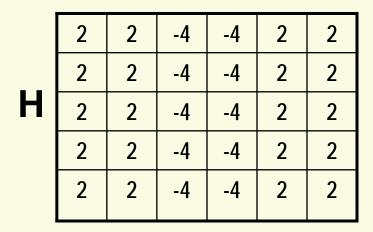
	0.04	4 0.08	3 0	-0.0	8 -0.0	4				-0.04	-0.04	-0.04	-0.04	-0.04
	0.16	6 0.3	7 0	-0.3	7 -0.1	6		_	_	-0.08	-0.08	-0.08	-0.08	-0.08
H _x	0.27	7 0.6	1 0	-0.6	1-0.2	7	H _v		0	0	0	0	0	
~	0.16	5 0.3	7 0	-0.3	7 -0.1	6			•	0.08	0.08	0.08	0.08	0.08
	0.04	4 0.08	3 0	-0.0	8-0.0	4				0.04	0.04	0.04	0.04	0.04
	121	121	122	123	20	20		121	121	122	120	121	125	
	121	121	122	123	22	22		121	121	123	122	121	120	
	122	123	124	123	24	21		122	122	124	122	124	124	
	120	122	122	123	22	22		123	123	123	123	123	123	
	121	121	124	123	24	23		20	22	24	22	24	24	
	125	120	124	123	24	24		20	22	21	22	23	24	

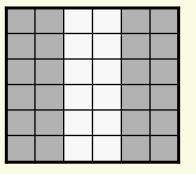
apply H_x to the red image pixel: 217 aply H_v to the red image pixel: 0.69

apply H_x to the red image pixel: -0.69 aply H_v to the red image pixel: -217

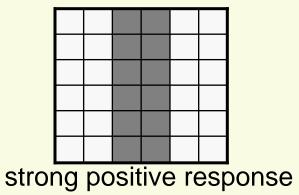
Notice a mask looks like a pattern it is trying to detect!

What does this Mask Detects?



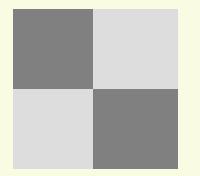


strong negative response

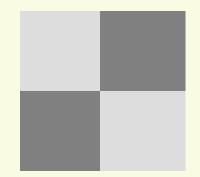


What Does this Mask Detects?

	2	2	-2	-2
	2	2	-2	-2
Н	-2	-2	2	2
	-2	-2	2	2



strong negative response in the middle



strong positive response in the middle

original image (Lena)

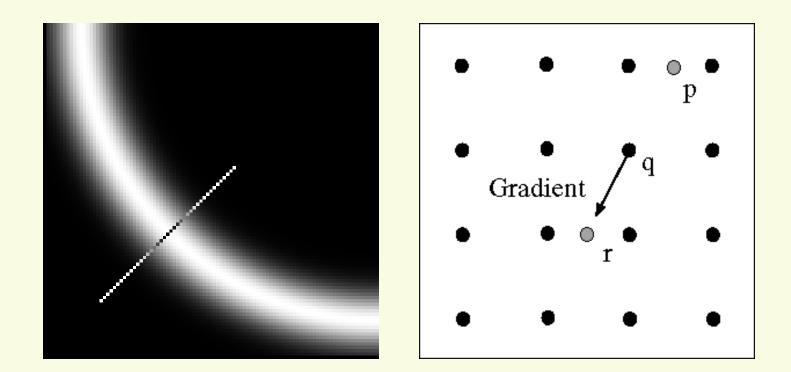
norm of the gradient

thresholding

thinning

(non-maximum suppression)

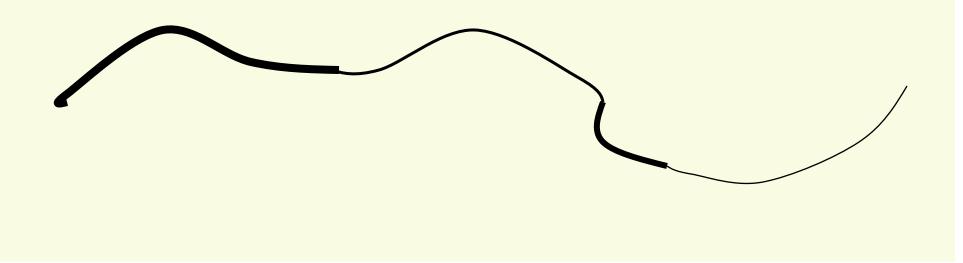
Non-maximum suppression



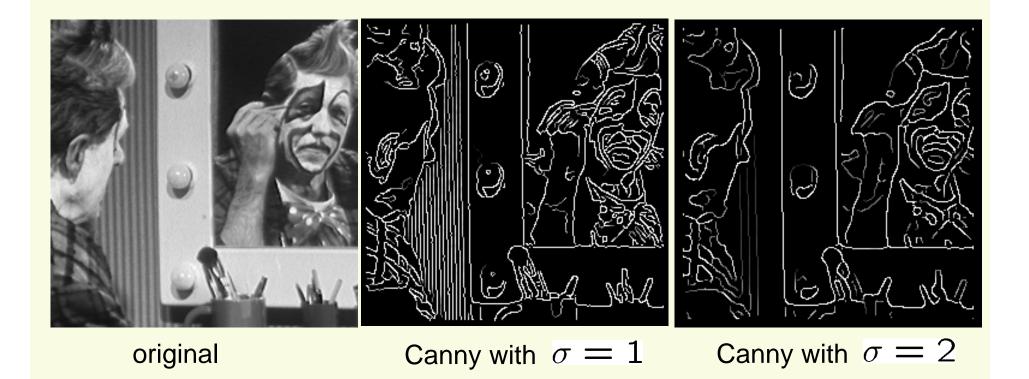
- Check if pixel is local maximum along gradient direction
 - requires checking interpolated pixels p and r

Hysteresis

- Strong Edges reinforce adjacent weak edges
- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.



Effect of σ (Gaussian kernel spread/size)

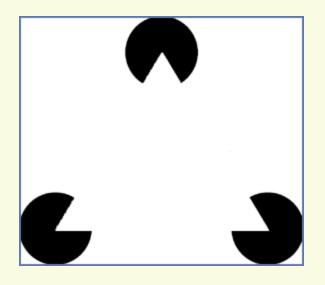


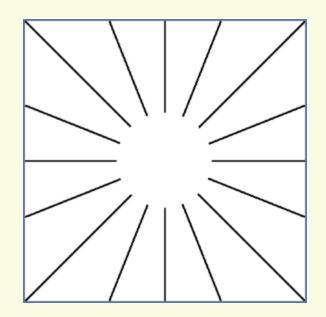
• The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Why is Canny so Dominant

- Still widely used after 20 years.
- 1. Theory is nice (but end result same).
- 2. Details good (magnitude of gradient).
- 3. Code was distributed.
- 4. Perhaps this is about all you can do with linear filtering.





- Triangle and circle floating in front of background
- Not possible to detect the "illusory" contours using local edge detection