CS442/542b: Artificial Intelligence Il
Prof. Olga Veksler

Lecture 9
NLP: Language Models

Many slides from: Joshua Goodman, L. Kosseim, D.
Klein

1

Outline

= Why we need to model language
= Probability background
= Basic probability axioms
= Conditional probability
= Bayes' rule
= n-gram model
= Parameter Estimation Techniques

= MLE
= Smoothing

Why Model Language?

= Some sequences of words are more likely to be a good
English sentence than others

= Want a probability model P s.t.
P(unlikely sentence) < P(likely sentence)

= Useful in
= Spell checker: “l think there are OK” vs. “I think they are OK”
= Speech recognition: “lie cured mother” vs “like your mother”
= Qptical character recognition: “thl cat” vs. “the cat”
= Machine translation: "On voit Jon a la télévision"
= Jon appeared in TV
= In Jon appeared TV
= Jon appeared on TV
= |ots of other applications

= |n all of the above cases, we chose the sentence with higher
probability according to the model P

Language Model for Speech Recognition

Slides 2-7, from Joshua Goodman's slides
research.microsoft.com/~joshuago/Im-tutorial-public.ppt

Language Model for Speech Recognition

by Jim Unger

Language Model for Speech Recognition

© Jim Unger/Dist by United Media, Jan. 30/00

Language Model for Speech Recognition

What is a Language Model?

= A language model is a probability distribution
over word/character sequences

= We would like to find a language model P s.t.
= P("And nothing but the truth”) = 0.001
= P("*And nuts sing on the roof”) = 0.000000001

Basic Probability

P(X) means probability that X is true
(

baby is a boy) = 0.5 (1/2 of all babies are boys)

= P
= P(baby is named John) = 0.001 (1 in1000 babies is
named John)

Joint probabilities

= P(X,Y) means probability that X and Y are both

true, for example:
P(brown eyes, boy) = (hnumber of all baby boys with brown

eyes)/(total number of babies)

10

Conditional Probability

= P(X]Y) =P(X,Y)/P(Y)
P(baby is named John | baby is a boy) =

P(baby is named John, baby is a boy) _0.001
P(baby is a boy)

= 0.002

11

Conditional probability

= P(X|Y) means probability that X is true when
we already know Y is true

= P(baby is named John | baby is a boy) = 0.002
= P(baby is a boy | baby is named John) = 1

12

Bayes Rule

P(Y | X)P(X)
P(Y)

= Bayesrule: P(X/Y)=

boy | named John)P(named John)

P(named John [boy)= d P(boy)

13

Speech Recognition Example

very hard to model

P(word sequence | acoustics) =
reasonably easy to model from language model

P(acoustics | word sequence) x P(word sequence)

P(acoustics)

usuallyﬁon’t need this

14

Language Modeling

= Let V be the set of words, V={a, apple,..,zoo}

= A sentence X is a sequence of words in V, for
example S = “John went to the zoo”

= We need to learn the probability distribution P
from the training data s.t.

P(S)>0 > P(S)=1

all sentences S

15

Language Modeling

= |n our case, events will be sequences of words, for
example “an apple fell”

= P(“an apple fell”) is the probability of the joint
event that
= the first word in a sequence is “an’
= the second word in a sequence is “apple”
= the third word in a sequence is “fell”

= P(fell | an apple) should be read as probability
that the third word in a sequence is “fell” given that
the previous 2 words are “an apple”

16

How Language Models work

= Hard to compute P(and nothing but the truth)
= Step 1: Decompose probability using conditional probability:
P(and nothing but the truth) =

= P(truth | and nothing but the)P(and nothing but the)=

= P(truth | and nothing but the)P(the [and nothing but)x

x P(and nothing but)=
(truth | and nothing but the)P(the | and nothing but)x
P(but | and nothing)P(and nothing) =

= P(truth | and nothing but the)P(the | and nothing but)x

x P(but | and nothing)P(nothing | and)P(and)

17

How Language Models work

= Consider

P(computer | Instead of working every day, | would like to
play on my)

= Probability that the word “computer” follows words
“Instead of working every day, | would like to play
on my” is intuitively almost the same as probabillity
that the word “computer” follows words “play on
my”

= The probability of the next word depends mostly on
the few previous words

18

“Shannon Game” (Shannon, 1951)

‘I am going to make a collect ...”

= Predict the next word/character given the n-1
previous words/characters.

= Human subjects were shown 100 characters of text
and were asked to guess the next character

= As context increases, entropy decreases

= the smaller the entropy => the larger the probability of
predicting the next letter

Context 0 1 2 3

Entropy (H) | 4.76 4.03 3.21 3.1

= But only a few words is enough to make a good
prediction on the next word, in most cases

= Evidence that we only need to look back at n-1
previous words 19

n-grams

= n-gram model: the probability of a word depends
only on the n-1 previous words (the history)

P(w, |W1W2---Wk-1):P(Wk |Wk+1-n---Wk-1)

= This called Markov Assumption: only the
closest n words are relevant:
= Unigram: previous words do not matter
= Bigram: only the previous one word matters
= Trigram: only the previous two words matter

20

Example: The Trigram Approximation

Assume each word depends only on the
previous two words

= three words total
= {rl means three
= gram means writing

P(“the]... whole truth and nothing but”) =
P(“the|nothing but”)

P(“truth|... whole truth and nothing but the”) =
P(*truth|but the”)

21

The Trigram Approximation

= After decomposition we have:
P(and nothing but the truth) =
= P(truth [-are-rothing-but the)P(the | and nothing but)x
x P(but | and nothing)P(nothing | and)P(and)

= Using trigram approximation:
P(and nothing but the truth) =
~ P(truth | but the)P(the [nothing but)x
x P(but | and nothing)P(nothing | and)P(and)

= |ntuition: probability of each sentence is approximated as
a product of probabilities of each individual word

= Where probability of each individual word is conditioned on the
previous two words 22

Trigrams, continued

= How do we find all the probabilities?
= P(nextWord | prevWord2 PrevWord1)
= These probabilities are usually called “parameters”

= Get real text, and start counting!

= Let C1 be the count of how many times the phrase
“nothing but the” occurred in the training corpus

= Let C2 be the count of how many times the phrase
“nothing but” occurred in the training corpus

P(nothing but the) Cf
P(nothing but) C2

P(the | nothing but) =

23

Trigrams, continued

P(and nothing but the truth)=
= P(truth | but the)P(the |nothing but)x
x P(but | and nothing)P(nothing | and)P(and)

= The approximation to P(and nothing but the truth)
Cbuz‘ the truth C C Caznd nothing C

_ nothing but the and nothing but and
Cbuz‘ the Cnoz‘hing but Cand nothing Caznd N

= where N is the number of words in our training text

24

Bigrams

= first-order Markov models
P(Wnlwn-l)

= (Can construct V-by-V matrix of probabilities/frequencies
= V = size of the vocabulary we are modeling

2 word

— N
a an apple | ... Z00 zucchini
|a 0 0 0 8 5
\E an 0 0 20 0 0
Q | |apple 0 0 0 1 3
%, | |zo0 0 2 0 0 0
zucchini | 0 0 3 0 0

\

25

Problems with n-grams

JJ

‘the large green
= “mountain™? “tree”?

Sue swallowed the large green
= “pill? “broccolr’?

Knowing that Sue “swallowed’ helps narrow
down possibilities

But, how far back do we look?

26

Which n-gram to use?

= example: for a vocabulary of 20,000 words
= number of bigrams = 400 million (20 000?)
= number of trigrams = 8 trillion (20 0003)
= number of four-grams = 1.6 x 107 (20 0004)

= number of n-grams is exactly the number of parameters we
have to learn, that is for bigrams we need to learn
P(word1 word2) for any combination of word1 and word 2
from vocabulary of size V

= However, our training data has fixed size of N words,
therefore in our training data here are
= N-1 bigram samples
= N-2 trigram samples
= N-3 fourgram samples

= As we go from n-gram to (n+1) gram, number of parameters
to learn grows a lot, but the number of training samples does
not increase. Big problem!

= For reliable estimates, the more parameters we need to learn, the

more training samples we need
27

Unigram vs. bigram lllustration

= For reliable estimates, the more parameters we need
to learn, the more training samples we need to have

= Suppose we have a text of 10,000 words. We have a
reasonable amount of data to produce unigrams, that
IS probabilities of individual words, P(“a”),P(“to”), etc.,
are high and P(“zombee”), P(“gene”) are low

= However, we do not have enough data to estimate
bigrams for example:

= P(“a table”), P(“to ride”), P(“‘can draw”), even though these
word sequences are quite likely, in a text of 10,000 words
we may not have seen them

= Need a much larger text for bigrams
28

Which n-gram to use? Reliability vs. Discrimination

= |arger n:

= greater discrimination: more information about the context of the
specific instance

= but less reliability:
= Our model is too complex, that is has too many parameters

= Cannot estimate parameters reliably from limited data (data
sparseness)

= too many chances that the history has never been seen before
= our estimates are not reliable because we have not seen
enough examples
= gsmaller n:

= less discrimination, not enough history to predict next word very well,
our model is not so good

= but more reliability:

= more instances in training data, better statistical estimates of our
parameters

= Bigrams or trigrams are used in practice

29

Text generation with n-grams

n-gram model trained on 40 million words from WSJ (wall
street journal)

Start with random word and generate next word according
to the n-gram model

Unigram:

= Months the my and issue of year foreign new exchange’s

September were recession exchange new endorsed a
acquire to six executives.

Bigram:
= [ast December through the way to preserve the Hudson
corporation N.B.E.C. Taylor would seem to complete the
major central planner one point five percent of U.S.E. has
already old M. X. corporation of living on information such as
more frequently fishing to keep her.

Trigram:
= They also point to ninety point six billion dollars from two

hundred four oh six three percent of the rates of interest
stores as Mexico and Brazil on market conditions.

From [Jurafsky and Martin, 2000] , Ch. 4 30

Reducing number of Parameters

= with a 20 000 word vocabulary:
= pigram needs to store 400 million parameters
= trigram needs to store 8 trillion parameters
= using a language model > trigram is impractical

= to reduce the number of parameters, we can:
= do stemming (use stems instead of word types)
= help = helps = helped
= group words into semantic classes
= {Monday, Tuesday,Wednesday, Thursday,Friday} = one word
= Seen once --> same as unseen

31

Statistical Estimators

= How do we estimate parameters (probabilities of
unigrams, bigrams, trigrams)?
= Using statistical estimators
= Maximum Likelihood Estimation (MLE)

= we have already seen this, has major problems due to
data sparsness

= Smoothing
= Add-one -- Laplace
= Add-delta -- Lidstone’s & Jeffreys-Perks’ Laws (ELE)
= Good-Turing
= Combining Estimators
= Simple Linear Interpolation
= General Linear Interpolation

32

Maximum Likelihood Estimation

= We have already seen this

= Let C(w,...w,) be the frequency of n-gram
W,...W,,

C(w,..w,)

C(w,..w_,)

Pace (W, | Wi... W, ;) =

= Has the name “Maximum Likelihood” because
the parameter values it gives lead to highest
probability of the training corpus

= However, we are interested in good performance
on testing data

33

Example 1

= In a training corpus, we have 10 instances of
“come across”
= 8 times, followed by “as”
= 1 time, followed by “more”
= 1 time, followed by “a”

= SO we have:
C(come across as) 8
= P,.c(as|come across)= CScome 2oross) " 10

= Py e(more | come across) = 0.1
= P, e(a| come across) = 0.1

b2 111 12 114

* Py e(X | come across) = 0 where X # “as”, “more”,

34

)

Example 2

P(on|eat) = 16 |P(want|l) = 32 |P(eat|to) = .26
P(someleat)= .06 |P(would|l) = .29 |P(havelto) = 14
P(British|eat) = .001 |P(don’t|l) = .08 |P(spend|to)= .09
P(l|<s>) = 25 |P(tojwant)= .65 |P(food|British)= .6
P(I'd|<s>) = 06 |P(ajwant)= .5 | P(restaurant|British) = .15

In the table above , <s> is the beginning of the sentence

Pu.e (I want to eat British food) =

P(l[<s>) x P(want|l) x P(to|want) x P(eat|to) x P(British|eat) x P(food|British)
=25 x.32 X .65 X .26 x .001 X .6

=.000008

35

In Practice

= product of probabilities ... numerical underflow for long
sentences

= so instead of multiplying the probabilities, we add the log
of the probabilities
= |og(A*B*C*D)=log(A)+log(B)+log(C)+log(D)
Pu.e (I want to eat British food) =
P(l|<s>) x P(want|l) x P(to|want) x P(eat|to) x P(British|eat) x P(food|British)
=25 x.32 X .65 X .26 x .001 X .6
=.000008

log[P... (I want to eat British food)]

= log(P(l|<s>)) + log(P(want|l)) + log(P(to|want)) +
log(P(eat|to)) + log(P(British|eat)) + log(P(food|British))

= log(.25) + log(.32) + log(.65) + log (.26) + log(.001) + log(.6)
=-11.722

36

Conditional probability vs
probability of an n-gram

P(w,...w_)
P(w,..w_.)
so from now on, we will simply try to estimate :P(w,...w)

we know that P(w_ |w,..w)=

Poue(W, |wW,..w)= g((\:\l,v1";:\’,v”)) e.g. P(as | come across)
LW

C(w,...w,)
N

Puce (Wy.. W,) =

e.g. P(come across as)

where N = number of training instances (total number of ngram tokens)

37

Common words in Tom Sawyer

Word Freq.
the 3332
and 2972
a 1775
to 1725
of 1440
was 1161
it 1027
in 906
that 877
he 877
I 783
his 772
you 686
Tom 679
with 642

Use

determiner (article)
conjunction

determiner

preposition, verbal infinitive marker
preposition

auxiliary verb
(personal/expletive) pronoun
preposition

complementizer, demonstrative
(personal) pronoun

(personal) pronoun

(possessive) pronoun

(personal) pronoun

proper noun

preposition

but words in NL have an uneven distribution...

38

Most Words are Rare

Word Frequency of = most words are rare

Frequency Frequency = 3993 (50%) word types appear
1 3993 only once
2 1292
3 664 = they are called happax legomena
4 410 (read only once)
5 243
6 199
; g? = but common words are very
o g2 common
o ég 52(1) = 100 words account for 51% of all
100 09 tokens (of all text)

> 100 102

39

Problem with MLE: Data Sparseness

= Got trigram “nothing but the” in training corpus, but not
trigram “and nuts sing”

= Therefore we estimate P(“and nuts sing”) = 0

= Any sentence which has “and nuts sing” will have
probability 0
= We want P(“and nuts sing”) to be small, but not 0!
= |f a trigram never appears in training corpus, probability of
sentence containing this trigram is O
= MLE assigns a probability of zero to unseen events ...

= probability of an n-gram involving unseen words will be
zero!

= but ... most words are rare

= SO n-grams involving rare words are even more rare... data

Sparseness
40

Problem with MLE: data sparseness

= in (Balh et al 83)
= training with 1.5 million words

= 23% of the trigrams from another part of
the same corpus were previously
unseen.

= iIn Shakespeare’s work

= out of all possible bigrams, 99.96%
were never used

= So MLE alone is not good enough
estimator

41

Discounting or Smoothing

= MLE is usually unsuitable for NLP because of the
sparseness of the data

= We need to allow for possibility of seeing events
not seen in training

= Must use a Discounting or Smoothing technique

= Decrease the probabillity of previously seen
events to leave a little bit of probability for
previously unseen events

42

One Solution: Smoothing

P(w | denied the)
3 allegations ”
2 reports 5
i o Q
L I[F[—
ques || 8|28 8 5 ¢
7 total |88 & E 3

= Smoothing flattens spiky distributions so they generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

allegations
outcome

reports
attack
man

claims
request

= Solution: smoothing
= decrease the probability of previously seen events

= so that there is a little bit of probability mass left over for
previously unseen events 43

Many smoothing techniques

= Add-one

= Add-delta

= Good-Turing smoothing

= Many other methods we will not study...

44

Add-one Smoothing (Laplace’s Law)

The idea is to give a little bit of the probability space to
unseen evenis
Pretend we have seen every n-gram at least once

Intuitively we appended all possible n-grams at the end of

our training data.
Example with bigrams:

real data | fake data

\ - o S

—

Y

N bigrams all possm bigrams

If our training data has N ngrams, then the “new” size is
N+B, where B is the number of all possible ngrams. If there
are V words then
= B=V*V for bigrams
= B=V*V*V for trigrams
= efc.

Now Pagdi(wiwz...wn) = Cwiwe..w,)+1

N+B

45

Add-One: Example

unsmoothed bigram counts:

2rd word
I |want |fto eat | Chinese | food | lunch Total
oL 8| 1087 o| 13 0 0 0 N(I)=3437
want 3 O 786 o 6 8 6 N(want)=1215
s to 3 o| 10| 860 3 0| 12 N(t0)=3256
g eat 0] 0 2 0 19 2| 52 N(eat)=938
= < Chinese 2 0 0 0 0| 120 1 N(Chinese)=213
\a food 19 o| 17 0 0 0 0 N(food)=1506
lunch 4 0 0 0 0 1 0 N(lunch)=459
. N=10,000
unsmoothed bigram probabilities:
| want | to eat Chinese | food |lunch |..| Total
| .0008 1087 | 0 0013 |0 0 0
want .0003 0 .0786 |0 .0006 .0008 |.0006
to .0003 0 .001 |[.086 .0003 0 0012
eat 0 0 .0002 |0 .0019 0002 |.0052
Chinese |.0002 0 0 0 0 012 |.0001
food .0019 0 .0017 |0 0 0 0
lunch .0004 0 0 0 0 .0001 |0
N=10,000

Add-one: Example (con’t)

add-one smoothed bigram counts:

/ want |to eat | Chinese | food |lunch |... | Total
/ 8 9| 4087 1 14 1 1 1 3437
1088 N(l) + V = 5053
want 34 1| 787 1 7 9 7 N(want) + V = 2831
to 4 1 11| 861 4 1 13 N(to) + V = 4872
eat 1 11 23 1 20 3 53 N(eat) + V = 2554
Chinese 3 1 1 1 11 121 2 N(Chinese) + V = 1829
food 20 1 18 1 1 1 1 N(food) + V = 3122
lunch 5 1 1 1 1 2 1 N(lunch) + V = 2075
N=10,000
N+V2=10,000 + (1616)2
= 2,621,456

add-one bigram probabilities:
/ want to eat Chinese | food
/ .0000034 .00041 .00000038 |.0000053 |.00000038 |.00000038
(9/2621456)
want |.0000015 .00000038 |.0003 .00000038 |.0000027 |.0000034
to .0000015 .00000038 |.000004 .0046 .0000015 |.00000038
eat |.00000038 |.00000038 |.0000088 |.00000038 |.0000076 |.0000011
47

Notes on the nhumbers

AddOne probability of an unseen bigrams

. 1 = ST = e
N+B 22,000,000 + 74,674,306,/60

Total probability mass given to unseen bigrams
= number unseen bigrams x prob of each unseen bigram

=74.671,100,000 x 1.33875x10°"
~99.96 !!!!

48

Problem with add-one smoothing

= each individual unseen n-gram is given a low
probability
= put there is a huge number of unseen n-grams

= Adding a little of probability over a huge number of
unseen events gives too much probability mass to all
unseen events
= |nstead of giving small portion of probabillity to
unseen events, most of the probability space is
given to unseen events

49

Problem with add-one smoothing

MLE want something like this

B seen ngrams B seen ngrams

B unseen ngrams B unseen ngrams

F 1Y

[seen ngrams

get this with add1
smoothing

B unseen ngrams

50

Problem with add-one smoothing

= Data from the AP from (Church and Gale, 1991)
= Corpus of 44,000,000 bigram tokens, 22,000,000 for training
= Vocabulary of 273,266 words, i.e. 74,674,306,760 possible bigrams
= 74,671,100,000 bigrams were unseen

= frequency is the number of occurrences per 22,000,000 samples
= To get probability, divide frequency by 22,000,000
= each unseen bigram was given a frequency of 0.000295

num. of ﬁmes\ﬁ Add-one smoofheﬂ
\ i - freq. given to
appeared in MLE Jemplrlcal fadd-one< .
training corpusJ 0.000027 | 0.000295 JL\\ testing corpus

0
1+ 0438 ooo0ses || L oo high |

Freq.observed
in testing 1.25 0.000884
2.24 0.001180 %
too Iowj
3.23 0.001470

corpus
4.21 0.001770 |

]

AL WN

51

Add-delta smoothing (Lidstone’s law)

instead of adding 1, add some other (smaller) positive value o

C(wiwz... W)+ 9
N+J6B

most widely used value for 6 = 0.5

if 06 =0.5, Lidstone’s Law is called:
= the Expected Likelihood Estimation (ELE)
= or the Jeffreys-Perks Law

Paddo(wiwz ...wn) =

C(wiwz...w.)+05
N+0bB

better than add-one, but still not very good

Pece(wiwz...wn) =

52

Smoothing: Good Turing

Imagine you are fishing

= You have bass, carp, cod, tuna, trout, salmon, eel, shark, tilapia,
etc. in the sea

You have caught 10 Carp, 3 Cod, 2 tuna, 1 trout, 1 salmon,
1 eel
How likely is it that next species is new?
= roughly 3/18, since 18 fish total, 3 unique species
How likely is it that next is tuna? Less than 2/18

= 2 out of 18 are tuna, but we have to give some “room” to the new
species that we may catch in the future

Say that there are 20 species of fish that we have not seen
yet (bass, shark, tilapia,....)
The probability of any individual unseen species is 3

: 18-20

P(shark)=P(tilapia)= 18.20

53

Smoothing: Good Turing

= How many species (n-grams) were seen once? >
= Let N, be the number species (n-grams) seen once

= Use it to estimate for probability of unseen species
= Probability of new species (new n-gram) is N,/N

= Let N, be the number of unseen species (unseen n-
grams). Spreading around the mass equally for

unseen n-grams, the probability of seeing any
Individual unseen species (unseen n-gram) is

N,
N-N,

54

Smoothing: Good Turing LS

= Back to fishing: you have caught 10 Carp, 3 Cod, 2 tuna, 1
trout, 1 salmon, 1 eel; 20 species unseen

= How likely is it that next species is new? 3/18

= The probability of any individual unseen fish is ’ 8‘_?20

= What is the new probability of catching a trout?
= Should be lower than 1/18" to make room for unseen fish
= |dea:
= if we catch another trout, trout will occur with the rate of 2

= According to our data, that is the probability of fish with rate 2
(occurring 2 times). Tuna occurs 2 times, so probability is 2/18

= Now spread the probability of 2/18 over all species which occurred
only once — 3 species

= The probability of catching a fish which occurred 1 time already
is 2

18-3

55

Smoothing: Good Turing

= |n general, let r be the rate with which an n-gram occurs in the
training data
= Rate is the same thing as count
= Example: if training data is {“a cow”, “a train”, “a cow”, “do as”, “to go”,
“let us”,”to go”}, then the rate of “a cow” is 2 and the rate of “let us” is 1
= |f an n-gram occurs with rate r, we used to get its probability

dsS
= /N, where N is the size of the training data
= We need to lower all the rates to make room for unseen n-grams

= |n general, the number of n-grams which occur with rate r+1 is
smaller than the number of grams which occur with rate r

= |dea: take the portion of probability space occupied by n-
grams which occur with rate r+1 and divide it among the n-
grams which occur with rate r

56

new space

old space —

Smoothing: Good Turing

= Let S, be the n-grams that S
occur r times in the training S; 0
data

= Proportion of probability S, \
space occupied by n-grams
in S, in the new space = S, S,
proportion of probability
space occupied by n-grams
in S, in the new space : S,

= Spread evenly among all n- :
grams in S, S __ g

= Note no space left for n- 3
gramsin S, , has to be
fixed

Smoothing: Formula for Good Turing

= N, be the number different n-grams that we saw in the
training data exactly rtimes
= Example: if training data is {"a cow”, “a train”, “a cow”, “do as”, “to
go”, “let us”,”to go”}, then N, =3 and N, =2
= In notation on previous slide, rN, is the size of S,
= Probability for any n-gram with rate r is estimated from the
space occupied by n-grams with rate r+1
= Let N be the size of the training data.The probability space
occupied by n-grams with rate r+1 is:

(r+DN_,
. N .
= Spread this mass evenly among n-grams with rate r, there
are N, of them (r+1)N._,
N-N,
= That is for a n-gram x that occurs r times, Good Turing
estimate of probability is N...

PGT(X):(r+1)

58

N-N

r

Smoothing: Good Turing

r+1)N
PGT(W1"'Wn): I(I i Nf ”+1j
= Another way of looking at Good-Turing: ‘.
Clw,..w,) _r r

PMLE(W1"'Wn): N N

= Pyue(w,...w) =0 forrate r =0, need to increase it

= at the expense of decreasing the rate of observed nGrams
= if r =0, new r* should be larger
= if r#0, new r* should be smaller

= This is exactly what Good-Turing does
= Forr=0, r*=—L>r

0
= For r>0, r*:(r+1)N”’

r

= most likely r* < r since usually N
y

IS significantly less than N,
59

r+1

Smoothing: Fixing Good Turing

= Thatis for an n-gram x that occurs r times, Good Turing
estimate of probability is P (x)=(r+1) N ..,

N-N
= This works well except for high values of r

r
= For high values of r, N, is not reliable estimate of the number of n-
grams that occur with rate r

= In particular, for the most frequent r it completely fails since N,, ;=0
= The problem is that N, is unreliable for high values of r

1 —
N,=2,300 N,=1,300 N,=700 Ng=3 Ny=0 N,=0 N,=4

Smoothing: Fixing Good Turing

The problem is that N, is unreliable for high values of r

Solution 1:
= use Pgp for low values of r, say forr < 10

= For n-grams with higher rates, use P, ¢ which is reliable for higher
values of r, that is Py, g(w;,...w,)=C(w,...w,)/N

Solution 2:

= Smooth out N/‘s by fitting a power law function F(r)=ar® (with b < -1)
and use it when N, becomes unreliable.

= Search for the best a and b < -1 to fit observed N,’'s (one line in Matlab)

The

T~

T~ F(r)=ar®

............ — —
N,=2,300 N,=1,300 N,=700 Ng=3 Ny=0 N,=0 N,=4

Smoothing: Fixing Good Turing

= Probabilities will not add up to 1, whether using Solution 1 or
Solution 2 from the previous slide

= Have to renormalize all probabilities so that they add up to 1

Could renormalize all n-grams

Usually we renormalize only the n-grams with observed rates higher
than 0

Suppose the total space for unseen n-grams is 1/20
renormalize the weight of the seen n-grams so that the total is 19/20

62

Good Turing vs. Add-One

.
0
1
2
3
4
D
6
/
8
9

= fMLE

fempirical
0.000027
0.448
1.25
2.24

3.23
4.21
5.23
6.21
/.21
8.26

ICLap
0.000137

0.000274
0.000411
0.000548
0.000685
0.000822
0.000959
0.00109
0.00123
0.00137

fGr
0.000027

0.446
1.26
2.24
3.24
4.22
.19
6.21
/.24
8.25

63

Simple Example

P, (n—gram occuring r times)=

= Vocabulary is {a,b,c}
= Possible bigrams: {aa,ab,ba,bb,ac,bc,ca,cb,cc}
= Corpus:babaacbcacac
= Observed bigrams are {ba, ab, ba, aa, ac, cb, bc, ca, ac, ca, ac}
= Unobserved bigrams: bb,cc
= QObserved bigram frequencies:
= ab:1,aa:1,cb:1,bc: 1, ba: 2,ca: 2, ac: 3
= Ny=2, N;=4, N,=2, N;=1, N = 11
= Will use GT probabilities up to and including r = 2
= Probability estimations:
= Use Good-Turing: P(bb)=P(cc)= (0+1)*(N,/(N*N,))=4/(11"2)=2/11
= Use Good-Turing: P(ab)=P(aa)=P(cb)= (C)= (1+1)"(N,/(N*N,))=1/11
= Use Good-Turing: P(ba)=P(ca)= (2+1)*(N,/(N*N,))=3/22
= Use MLE: P(ac) = 3/11 64

Simple Example Continued

= Finally renormalize

= Before renormalization:
= P’(bb)=P(cc)= 2/11
= P’(ab)=P’(aa)=P’(cb)=P’(bc)= 1/11
= P’(ba)=P’(ca)=3/22
= P’(ac) = 3/11
= | put P’(...) toindicate that the things above are not true probabilities, since they
don’t add up to 1

= Renormalize only the weight of seen bigrams ab,aa,cb,bc,ba,ca,ac and
their total weight should be 1-[P’(bb)+P’(cc)] =7/11
= P’(ab)+P’(aa)+P’(cb)+P’(bc)+P’(ba)+P’(ca)+P’(ac) = 10/11
= Multiply through by constant (11/10)*(7/11)=7/10

= New probabilities are:
= P(bb)=P(cc)= 2/11
= did not want to change these
= P(ab)=P(aa)=P(cb)=P(bc)= (1/11)*(7/10)=7/110
= P(ba)=P(ca)=(3/22)*(7/10)=21/220

= P(ac)=(3/11)*(7/10)=21/110
65

Simple Example Continued

= (Can also renormalize weights in a simpler manner
= | asked you to do this for your assignment, to simplify your life!
Before renormalization:
= P’(bb)=P’(cc)=2/11 =P,
= P’(ab)=P’(aa)=P’(cb)=P’(bc)= 1/11= P,
= P’(ba)=P’(ca)=3/22= P’,
= P'(ac) = 3/11= P’
= Simply renormalize all “probabilities” P’ to add to 1
= (1) find their sum; (2) Divide each one by the sum
= For efficiency, you want to add them up based on the rates, since
nGrams with the same rate have the same probability
= Set S, contain all nGrams that were observed r times, N, is size of S,
= S,= {bb,cc}, S, ={ab,aa,cb,bc}, S, ={ba,ca}, S; = {ac}
= sum = P’ ;N+P’ N, +P’,No+P N, =(2/11)*2+(1/11)*4+(3/22)*2+(3/11)=14/11
= New probabilities are:
= P(bb)=P(cc)= (2/11)/(14/11)=2/14 = P,
= P(ab)=P(aa)=P(cb)=P(bc)= (1/11)/(14/11)=1/14= P,
= P(ba)=P(ca)=(3/22)/(14/11)= 3/28= P,
P(ac) = (3/11)/(14/11)=3/14= P, >

Simple Example Continued

= Let us calculate P(abcab) using our model

= In general, when you need to use nGram
approximation of P(w,w, w,w,...w,)

= after applying the law of conditional probability many
many times you get

Pw,w, w,w,...w,)=

~P(w,)P(w, [w,)P(w, |ww,)..Pw, ww,.w,).Pw, w,_w,_)

= P(abcab) = P(a) * P(bla) * P(c|b) * P(alc) * P(bla)

67

Simple Example Continued

= probabilities are (using the first case of normalization):
= P(bb)=P(cc)= 2/11
= P(ab)=P(aa)=P(cb)=P(bc)= 7/110
= P(ba)=P(ca)=21/220
= P(ac)=21/110
= Let us calculate P(abcab) using our model
= We will need probabilities for unigrams a,b,c, which we can compute
using MLE estimator:
= P(a)=5/12, P(b) = 3/12, P(c)=4/12

= since a occurs 5 times, b occurs 3 times, and ¢ occurs 4 times in our corpus
consisting of 12 unigrams

= P(abcab) = P(a) * P(bla) * P(c|b) * P(alc) * P(bla) =

(a) P(ab) P(bc) P(ca) P(ab)
P(a) P(b) P(c) Pl(a)

_ 5 7 7 21 7
12 110(5/12) 110(3/12) 220(4/12) 110(5/12)

68

Combining Estimators

= Assume we have never seen the bigrams

= journal of P rsmootheq(Of lfournal) = 0
nsmootheg(fOM [journal) = 0
= journal never P
= all models so far will give the same probability to all 3
bigrams

= journal from P
unsmoothed(NEVET [journal) = 0

= but intuitively, “journal of”is more probable because...
= “of”is more frequent than “from” & “never”
= unigram probability P(of) > P(from) > P(never)

69

Combining Estimators (con’t)

= observation:

= unigram model suffers less from data sparseness than
bigram model

= pigram model suffers less from data sparseness than
trigram model

= S0 use a lower model to estimate probability of
unseen n-grams

= |f we have several models of how the history
predicts what comes next, we can combine them in
the hope of producing an even better model

70

Simple Linear Interpolation

= Solve the sparseness in a trigram model by
mixing with bigram and unigram models

= Also called:
= linear interpolation
= finite mixture models
= deleted interpolation

= Combine linearly
Piwplwp2.wi 1) = MP(w,) + AP(w,|w,, 1) + AsP(w,|w, o W, 0)

= where 0< A, <1 and £, A, =1

71

Other applications of LM

= Author / Language identification

= hypothesis: texts that resemble each other (same
author, same language) share similar characteristics

= |In English character sequence “ing” is more probable
than in French

= Training phase:
= pre-classified documents (known language/author)

= construct the language model for each document class
separately

= Testing phase:

= evaluation of unknown text (comparison with language
model)

72

Example: Language identification

= pbigram of characters
= characters = 26 letters (case insensitive)

= possible variations: case sensitivity,
punctuation, beginning/end of sentence
marker, ...

73

Example: Language identification

1. Train an language model for English:

A B C D Y Z
A 0.0014 |[0.0014 |0.0014 [0.0014 0.0014 0.0014
B 0.0014 |[0.0014 |0.0014 [0.0014 0.0014 0.0014
C 0.0014 [0.0014 |0.0014 [0.0014 0.0014 0.0014
D 0.0042 |[0.0014 |0.0014 [0.0014 0.0014 0.0014
E 0.0097 [0.0014 |0.0014 [0.0014 0.0014 0.0014
0.0014
Y 0.0014 |[0.0014 |0.0014 [0.0014 | .. 0.0014 0.0014
Z 0.0014 |[0.0014 |0.0014 |0.0014 |0.0014 |0.0014 0.0014

2. Train a language model for French

3. Evaluate probability of a sentence with LM-English & LM-French
4. Highest probability -->language of sentence

74

Spam/Ham Classification

= Can do the same thing for ham/spam emails

= Construct character based model for ham/spam
separately

= For new emalil, evaluate its character sequence
using spam character model and ham character
model

= Highest probability model wins

= This is approach was the best one on our
assignment 1 data, as presented in a workshop
where the data comes from

75

