
CS4442/9542b: Artificial Intelligence II
Prof. Olga Veksler

Lecture 14: Computer Vision
3D shape from Images
Stereo Reconstruction

Many Slides are from Steve Seitz (UW), S. Narasimhan

Outline

 Cues for 3D shape perception
 Stereo (3D shape from 2 stereo images)
 Camera calibration and rectification (easier)
 Stereo Correspondence (harder)

Babies and Animals Perceive Depth

The Visual Cliff, by William Vandivert, 1960

3D shape from images

How might we do this automatically?
 What cues in the image provide 3D information?

Single Image 3D Cues: Shading

Merle Norman Cosmetics, Los Angeles

Pixels covered by shadow are
perceived to be further away

Single Image 3D Cues: Linear Perspective

 The further away are parallel lines, the closer they
come together

Ames Room: Size-Distance Cues

Ames Room: Size-Distance Cues

Visual cues: Motion Parallax
 Objects that are closer appear to more than the objects that are

further away

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html

Single Image 3D Cues: Texture

 The further away the texture is, the finer it
becomes

Visual cues

 Shape From X
 X = shading, texture,motion, ...
 In this class we’ll focus on stereo

 Depth perception from two stereo images

Why do we have two eyes?

Cyclope vs. Odysseus

Stereo Images

scene pointscene point

optical centeroptical center
left cameraleft camera

left image planeleft image plane

optical centeroptical center
right cameraright camera

right image planeright image plane

Stereo Images

Basic Principle: Triangulation
 Gives reconstruction as intersection of two rays
 Requires

1. position of cameras with respect to each other
 performed with camera calibrationcamera calibration relatively easy and well understood

2. point correspondence
 hard problem, usually called stereo correspondence

Stereo correspondence
Determine Pixel Correspondence

 Pairs of points that correspond to same scene point

 Epipolar Constraint
 Reduces correspondence problem to 1D search along conjugate

epipolar lines
 Java demo: http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

epipolar plane epipolar lineepipolar lineepipolar lineepipolar line

Stereo Rectification

 It’s easy to
compute epipolar
lines given a few
corresponding
points

 Usually epipolar
lines are not
horizontal

 Can rectify
images to have
horizontal
epipolar lines

 Human eyes give
rectified images

Depth from disparity

f
x

Z
/baseline

2

 From similarity of red and
green striped triangles:

f
'x

Z
/baseline

2

 From similarity of brown and
blue brick triangles:

 Adding two expressions
above and simplifying:

Z
fbaseline'xxdisparity

f

x x’

baselineC C’

X

f

Z

Depth from disparity

input image (1 of 2)
[Szeliski & Kang ‘95]

depth map 3D rendering

Stereo matching algorithms

 Rectifying images and figuring out baseline between
camera and f (depth of focus) is relatively easy and well
understood

 Matching pixels on the corresponding epipolar lines lines
is a much harder problem
 Still heavily researched
 Numerous approaches

 A good survey and evaluation: http://www.middlebury.edu/stereo/

Difficulties in Stereo Correspondence

2) Low texture:

?

?

Perfect case:
never happens!

left image right image

1) Image noise:

Constraints

2) most nearby pixels should have close disparity

disparity
continuous

in most
places

except a few
places:

disparity
discontinuity

1) corresponding pixels should be close in color

p q

Your basic stereo algorithm

? ? ?

For each epipolar line
For each pixel in the left image

 compare with every pixel on same epipolar line in right image
 pick pixel with minimum match cost

 doesn’t really work due to noise and presence of low texture areas

Your basic stereo algorithm

Improvement: Match Windows

For each epipolar line
For each pixel in the left image

 compare a window with several windows on same epipolar line in
right image

 Pick window with minimum match cost
 Common window cost: sum of squared differences (SDD)

Sum of Squared (Pixel) Differences

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right image

 disparity can be only positive
 can limit disparity to be in a range 0,1,…, maxD
 to compute the disparity for the red pixel, take some

window around it and compute SSD between that
window and the same window shifted by disparity 0,
1,…, maxD in the right image

 Choose disparity corresponding to the smallest SSD

Sum of Squared (Pixel) Differences

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right image

 This shift corresponds to disparity 0
 All pixels in blue window have the same x coordinate as the

corresponding pixels in the green window

 12454

222

222

222

6465564656

4477474747

4446464446

Sum of Squared (Pixel) Differences

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right image

 This shift corresponds to disparity 1
 All pixels in blue window have x coordinate 1 less than

corresponding pixels in the green window

 642554646565656

7477474747

64444464646

222

222

222

Sum of Squared (Pixel) Differences

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right image

 This shift corresponds to disparity 2
 All pixels in blue window have x coordinate 2 less than

corresponding pixels in the green window

 8464656565856

474747474747

444446464846

222

222

222

Sum of Squared (Pixel) Differences

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right image

 Best SSD window cost (=8) is at disparity 2
 Red pixel is assigned disparity 2

 Repeat this procedure for all image pixels
 Instead of SSD, can use other window costs:

 Sum of absolute differences (SAD), normalized correlation, etc.

disp: 2
SSD: 8 disp:1

SSD:6425
disp: 0
SSD: 12454

Correspondence Using SSD matching

SSD error

disparity

Left Right

scanline

How do we perform window matching efficiently?

 Suppose image is n by n
 Suppose window is 11 by 11

 Typically windows are taken to be from 11 by 11 to 21 by 21

 Need 11*11=121 additions and multiplications to
match 1 window
 Multiply it by n*n number of image pixels
 Multiply by number of disparities (maxD+1)
 TOOOOO SLOOOOOOOW

 For 21 by 21 window, need 21*21=441 multiplications and
additions per pixel
 Multiply it by n*n number of image pixels
 Multiply by number of disparities (maxD+1)

Integral Image (Crow’84, Viola’2001)

(x,y)

I(x,y)= f(p)
(x,y)

 Let I(x,y) be the sum of image values to the left and
above pixel (x,y) including pixel (x,y)
 I(x,y) is the sum of pixel values in the orange area

(x,y)

Integral Image (Crow’84, Viola’2001)

(x,y)

I(x,y)= f(p)
(x,y)

f(x,y)+I(x-1,y)+
I(x,y-1)-I(x-1,y-1)

I(x,y)=

++ + +

+ + +

+ + +
+ + +

+
+

+

+
+

+

+
+

+
+

+
+

- - -
- - -
- - -

 How do we compute I(x,y) efficently?

Computing Integral Image I(x,y)

f(0,0) f(1,0)+I(0,0) f(2,0)+I(1,0) f(3,0)+I(2,0) f(4,0)+I(3,0)

f(0,1)+I(0,0)

f(0,2)+I(0,1)

f(1,1)+I(0,1)+
I(1,0)-I(0,0)

f(2,1)+I(1,1)+
I(2,0)-I(1,0)

f(3,1)+I(2,1)+
I(3,0)-I(2,0)

f(4,1)+I(3,1)+
I(4,0)-I(3,0)

f(1,2)+I(0,2)+
I(1,1)-I(0,1)

f(2,2)+I(1,2)+
I(2,1)-I(1,1)

f(3,2)+I(2,2)+
I(3,1)-I(2,1)

f(4,2)+I(3,2)+
I(4,1)-I(3,1)

Integral Image Cont.
 Integral Image is computed in one pass over the

image, with 3 additions/subtractions per pixel
 Start at the top left corner
 Proceed first to the left, and then downwards

 That is first process the first row, from left to right, then
the second row, from left to right,… so on until last row

Algorithm Compute IntegralImage
Assumes image has height h and width w that is indexes are in [0,w-1]x[0,h-1]

I(0,0) = f(0,0) // set top left pixel, that is pixel (0,0)
for x = 1,2,…w-1 do // set the top row (y = 0) except pixel (0,0)

I(x,0) = I(x-1,0) + f(x,0)
for y = 1,2,…h-1 do // set leftmost column (x = 0) except pixel (0,0)

I(x,y) = I(0,y-1) + f(0,y)
for y = 1,2,…h-1 do // set everything else

for x = 1,2,…w-1 do
I(x,y) = I(x,y-1)+I(x-1,y)-I(x-1,y-1)+f(x,y)

Integral Image Cont.

After we have computed the integral image, sum over
any rectangular window is computed with only 4
operations!

 To compute sum in a window with top left corner (x1,y1)
and bottom right corner (x2,y2):
 I(x2,y2)-I(x1-1,y2)-I(x2,y1-1)+I(x1-1,y1-1)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-

------+

+ +
+

How to Use Integral Image for window matching?

 Assume we use SSD (sum of absolute differences) window cost
 Recall that we need to find SSD for every pixel and every disparity

in a window

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right image

disp: 2
SSD: 8 disp:1

SSD:6425
disp: 0
SSD: 12454

How to Use Integral Image for window matching?

 Old Inefficient Algorithm:
for every pixel p

for every disparity d
compute cost between window around p in the left image and
window around p shifted by d to the left in the right image

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right image

How to Use Integral Image for window matching?

 For any disparity, say disparity 1, we need to compute window sum for
all pixels

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right image

can be done very efficiently with integeral image
computation

How to Use Integral Image for window matching?

 Old Inefficient Algorithm:
for every pixel p

for every disparity d
compute cost between window around p in the left image and
window around p shifted by d to the left in the right image

 What if we reverse the order of computation?
 New Algorithm (can be made efficient):

for every disparity d
for every pixel p

compute cost between window around p in the left image and
window around p shifted by d to the left in the right image

reverse

How to Use Integral Image for window matching?

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right image

 Suppose current disaprity is 1

 This is equivalent to
 overlaying left and right image at disparity 1
 Computing SAD between every pair of pixels for the overlaid part
 Computing SAD in a window for every pixel

How to Use Integral Image for window matching?

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right image

 current
disaprity is 1

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453

1

0

2

2

1

4

2

03301

04110051

0400040

0382039

0430039

00333

22012
SAD image for disparity 1

How to Use Integral Image for window matching?

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right imageCurrent

disparity is 1

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453

1

0

2

2

1

4

2

0

0

0

0

0

0

2

3301

4110051

400040

382039

430039

0333

2012
SAD image for disparity 1

How to Use Integral Image for window matching?

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right imageCurrent

disparity is 1

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453

1

0

2

2

1

4

2

03301

04110051

0400040

0382039

0430039

00333

22012
SAD image for disparity 1

How to Use Integral Image for window matching?

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453
left image right imageCurrent

disparity is 1

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453

2341443

7665465658

4247474747

7946444648

7663464646

6244147

2424453

1

0

2

2

1

4

2

03301

04110051

0400040

0382039

0430039

00333

22012
SAD image for disparity 1

How to Use Integral Image for window matching?

 Current disparity is 1
 Notice how we have to compute

window sums in SAD image for
disparity 1
 1 window sum for each image

pixel
 Use the integral image technique

on the SAD image! 1

0

2

2

1

4

2

03301

04110051

0400040

0382039

0430039

00333

22012
SAD image for disparity 1

Integral Image for stereo
New Efficient Algorithm :

for every pixel p do
bestDisparity[p] = 0
bestWindowCost[p] = HUGE

for disparity d = 0, 1,…,maxD do
Overlay images at disparity d
Compute SAD image for disparity d
Compute Integral image from SAD image

for every pixel p do
currentCost = window cost at pixel p, computed from integral

image
if currentCost < bestCost[p]

bestCost[p] = curentCost
bestDisparity[p] = d

return bestDisparity

1

1

2
2

1

4

2

03301

04110051

0400040
0382039

0430039

00333

22012

SAD image

How to Use Integral Image for window matching?
SAD image for disparity 1

 For simpler implementation, make
SAD image the same size as the
left image and add d columns of
zeros on the left
 for disparity 1, add 1 “fake” column

of zeros
 For disparity 2, add 2 “fake”

columns of zeros
 …..

0

0

0

0

0

0

0

1

0

2

2

1

4

2

03301

04110051

0400040

0382039

0430039

00333

22012

 Now (x,y) coordinates between left
image and SAD image coincide

2341443

7646565674

4247474774

7944464695

7646464672

6244147

2424453
left image

 If you want to simplify things even
further, pad the SAD image with a
border of zeros on all sides
 size of the border = window radius

Window size

 Smaller window
+ discontinuity boundaries are preserved
– low texture regions are noisy

 Larger window
+ less noise in low texture regions are
– discontinuity boundaries are not preserved

W = 3 W = 20

Effect of window size

Window size

 With integral image technique, can compute sum in a
window of any rectangular size very efficiently

 Question: where to use a small window, where to use a
large window?

W = 3 W = 20

Stereo results

Ground truthScene

• Data from University of Tsukuba
• Similar results on other images without ground truth

Results with window search

Window-based matching
(best window size)

Ground truth

Better methods exist...

State of the art method
Boykov, Veksler, Zabih, Fast Approximate Energy Minimization via

Graph Cuts,
International Conference on Computer Vision, September 1999.

Ground truth

For the latest and greatest: http://www.middlebury.edu/stereo/

Julesz: showed that recognition is not needed for stereo.

Video View Interpolation
http://research.microsoft.com/users/larryz/videoviewinterpolation.htm

Real-time stereo

Used for robot navigation (and other tasks)
 Several software-based real-time stereo techniques have

been developed (most based on simple window matching)

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

 Camera calibration errors
 Poor image resolution
 Occlusions
 Violations of brightness constancy (specular reflections)
 Low-contrast image regions

Stereo reconstruction pipeline
 Steps

 Calibrate cameras
 Rectify images
 Compute disparity
 Estimate depth

What will cause errors?

