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NLP: Language Models
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Outline

� Why we need to model language

� Probability background

� Basic probability axioms

� Conditional probability

� Bayes’ rule

� n-gram model

� Parameter Estimation Techniques

� MLE

� Smoothing
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Why Model Language?

� Some sequences of words are more likely to be a good 
English sentence than others

� Want a probability model P s.t.                      
P(unlikely sentence) < P(likely sentence)

� Useful in

� Spell checker: “I think there are OK” vs. “I think they are OK”

� Speech recognition: “lie cured mother” vs “like your mother”

� Optical character recognition: “thl cat” vs. “the cat”

� Machine translation: “On voit Jon à la télévision”

� Jon appeared in TV

� In Jon appeared TV

� Jon appeared on TV

� lots of other applications

� In all of the above cases, we chose the sentence with higher 
probability according to the model P
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Language Model for Speech Recognition

Slides 2-7, from Joshua Goodman's slidesJoshua Goodman's slides
research.microsoft.com/~joshuago/lmresearch.microsoft.com/~joshuago/lm--tutorialtutorial--public.pptpublic.ppt
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Language Model for Speech Recognition
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Language Model for Speech Recognition
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Language Model for Speech Recognition
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What is a Language Model?

� A language model is a probability distribution 
over word/character sequences

� We would like to find a language model P s.t.

� P(“And nothing but the truth”)  ≈ 0.001

� P(“And nuts sing on the roof”) ≈ 0.000000001
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Basic Probability

� P(X) means probability that X is true
� P(baby is a boy) = 0.5 (1/2 of all babies are boys)
� P(baby is named John) = 0.001 (1 in1000 babies is 

named John)

Babies
Baby boys

John
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Joint probabilities

� P(X,Y) means probability that X and Y are both 

true, for example:                                              
P(brown eyes, boy) = (number of all baby boys with brown 

eyes)/(total number of babies)

Babies
Baby boys

John
Brown eyes
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Conditional Probability

� P(X|Y) = P(X, Y) / P(Y)
P(baby is named John | baby is a boy) =

Babies
Baby boys

John

P(baby is a boy)

P(baby is named John, baby is a boy)
= 002.0

5.0

001.0 =
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Conditional probability

� P(X|Y) means probability that X is true when 
we already know Y is true

� P(baby is named John | baby is a boy) = 0.002

� P(baby is a boy | baby is named John ) = 1

Babies
Baby boys

John
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Bayes Rule

� Bayes rule:

Babies
Baby boys

John

( )
( ) ( )

( )boyP

JohnnamedPJohnnamed|boyP
boy|JohnnamedP =

( ) ( ) ( )
( )YP

XPX|YP
Y|XP =
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Speech Recognition Example

acoustics)|sequenceP(word

s)P(acoustic

sequence)P(wordsequence)word|sP(acoustic ×

=

from language modelreasonably easy to model

usually don’t need this

very hard to model
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Language Modeling

� Let V be the set of words, V={a, apple,..,zoo}

� A sentence X is a sequence of words in V, for 
example S = “John went to the zoo”

� We need to learn the probability distribution P 
from the training data s.t.

( ) 0SP ≥ ( ) 1SP
Ssentencesall

=∑
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Language Modeling

� In our case, events will be sequences of words, for 

example “an apple fell”

� P(“an apple fell”) is the probability of the joint 

event that 

� the first word in a sequence is “an”

� the second word in a sequence is “apple”

� the third word in a sequence is “fell”

� P( fell | an apple ) should be read as probability 

that the third word in a sequence is “fell” given that 

the previous 2 words are “an apple”
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How Language Models work

� Hard to compute  P(and nothing but the truth)

� Step 1: Decompose probability using conditional probability:

( ) =truththebutnothingandP

( ) ( ) == thebutnothingandPthebutnothingand|truthP

( ) ( )×= butnothingand|thePthebutnothingand|truthP

( ) =× butnothingandP

( ) ( )×= butnothingand|thePthebutnothingand|truthP

( ) ( ) =× nothingandPnothingand|butP

( ) ( )×= butnothingand|thePthebutnothingand|truthP

( ) ( ) ( )andPand|nothingPnothingand|butP×
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How Language Models work

� Consider 
P(computer | Instead of working every day, I would like to 

play on my )

� Probability that the word “computer” follows words 
“Instead of working every day, I would like to play 
on my” is intuitively almost the same as probability 
that the word “computer” follows words “play on 
my”

� The probability of the next word depends mostly on 
the few previous words
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“Shannon Game” (Shannon, 1951)

“I am going to make a collect …”

� Predict the next word/character given the n-1
previous words/characters.

� Human subjects were shown 100 characters of text 
and were asked to guess the next character

� As context increases, entropy decreases 
� the smaller the entropy => the larger the probability of 

predicting the next letter 

� But only a few words is enough to make a good 
prediction on the next word, in most cases

� Evidence that we only need to look back at n-1 
previous words 

3.13.214.034.76Entropy (H)

3210Context
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n-grams

� n-gram model: the probability of a word depends 

only on the n-1 previous words (the history)

P(wk |w1w2…wk-1)=P(wk |wk+1-n…wk-1)

� This called Markov Assumption: only the 

closest n words are relevant:

� Unigram: previous words do not matter

� Bigram: only the previous one word matters

� Trigram: only the previous two words matter
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Example: The Trigram Approximation

� Assume each word depends only on the 
previous two words 
� three words total

� tri means three

� gram means writing

� P(“the|… whole truth and nothing but”) ≈

P(“the|nothing but”)

� P(“truth|… whole truth and nothing but the”) ≈

P(“truth|but the”)
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The Trigram Approximation

� After decomposition we have:

( ) =truththebutnothingandP

( ) ( )×= butnothingand|thePthebutnothingand|truthP

( ) ( ) ( )andPand|nothingPnothingand|butP×

� Using trigram approximation:

( ) ≈truththebutnothingandP

( ) ( )×≈ butnothing|thePthebut|truthP

( ) ( ) ( )andPand|nothingPnothingand|butP×

� Intuition: probability of each sentence is approximated as 
a product of probabilities of each individual word
� Where probability of each individual word is conditioned on the 

previous two words



23

Trigrams, continued

� How do we find all the probabilities?

� P(nextWord | prevWord2 PrevWord1)

� These probabilities are usually called “parameters”

� Get real text, and start counting!

� Let C1 be the count of how many times the phrase 

“nothing but the” occurred in the training corpus

� Let C2 be the count of how many times the phrase 

“nothing but” occurred in the training corpus 

( )
( )

( ) 2C

1C

butnothingP

thebutnothingP
butnothing|theP ≈=
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Trigrams, continued

� The approximation to P(and nothing but the truth)

� where N is the number of words in our training text

N

C

C

C

C

C

C

C

C

C
and

and

nothingand

nothingand

butnothingand

butnothing

thebutnothing

thebut

truththebut
≈

( ) =truththebutnothingandP

( ) ( )×= butnothing|thePthebut|truthP

( ) ( ) ( )andPand|nothingPnothingand|butP×
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Bigrams

� first-order Markov models

� Can construct V-by-V matrix of probabilities/frequencies 

� V = size of the vocabulary we are modeling

P(wn|wn-1)

 a an apple … zoo zucchini 

a 0 0 0  8 5 

an 0 0 20  0 0 

apple 0 0 0  1 3 

… … … …  … … 

zoo 0 2 0  0 0 

zucchini 0 0 3  0 0 

       

 
 

1s
t
w
or
d

2nd word



26

Problems with n-grams

� “the large green ______ .”

� “mountain”? “tree”? 

� “Sue swallowed the large green ______ .”

� “pill”?  “broccoli”?

� Knowing that Sue “swallowed” helps narrow 

down possibilities 

� But, how far back do we look?
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Which n-gram to use?

� example: for a vocabulary of 20,000 words
� number of bigrams = 400 million (20 0002)
� number of trigrams = 8 trillion (20 0003)
� number of four-grams = 1.6 x 1017 (20 0004)

� number of n-grams is exactly the number of parameters we 
have to learn, that is for bigrams we need to learn         
P(word1 word2) for any combination of word1 and word 2 
from vocabulary of size V

� However, our training data has fixed size of N words, 
therefore in our training data here are
� N-1 bigram samples
� N-2 trigram samples
� N-3 fourgram samples

� As we go from n-gram to (n+1) gram, number of parameters 
to learn grows a lot, but the number of training samples does 
not increase. Big problem!
� For reliable estimates, the more parameters we need to learn, the 

more training samples we need
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Unigram vs. bigram Illustration

� For reliable estimates, the more parameters we need 
to learn, the more training samples we need to have

� Suppose we have a text of 10,000 words. We have a 
reasonable amount of data to produce unigrams, that 
is probabilities of individual words, P(“a”),P(“to”), etc., 
are high and P(“zombee”), P(“gene”) are low

� However, we do not have enough data to estimate 
bigrams for example:
� P(“a table”), P(“to ride”), P(“can draw”), even though these 

word sequences are quite likely, in a text of 10,000 words 
we may not have seen them

� Need a much larger text for bigrams
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Which n-gram to use?  Reliability vs. Discrimination

� larger n:  
� greater discrimination: more information about the context of the 

specific instance

� but less reliability:

� Our model is too complex, that is has too many parameters

� Cannot estimate parameters reliably from limited data (data 
sparseness)

� too many chances that the history has never been seen before

� our estimates are not reliable because we have not seen 
enough examples

� smaller n:  
� less discrimination, not enough history to predict next word very well, 

our model is not so good

� but more reliability:

� more instances in training data, better statistical estimates of our 
parameters

� Bigrams or trigrams are used in practice
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Text generation with n-grams

� n-gram model trained on 40 million words from WSJ (wall 
street journal)

� Start with random word and generate next word according 
to the n-gram model

� Unigram: 
� Months the my and issue of year foreign new exchange’s 

September were recession exchange new endorsed a 
acquire to six executives.

� Bigram: 
� Last December through the way to preserve the Hudson 

corporation N.B.E.C. Taylor would seem to complete the 
major central planner one point five percent of U.S.E. has 
already old M. X. corporation of living on information such as 
more frequently fishing to keep her.

� Trigram: 
� They also point to ninety point six billion dollars from two 

hundred four oh six three percent of the rates of interest 
stores as Mexico and Brazil on market conditions.

From [Jurafsky and Martin, 2000] , Ch. 4
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Reducing number of Parameters 

� with a 20 000 word vocabulary:
� bigram needs to store 400 million parameters

� trigram needs to store 8 trillion parameters

� using a language model > trigram is impractical

� to reduce the number of parameters, we can:
� do stemming (use stems instead of word types)

� help = helps = helped

� group words into semantic classes
� {Monday,Tuesday,Wednesday,Thursday,Friday} = one word

� seen once --> same as unseen

� ...
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Statistical Estimators

� How do we estimate parameters (probabilities of 
unigrams, bigrams, trigrams)? 
� Using statistical estimators

� Maximum Likelihood Estimation (MLE) 
� we have already seen this, has major problems due to 

data sparsness

� Smoothing
� Add-one -- Laplace

� Add-delta -- Lidstone’s & Jeffreys-Perks’ Laws (ELE)
� Good-Turing

� Combining Estimators
� Simple Linear Interpolation

� General Linear Interpolation
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Maximum Likelihood Estimation 

� We have already seen this

� Let C(w1...wn) be the frequency of n-gram 

w1...wn

)...wC(w

)...wC(w
  )...ww|(wP

1-n1

n1
1-n1nMLE =

� Has the name “Maximum Likelihood” because 

the parameter values it gives lead to highest 

probability of the training corpus

� However, we are interested in good performance 

on testing data
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Example 1

� in a training corpus, we have 10 instances of 

“come across”

� 8 times, followed by “as”

� 1 time, followed by “more”

� 1 time, followed by “a”

10

8

across) C(come

as) across C(come
  across) come |(asPMLE ========

� so we have: 

�

� PMLE(more | come across) = 0.1 

� PMLE(a | come across) = 0.1 

� PMLE(X | come across) = 0  where X ≠ “as”, “more”, “a”
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Example 2

P(on|eat) =   .16 
P(some|eat) =  .06 
P(British|eat) =  .001 
… 
P(I|<s>) =  .25 
P(I’d|<s>) =   .06 
… 

P(want|I) =   .32 
P(would|I) =  .29 
P(don’t|I) =   .08 
… 
P(to|want) =  .65 
P(a|want) =   .5 
… 

P(eat|to) =    .26 
P(have|to) =    .14 
P(spend|to)=    .09 
… 
P(food|British) =  .6 
P(restaurant|British) = .15 
… 

 

 

In the table above , <s> is the beginning of the sentence

PMLE (I want to eat British food) =  

P(I|<s>) x P(want|I) x P(to|want) x P(eat|to) x P(British|eat) x P(food|British)

= .25       x .32           x .65             x .26          x .001                x .6

= .000008
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In Practice

� product of probabilities … numerical underflow for long 
sentences

� so instead of multiplying the probabilities, we add the log 
of the probabilities
� log(A*B*C*D)=log(A)+log(B)+log(C)+log(D)

PMLE (I want to eat British food) =  

P(I|<s>) x P(want|I) x P(to|want) x P(eat|to) x P(British|eat) x P(food|British)

= .25       x .32           x .65             x .26          x .001                x .6

= .000008

log[PMLE (I want to eat British food) ]

= log(P(I|<s>)) + log(P(want|I)) + log(P(to|want)) + 
log(P(eat|to)) + log(P(British|eat)) + log(P(food|British))

= log(.25) + log(.32) + log(.65) + log (.26) + log(.001) + log(.6)

= -11.722
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Conditional probability vs
probability of an n-gram

)...wP(w :estimate totry simply   will weon,now  from so

)...wP(w

)...wP(w
  )...ww|P(w thatknow  we

n1

1-n1

n1
1-n1n ====

tokens) ngram of number (total instances training of numberN where

as) across P(come e.g.        
N

)...wC(w
  )...w(wP

across) come|P(as e.g.    
)...wC(w

)...wC(w
  )...ww|(wP

n1
n1MLE

1-n1

n1
1-n1nMLE

====

====

====
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Common words in Tom Sawyer

but words in NL have an uneven distribution…
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Most Words are Rare

� most words are rare 

� 3993 (50%) word types appear 

only once

� they are called happax legomena

(read only once)

� but common words are very

common 

� 100 words account for 51% of all 
tokens (of all text)
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Problem with MLE: Data Sparseness 

� Got trigram  “nothing but the” in training corpus, but not 
trigram “and nuts sing”

� Therefore we estimate P(“and nuts sing”) = 0

� Any sentence which has “and nuts sing” will have 
probability 0
� We want P(“and nuts sing”) to be small, but not 0!

� if a trigram never appears in training corpus, probability of 
sentence containing this trigram is 0

� MLE assigns a probability of zero to unseen events …

� probability of an n-gram involving unseen words will be 
zero! 

� but … most words are rare 

� so n-grams involving rare words are even more rare… data 
sparseness
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� in (Balh et al 83)

� training with 1.5 million words 

� 23% of the trigrams from another part of 
the same corpus were previously 
unseen.

� in Shakespeare’s work

� out of all possible bigrams, 99.96% 
were never used 

� So MLE alone is not good enough 
estimator

Problem with MLE: data sparseness
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Discounting or Smoothing

� MLE is usually unsuitable for NLP because of the 

sparseness of the data 

� We need to allow for possibility of seeing events 

not seen in training

� Must use a Discounting or Smoothing technique

� Decrease the probability of previously seen 

events to leave a little bit of probability for 

previously unseen events
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� Solution: smoothing
� decrease the probability of previously seen events 
� so that there is a little bit of probability mass left over for 

previously unseen events 

One Solution: Smoothing
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Many smoothing techniques

� Add-one

� Add-delta 

� Good-Turing smoothing

� Many other methods we will not study...
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Add-one Smoothing (Laplace’s Law)

� The idea is to give a little bit of the probability space to 
unseen events

� Pretend we have seen every n-gram at least once 

� Intuitively we appended all possible n-grams at the end of 

our training data. 

� Example with bigrams:

B  N
1  )w w (w C

  )w w (wP
n1 2

n21Add1
+

+…
=…

� If our training data has N ngrams, then the “new” size is 
N+B, where B is the number of all possible ngrams. If there 
are V words then
� B= V*V for bigrams
� B=V*V*V for trigrams
� etc.

� Now 

real data fake data

N bigrams all possible bigrams



Add-One: Example

 I want to eat Chinese food lunch … Total 

I 8 1087 0 13 0 0 0  N(I)=3437 

want 3 0 786 0 6 8 6  N(want)=1215 

to 3 0 10 860 3 0 12  N(to)=3256 

eat 0 0 2 0 19 2 52  N(eat)=938 

Chinese 2 0 0 0 0 120 1  N(Chinese)=213 

food 19 0 17 0 0 0 0  N(food)=1506 

lunch 4 0 0 0 0 1 0  N(lunch)=459 

…         N=10,000 
 

 

unsmoothed bigram counts:

 I want to eat Chinese food lunch … Total 

I .0008  .1087 0 .0013 0 0 0   

want .0003 0 .0786 0 .0006 .0008 .0006   

to .0003 0 .001 .086 .0003 0 .0012   

eat 0 0 .0002 0 .0019 .0002 .0052   

Chinese .0002 0 0 0 0 .012 .0001   

food .0019 0 .0017 0 0 0 0   

lunch .0004 0 0 0 0 .0001 0   

…         N=10,000 

 

unsmoothed bigram probabilities:

1
st
w
or
d

2nd word
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Add-one: Example (con’t)

 I want to eat Chinese food lunch … Total 

I 8   9 1087  
1088 

1 14 1 1 1  3437  
N(I) + V = 5053 

want 3  4 1 787 1 7 9 7  N(want) + V = 2831 

to 4 1 11 861 4 1 13  N(to) + V = 4872 

eat 1 1 23 1 20 3 53  N(eat) + V = 2554 

Chinese 3 1 1 1 1 121 2  N(Chinese) + V = 1829 

food 20 1 18 1 1 1 1  N(food) + V = 3122 

lunch 5 1 1 1 1 2 1  N(lunch) + V = 2075 

…         N= 10,000 
N+V2 = 10,000 + (1616)2 

= 2,621,456  

 

add-one smoothed bigram counts:

 I want to eat Chinese food … 

I .0000034 
(9/2621456) 

.00041 .00000038 .0000053 
 

.00000038 .00000038  

want .0000015 .00000038 .0003 .00000038 .0000027 .0000034  

to .0000015 .00000038 .000004 .0046 .0000015 .00000038  

eat .00000038 .00000038 .0000088 .00000038 .0000076 .0000011  

…        

 
 

add-one bigram probabilities:
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Notes on the numbers

!!!! 99.96

1.33875x10 x  ,00074,671,100 

bigram unseen each of prob x bigrams unseen number 

 bigrams unseen to given massy probabilit Total

11

≈≈≈≈

====

====

−−−−

111.33875x10
,76074,674,306  22,000,000

1
  

BN

1

 bigrams unseen an ofy probabilit AddOne

−−−−====








++++
====

++++
====
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Problem with add-one smoothing

� each individual unseen n-gram is given a low 

probability

� but there is a huge number of unseen n-grams 

� Adding a little of probability over a huge number of 
unseen events gives too much probability mass to all 

unseen events

� Instead of giving small portion of probability to 

unseen events, most of the probability space is 

given to unseen events
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Problem with add-one smoothing

seen ngrams

unseen ngrams

seen ngrams

unseen ngrams

MLE

seen ngrams

unseen ngrams

want something like this

get this with add1

smoothing
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Problem with add-one smoothing
� Data from the AP from (Church and Gale, 1991)

� Corpus of 44,000,000 bigram tokens, 22,000,000 for training 

� Vocabulary of 273,266 words, i.e. 74,674,306,760 possible bigrams 

� 74,671,100,000 bigrams were unseen

� frequency is the number of occurrences per 22,000,000 samples
� To get probability, divide frequency by 22,000,000

� each unseen bigram was given a frequency of 0.000295

0.0017704.215

0.0014703.234

0.0011802.243

0.0008841.252

0.0005890.4481

0.0002950.0000270

fadd-onefempiricalfMLE

too high

too low

num. of times 
appeared in 

training corpus

Freq.observed
in testing 
corpus

Add-one smoothed 
freq. given to 
testing corpus
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Add-delta smoothing (Lidstone’s law)

� instead of adding 1, add some other (smaller) positive value δ

� most widely used value for δ = 0.5

� if δ =0.5, Lidstone’s Law is called:
� the Expected Likelihood Estimation (ELE) 
� or the Jeffreys-Perks Law

B   N

  )w w (w C
  )w w (wP

n1 2
n21AddD

δ

δ

+

+…
=…

B 0.5  N

0.5  )w w (w C
  )w w (wP

n1 2
n21ELE

+

+…
=…

� better than add-one, but still not very good
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Smoothing: Good Turing

� Imagine you are fishing
� You have bass, carp, cod, tuna, trout, salmon, eel, shark, tilapia, 

etc. in the sea

� You have caught 10 Carp, 3 Cod, 2 tuna, 1 trout, 1 salmon, 
1 eel

� How likely is it that next species is new?
� roughly 3/18, since 18 fish total, 3 unique species

� How likely is it that next is tuna? Less than 2/18
� 2 out of 18 are tuna, but we have to give some “room” to the new 

species that we may catch in the future

� Say that there are 20 species of fish that we have not seen 
yet (bass, shark, tilapia,….)

� The probability of any individual unseen species  is 

2018

3

⋅
� P(shark)=P(tilapia)=

2018

3

⋅
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Smoothing: Good Turing

� How many species (n-grams) were seen once? 
� Let N1 be the number species (n-grams) seen once

� Use it to estimate for probability of unseen species
� Probability of new species (new n-gram) is N1/N

� Let N0 be the number of unseen species (unseen n-
grams). Spreading around the mass equally for 
unseen n-grams, the probability of seeing any 
individual unseen species (unseen n-gram) is 

0

1

NN

N

⋅
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Smoothing: Good Turing

� Back to fishing: you have caught 10 Carp, 3 Cod, 2 tuna, 1 
trout, 1 salmon, 1 eel; 20 species  unseen

� How likely is it that next species is new? 3/18

� The probability of any individual unseen fish is 
2018

3

⋅

� What is the new probability of catching a trout?

� Should be lower than 1/18th to make room for unseen fish

� Idea:

� if we catch another trout, trout will occur with the rate of 2

� According to  our data, that is the probability of fish with rate 2 
(occurring 2 times). Tuna occurs 2 times, so probability is 2/18

� Now spread the  probability of 2/18 over all species which occurred 
only once – 3 species

� The probability of catching a fish which occurred 1 time already
is 

318

2

⋅



56

Smoothing: Good Turing

� In general, let r be the rate with which an n-gram occurs in the 
training data

� Rate is the same thing as count

� Example: if training data is {“a cow”, “a train”, “a cow”, “do as”, “to go”, 
“let us”,”to go”}, then the rate of “a cow” is 2 and the rate of “let us” is 1

� If an n-gram occurs with rate r, we used to get its probability 

as

� r/N, where N is the size of the training data

� We need to lower all the rates to make room for unseen n-grams

� In general, the number of n-grams which occur with rate r+1 is 

smaller than the number of grams which occur with rate r

� Idea: take the portion of probability space occupied by n-

grams which occur with rate r+1 and divide it among the n-

grams which occur with rate r



Smoothing: Good Turing

� Let Sr be the n-grams that 
occur r times in the training 
data

� Proportion of probability 
space occupied by n-grams 
in Sr in the new space = 
proportion of probability 
space occupied by n-grams 
in Sr+1 in the new space
� Spread evenly among all n-

grams in Sr

� Note no space left for n-
grams in Smax , has to be 
fixed

S1

S2

S3

S4

…
..

Smax

S0

S1

S2

S3

…
..

Smax

Smax-1

old space

new space
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Smoothing: Formula for Good Turing
� Nr be the number different n-grams that we saw in the 

training data exactly r times
� Example: if training data is {“a cow”, “a train”, “a cow”, “do as”, “to 

go”, “let us”,”to go”}, then N1 = 3 and N2 = 2

� In notation on previous slide, rNr is the size of Sr

� Probability for any n-gram with rate r is estimated from the 
space occupied by n-grams with rate r+1

� Let N be the size of the training data.The probability space 
occupied by n-grams with rate r+1 is:

N

Nr
r 1)1( ++

� Spread this mass evenly among n-grams with rate r, there 
are Nr of them

r

r

NN

Nr

⋅

+ +1)1(

� That is for a n-gram x that occurs r times, Good Turing 
estimate of probability is 

( )
r

1r
GT

NN

N
)1r(xP

⋅
+= +
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Smoothing: Good Turing

� Another way of looking at Good-Turing:

r
N

N
*r

0

1 >=

� This is exactly what Good-Turing does
� For r = 0,  

N

r

N

)...wC(w
  )...w(wP n1

n1MLE ==

� PMLE(w1…wn) = 0  for rate  r = 0, need to increase it

� at the expense of decreasing the rate of observed nGrams

� if  r  = 0, new r* should be larger

� if  r ≠ 0 , new r* should be smaller

( )
r

1r
n1GT

N

N)1r(

N

1w...wP ++
⋅=

� For  r > 0,  
r

1r

N

N)1r(
*r ++

=

r*

� most likely  r* <  r since usually Nr+1 is significantly less than Nr



Smoothing: Fixing Good Turing
� That is for an n-gram x that occurs r times, Good Turing 

estimate of probability is ( )
r

1r
GT

NN

N
)1r(xP

⋅
+= +

� This works well except for high values of r
� For high values of r, Nr is not reliable estimate of the number of n-

grams that occur with rate r

� In particular, for the most frequent r it completely fails since Nr+1=0

� The problem is that Nr is unreliable for high values of r

N1=2,300 N2=1,300 N2=700

…………

N19=3 N20=0 N22= 4N21=0



Smoothing: Fixing Good Turing

� The problem is that Nr is unreliable for high values of r

� Solution 1:
� use PGT for low values of r, say for r < 10

� For n-grams with higher rates, use PMLE which is reliable for higher 
values of r, that is PMLE(w1…wn)=C(w1…wn)/N

� Solution 2:
� Smooth out Nr‘s by fitting a power law function F(r)=arb (with b < -1) 

and use it when Nr becomes unreliable.

� Search for the best a and b < -1 to fit observed Nr’s (one line in Matlab)

F(r)=arb

N1=2,300 N2=1,300 N3=700

…………

N19=3 N20=0 N22= 4N21=0
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Smoothing: Fixing Good Turing

� Probabilities will not add up to 1, whether using Solution 1 or 
Solution 2 from the previous slide

� Have to renormalize all probabilities so that they add up to 1
� Could renormalize all n-grams

� Usually we renormalize only the n-grams with observed rates higher 
than 0

� Suppose the total space for unseen n-grams is 1/20

� renormalize the weight of the seen n-grams so that the total is 19/20
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Good Turing vs. Add-One
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Simple Example

� Vocabulary is {a,b,c}

� Possible bigrams: {aa,ab,ba,bb,ac,bc,ca,cb,cc}

� Corpus: b a b a a c b c a c a c
� Observed bigrams are {ba, ab, ba, aa, ac, cb, bc, ca, ac, ca, ac}

� Unobserved bigrams: bb,cc

� Observed bigram frequencies: 
� ab: 1, aa: 1,cb: 1, bc: 1, ba: 2, ca: 2, ac: 3

� N0=2, N1=4, N2=2, N3=1, N = 11

� Will use GT probabilities up to and including r = 2

� Probability estimations:
� Use Good-Turing: P(bb)=P(cc)= (0+1)*(N1/(N*N0))=4/(11*2)=2/11

� Use Good-Turing: P(ab)=P(aa)=P(cb)=P(bc)= (1+1)*(N2/(N*N1))=1/11

� Use Good-Turing: P(ba)=P(ca)= (2+1)*(N3/(N*N2))=3/22

� Use MLE: P(ac) = 3/11

( )
r

1r
GT

NN

N
)1r(timesroccuringgramnP

⋅
+=− +
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Simple Example Continued
� Finally renormalize

� Before renormalization:

� P’(bb)=P(cc)= 2/11

� P’(ab)=P’(aa)=P’(cb)=P’(bc)= 1/11

� P’(ba)=P’(ca)=3/22

� P’(ac) = 3/11

� I put P’(…)  to indicate that the things above are not true probabilities, since they 

don’t add up to 1

� Renormalize only the weight of seen bigrams ab,aa,cb,bc,ba,ca,ac and 
their total weight should be 1-[P’(bb)+P’(cc)] =7/11

� P’(ab)+P’(aa)+P’(cb)+P’(bc)+P’(ba)+P’(ca)+P’(ac) = 10/11

� Multiply through by constant (11/10)*(7/11)=7/10

� New probabilities are:

� P(bb)=P(cc)= 2/11  

� did not want to change these

� P(ab)=P(aa)=P(cb)=P(bc)= (1/11)*(7/10)=7/110 

� P(ba)=P(ca)=(3/22)*(7/10)=21/220

� P(ac)=(3/11)*(7/10)=21/110 
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Simple Example Continued
� Can also renormalize weights in a simpler manner

� I asked you to do this for your assignment, to simplify your life!

� Before renormalization:

� P’(bb)=P’(cc)= 2/11 = P’0
� P’(ab)=P’(aa)=P’(cb)=P’(bc)= 1/11= P’1
� P’(ba)=P’(ca)=3/22= P’2
� P’(ac) = 3/11= P’3

� Simply renormalize all “probabilities” P’ to add to 1
� (1) find their sum; (2) Divide each one by the sum

� For efficiency, you want to add them up based on the rates, since 
nGrams with the same rate have the same probability

� Set Sr contain all nGrams that were observed r times, Nr is size of Sr

� S0 =  {bb,cc},  S1 = {ab,aa,cb,bc}, S2 = {ba,ca}, S3 = {ac}

� sum = P’0N0+P’1N1+P’2N2+P’3N3=(2/11)*2+(1/11)*4+(3/22)*2+(3/11)=14/11

� New probabilities are: 

� P(bb)=P(cc)= (2/11)/(14/11)=2/14 = P0

� P(ab)=P(aa)=P(cb)=P(bc)= (1/11)/(14/11)=1/14= P1

� P(ba)=P(ca)=(3/22)/(14/11)= 3/28= P2

� P(ac) = (3/11)/(14/11)=3/14= P3
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Simple Example Continued

� Let us calculate P(abcab) using our model

� In general, when you need to use nGram
approximation of ( )k4321 w...wwwwP

( ) ≈k4321 w...wwwwP

� after applying the law of conditional probability many 
many times you get

( ) ( ) ( ) ( ) ( )1knkk1n21n213121 ww|wP...w...ww|wP...ww|wPw|wPwP −−−≈

� P(abcab) ≈ P(a) * P(b|a) * P(c|b) * P(a|c) * P(b|a)  
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Simple Example Continued
� probabilities are (using the first case of normalization):

� P(bb)=P(cc)= 2/11 

� P(ab)=P(aa)=P(cb)=P(bc)= 7/110 

� P(ba)=P(ca)=21/220

� P(ac)=21/110 

� Let us calculate P(abcab) using our model

� We will need probabilities for unigrams a,b,c, which we can compute 
using MLE estimator: 
� P(a) = 5/12, P(b) = 3/12, P(c)=4/12 

� since a occurs 5 times, b occurs 3 times, and c occurs 4 times in our corpus 
consisting of 12 unigrams 

� P(abcab) ≈ P(a) * P(b|a) * P(c|b) * P(a|c) * P(b|a)  =

( ) ( )
( )

( )
( )

( )
( )

( )
( )

==
aP

abP

cP

caP

bP

bcP

aP

abP
aP

( ) ( ) ( ) ( )12/5110

7

12/4220

21

12/3110

7

12/5110

7

12

5 ⋅⋅⋅⋅=
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Combining Estimators

� Assume we have never seen the bigrams 
� journal of        Punsmoothed(of |journal) = 0 

� journal from Punsmoothed(from |journal) = 0 

� journal never Punsmoothed(never |journal) = 0 

� all models so far will give the same probability to all 3 
bigrams

� but intuitively, “journal of” is more probable because...
� “of” is more frequent than “from” & “never”

� unigram probability P(of) > P(from) > P(never)
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� observation: 
� unigram model suffers less from data sparseness than 

bigram model

� bigram model suffers less from data sparseness than 
trigram model

� …

� so use a lower model to estimate probability of 
unseen n-grams

� if we have several models of how the history 
predicts what comes next, we can combine them in 
the hope of producing an even better model

Combining Estimators (con’t)
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Simple Linear Interpolation

� Solve the sparseness in a trigram model by 

mixing with bigram and unigram models

� Also called: 

� linear interpolation

� finite mixture models 

� deleted interpolation

� Combine linearly

Pli(wn|wn-2,wn-1) = λ1P(wn) + λ2P(wn|wn-1) + λ3P(wn|wn-2,wn-2)

� where 0≤ λi ≤1 and Σi λi =1
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Other applications of LM

� Author / Language identification

� hypothesis: texts that resemble each other (same 
author, same language) share similar characteristics  
� In English character sequence “ing” is more probable 

than in French  

� Training phase: 
� pre-classified documents (known language/author)

� construct the language model for each document class 
separately

� Testing phase: 
� evaluation of unknown text (comparison with language 

model)
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Example: Language identification

� bigram of characters 

� characters = 26 letters (case insensitive)

� possible variations: case sensitivity, 

punctuation, beginning/end of sentence 

marker, …
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 A B C D … Y Z 

A 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

B 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

C 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

D 0.0042 0.0014 0.0014 0.0014 … 0.0014 0.0014 

E 0.0097 0.0014 0.0014 0.0014 … 0.0014 0.0014 

… … … … … … … 0.0014 

Y 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

Z 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 

 

 

1. Train an language model for English:

2. Train a language model for French
3. Evaluate probability of a sentence with LM-English & LM-French

4. Highest probability -->language of sentence

Example: Language identification
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Spam/Ham Classification

� Can do the same thing for ham/spam emails

� Construct character based model for ham/spam 

separately

� For new email, evaluate its character sequence 

using spam character model and ham character 

model

� Highest probability model wins

� This is approach was the best one on our 

assignment 1 data, as presented in a workshop 

where the data comes from


