
CS442/542b: Artificial Intelligence II
Prof. Olga Veksler

Lecture 16: Computer Vision
Motion

Slides are from Steve Seitz (UW), David Jacobs (UMD)

Outline

 Motion Estimation
 Motion Field
 Optical Flow Field

 Methods for Optical Flow estimation
1. Discrete Search
2. Lukas-Kanade Approach to Optical Flow
 Optical Flow Constraint Equation
 Aperture Problem
 Pyramid Approach

Why estimate motion?

 Lots of uses
 Track object(s)
 Correct for camera jitter (stabilization)
 Align images (mosaics)
 3D shape reconstruction
 Special effects

 Optical flow is the apparent motion of brightness patterns
between 2 (or several) frames in an image sequence
 Usually represent optical flow by a 2 dimensional vector (u,v)

Optical Flow and Motion Field

Rubik's cube rotating to the
right on a turntable

 Optical flow is the apparent motion of brightness
patterns between 2 (or several) frames in an image
sequence

 Why does brightness change between frames?
 Assuming that illumination does not change:
 changes are due to the RELATIVE MOTION between

the scene and the camera
 There are 3 possibilities:
 Camera still, moving scene
 Moving camera, still scene
 Moving camera, moving scene

 Optical Flow is what we can estimate from image
sequences

Optical Flow and Motion Field

Motion Field (MF)

 The actual relative motion between 3D scene and
the camera is 3 dimensional
 motion will have horizontal (x), vertical (y), and depth

(z) components, in general
 We can project these 3D motions onto the image

plane
 What we get is a 2 dimensional motion field
 Motion field is the projection of the actual 3D

motion in the scene onto the image plane
 Motion Field is what we actually need to estimate

for applications

Examples of Motion Fields

(a) (b)

(c) (d)

(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (c) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a
more distant background.

Optical Flow vs. Motion Field

(a) (b)

(a) A smooth sphere is rotating
under constant illumination.
Thus the optical flow field is
zero, but the motion field is
not

(b) A fixed sphere is illuminated
by a moving source—the
shading of the image
changes. Thus the motion
field is zero, but the optical
flow field is not

 Optical Flow is the apperent motion of brightness patterns
 We equate Optical Flow Field with Motion Field
 Frequently works, but not always

Optical Flow vs. Motion Field
 Famous Illusions
 Optical flow and motion fields do not coincide

http://www.sandlotscience.com/Distortions/Breathing_Square.htm

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm

Optical Flow vs. Motion Field
 Motion field and Optical Flow are very different

Human Motion SystemHuman Motion System
Illusory SnakesIllusory Snakes

from Gary from Gary BradskiBradski and Sebastian and Sebastian ThrunThrun

Discrete Search for Optical Flow

 Given window W in H, find best matching window in I
 Minimize SSD (sum squared difference) or SAD (sum of absolute

differences) of pixels in window
 just like window matching for stereo, except the set of locations to

search over in the second image is different

 search over a specified range of (u,v) values
 this (u,v) range defines the search range

 can use integral image technique for fast search

Computing Optical Flow: Brightness
Constancy Equation

 Can we estimate optical flow without the
search over all possible locations?
 Yes! If the motion is small…

 Let P be a moving point in 3D
 At time t, P has coordinates (X(t),Y(t),Z(t))
 Let p=(x(t),y(t)) be the coordinates of its image

at time t
 Let I(x(t),y(t),t) be the brightness at p at time t.

 Brightness Constancy Assumption:
 As P moves over time, I(x(t),y(t),t) remains

constant

Computing Optical Flow: Brightness
Constancy Equation

Taking derivative with respect to time:Taking derivative with respect to time:

     0
td

t,ty,txId 

0
t
I

t
y

y
I

t
x

x
I 
















I[x(t),y(t),t] = constant

Computing Optical Flow: Brightness
Constancy Equation

LetLet

1 equation with 2 unknowns

0
t
I

t
y

y
I

t
x

x
I 
















(Frame spatial gradient)(Frame spatial gradient)























y
I
x
I

I

(optical flow)(optical flow)



























t
y
t
x

v
u

(derivative across frames)(derivative across frames)t
IIt 


Computing Optical Flow: Brightness
Constancy Equation

 Written using dot product notation:

0Iv
u

I
I

t
y

x 









0
t
I

t
y

y
I

t
x

x
I 
















 Where I have used more compact notation:

xIx
I 




yIy
I 




Computing Optical Flow: Brightness
Constancy Equation

 Intuitively, what does this constraint
mean?
 The component of the

flow in the gradient
direction is determined

 Recall that gradient
points in the direction
perpendicular to the edge

 The component of the
flow parallel to an edge is
unknown

0Iv
u

I
I

t
y

x 









u

v

 yx I,I

1 equation with 2 unknowns:

any point on the red
line is a solution to the
equation above

Aperture problem
true motion is in the
direction of the red
arrow

Aperture problem

?

Computing Optical Flow: Brightness
Constancy Equation
 How to get more equations for a pixel?
 Basic idea: impose additional constraints

 most common is to assume that the flow field is smooth locally
 one method: pretend the pixel’s neighbors have the same (u,v)

 If we use a 5x5 window, that gives us 25 equations per pixel!

    0v
upIpI iit 





   
   

   

 
 

 







































25t

2t

1t

25y25x

2y2x

1y1x

pI

pI
pI

v
u

pIpI

pIpI
pIpI



matrix A
25x2

vector d
2x1

vector b
25x1

Computing Optical Flow: Brightness
Constancy Equation
 Ix and Iy are computed just as before (recall

lectures on filtering)
 For example, can use Sobel operator

10-1
20-2
10-1

-1-2-1
000
121

 Note that 1/8 factor is now mandatory, unlike in edge
detection, since we want the actual gradient value

Computing Optical Flow: Brightness
Constancy Equation
 It is the derivative between the frames

123122123122121121

124
124
122
124
122

123123124123122

123123124120125
124

122

122

123

123

123 123121121

123121121

123122120

2020123122121121

24
24
22
24
22

21123124123122

24123124120125
124

122

122

123

123

123 22121121

23121121

22122120

I5: frame at time = 5

 Simplest approximation to It(p) =It+1(p)-It(p)

I6: frame at time = 5

 For example for pixel with coordinates (4,3) above
It(4,3) = 22 - 122 = -100

Lukas-Kanade flow

 Problem: now we have more equations than unknowns
 Where have we seen this before?

 Can’t find the exact solution d, but can solve Least Squares
Problem:

   
   

   

 
 

 





































25t

2t

1t

25y25x

2y2x

1y1x

pI

pI
pI

v
u

pIpI

pIpI
pIpI



matrix A
25x2

vector d
2x1

vector b
25x1

Lukas-Kanade flow

 The summations are over all pixels in the K x K window
 This technique was first proposed by Lucas & Kanade (1981)
 Note: solution is at sub-pixel precision, that is you can get answer like

u= 0.7 and v = -0.33
 Contrast this with discrete search: to find answer at sub-pixel precision,

you have to search at sub-pixel precision (usually)

 Solution: solve least squares problem
 minimum least squares solution given by solution (in d) of:





























ty

tx

yyyx

yxxx

II
II

v
u

IIII
IIII

Conditions for solvability
 Optimal (u, v) satisfies Lucas-Kanade equation

 When is this solvable?
 ATA should be invertible
 ATA entries should not be too small (noise)
 ATA should be well-conditioned

 1/ 2 should not be too large (1 = larger eigenvalue)
 The eigenvectors of ATA relate to edge direction and

magnitude





























ty

tx

yyyx

yxxx

II
II

v
u

IIII
IIII

Edge

– gradients very large or very small
– large 1, small 2

Low texture region

– gradients have small magnitude
– small 1, small 2

High textured region

– gradients are different, large magnitudes
– large 1, large 2

Observation

 This is a two image problem BUT
 Can measure sensitivity by just looking at one of the

images!
 This tells us which pixels are easy to track, which are

hard
 very useful for feature tracking

Errors in Lucas-Kanade
 What are the potential causes of errors in this

procedure?
 Suppose ATA is easily invertible
 Suppose there is not much noise in the image

 When our assumptions are violated
 Brightness constancy is not satisfied
 The motion is not small
 A point does not move like its neighbors
 window size is too large
 what is the ideal window size?

Iterative Refinement
 Iterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp H towards I using the estimated flow field
- use image warping techniques

3. Repeat until convergence

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Revisiting the small motion assumption

 Is this motion small enough?
 Probably not—it’s much larger than one pixel How

might we solve this problem?

Reduce the resolution!

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Image warping

 Given a coordinate transform (x’,y’) = h(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

f(x,y) g(x’,y’)

Forward warping

 Send each pixel f(x,y) to its corresponding
location

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

f(x,y) g(x’,y’)

Forward warping

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

A: distribute color among neighboring pixels (x’,y’)
– Known as “splatting”

 Send each pixel f(x,y) to its corresponding
location

(x’,y’) = T(x,y) in the second image

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Motion tracking
 Suppose we have more than two images
 How to track a point through all of the images?

 Feature Tracking
 Choose only the points (“features”) that are easily tracked
 How to find these features?

 In principle, we could estimate motion between each pair of
consecutive frames

 Given point in first frame, follow arrows to trace out it’s path
 Problem: DRIFT
 small errors will tend to grow and grow over time—the point will drift

way off course

 windows where has two large
eigenvalues

 Called the Harris Corner Detector

Feature Detection

Tracking features
 Feature tracking
 Compute optical flow for that feature for each

consecutive H, I

 When will this go wrong?
 Occlusions—feature may disappear
 need mechanism for deleting, adding new features

 Changes in shape, orientation
 allow the feature to deform

 Changes in color
 Large motions
 will pyramid techniques work for feature tracking?

Tracking Over Many Frames

 Feature tracking with m frames
1. Select features in first frame
2. Given feature in frame i, compute position in i+1
3. Select more features if needed
4. i = i + 1
5. If i < m, go to step 2

 Issues
 Discrete search vs. Lucas Kanade?

 depends on expected magnitude of motion
 discrete search is more flexible

 Compare feature in frame i to i+1 or frame 1 to i+1?
 affects tendency to drift..

 How big should search window be?
 too small: lost features. Too large: slow

