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Outline 

• Very Brief Intro to Computer Vision 

• Digital Images 

• Image Filtering 

• noise reduction 



Every Picture Tells a Story 
• Goal of computer vision is to write computer programs that can 

interpret images 
• bridge the gap between the pixels and the story 
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Origin of Computer Vision: MIT Summer Project 



The problem 

real world 
scene 

sensing device interpreting 
device 

interpretations 

•  Want to make a computer understand images 
•  We know it is possible, we do it effortlessly! 

 a person, a 
person with 
folded arms, 
Pietro Perona  



Just Copy Human Visual System? 

• People try to but we don’t yet 

have a sufficient understanding of 

how our visual system works 

• O(10
11

) neurons used in vision 

• about 1/3 of human brain 

• Latest CPUs have only O(10
8
) 

transistors  

• most are cache memory 

• Very different architectures: 

•  Brain is slow but parallel 

•  Computer is fast but mainly serial 

• Bird vs Airplane 

• Same underlying principles 

•  Very different hardware 

 



Why Computer Vision Matters 

Safety Health Security 

Comfort Personal Photos Fun 



“Early Vision” Problems 

• Edge extraction 

• Corner extraction 

• Blob extraction 



“Mid-level Vision” Problems 

• 3D Structure extraction  • Motion and tracking 

• Segmentation 



“High-level Vision” Problems 
• Face Detection 

• Object Recognition 

• Action Recognition 

• Scene Recognition 



Vision is inferential: Illumination 

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html 

• Vision is hard: even the simple problem of color 
perception is inferential 



Image Formation 



Sampling and Quantization 



Sensor Array 

after quantization and sampling real world object 



Digital Grayscale Image 

• Image is array f(x,y)    

• approximates continuous 
function f(x,y) from R2 to R: 

• f(x,y) is the intensity or 
grayscale at position (x,y) 

• proportional to brightness  of 
the real world point it images 

• standard range: 0, 1, 2,…., 255 

f(3,12)=75 f(5,9)= 170 

x 

y 

(0,0) 



Digital Color Image 

• Color image is three 
functions pasted together 

• Write this as a vector-
valued function:  
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R G B 

Digital Color Image 
• Can consider color image as 3 separate images: R, G, B  



Image filtering 
• Given f(x,y) filtering computes a new 

image h(x,y) 
• As a function of local neighborhood at 

each position (x,y) 
 h(x,y) = f(x,y)+f(x-1,y) f(x,y-1)  
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h(1,3) = 3 + 4  8 = 35 

h(4,5) = 4 + 5  1 = 9 

h(3,1) = 7 + 24 - 39 = -12 

• Linear filtering: function is a weighted 
sum (or difference) of pixel values 

 h(x,y) = f(x,y) + 2f(x-1,y-1) - 3f(x+1,y+1)  

 • Many applications: 
• Enhance images 

• denoise, resize, increase contrast, … 

• Extract information from images 
• Texture, edges, distinctive points … 

• Detect patterns 
• Template matching 

 



Filtering for Noise Reduction: Motivation 

• Multiple images of even the same static scene are not identical 



Common Types of Noise 

 Salt and pepper noise: random 
occurrences of   black and white pixels 

 Gaussian noise: variations in intensity 
drawn from a Gaussian distribution 

 

 original image 

 

 Impulse noise: random occurrences of 
white pixels 

 

 



 G(0,25) noise 

 

 original image 

 

Gaussian Noise Most Commonly Assumed 



Noise Reduction 

• Noise can be reduced by averaging 

• If we had multiple images, simply average them: 

ffinal (x,y)  =  ( f1(x,y) + f2(x,y) + … + fn(x,y)) )/n 

• But usually there is only one image! 

= + … + + 



First Attempt at a Solution 

• Replace each pixel with an average of all the 
values in its neighborhood 

• Assumptions:  

• expect a pixel to have intensities similar to its 
neighbors 

• Noise is independent at each pixel 

 



First attempt at a solution 

• Replace each pixel with an average of all the 
values in its neighborhood (= 5 pixels, say) 

• Moving average in 1D: 
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First attempt at a solution 

• Replace each pixel with an average of all the 
values in its neighborhood (= 5 pixels, say) 

• Moving average in 1D: 



Moving Average In 2D 
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Moving Average In 2D 
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Moving Average In 2D 
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Correlation Filtering 

• Write as equation, averaging window  (2k+1)x(2k+1) 
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Correlation Filtering 

• Generalize by allowing different weights for different pixels in the 
neighborhood 
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Correlation filtering 
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• This is called cross-correlation, denoted  g = H  f 

• Filtering an image: replace each pixel with a linear 
combination of its neighbors 

• The filter kernel or mask H is gives the weights in linear 
combination 

 



Averaging Filter 

• What is kernel H for the moving average example? 
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H[u,v]  g(x,y)  f(x,y) 

g = H  f 



Smoothing by Averaging 

original filtered 

• What if the mask is larger than 3x3 ?  

• Pictorial representation of box filter: 

• white means large value, black means low value 



Effect of Average Filter 
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Gaussian noise Salt and Pepper noise 



Gaussian Filter 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

1 2 1 

2 4 2 

1 2 1 

• Nearest neighboring pixels to have the most influence 
• helps to lessen the effect of boundary smoothing  

This kernel H is an 
approximation of a 2d 

Gaussian function: 

H[u,v]  f(x,y) 
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Gaussian Filters: Mask Size 
• Gaussian has infinite domain, discrete filters use finite mask 

• set mask size to exclude non-useful (effectively zero) weights 

 
 

 

σ = 5 with 30 x 30 mask σ = 5 with 10 x 10 mask 

blue weights 
are so small 
they are 
effectively 0 



Gaussian filters: Variance 
• Variance (σ) contributes to the extent of smoothing 

• larger σ gives less rapidly decreasing weights 

• can construct a larger mask with non-negligible weights 

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel σ = 8 with 30 x 30 kernel 



Matlab 

>> hsize = 10; 

>> sigma = 5; 

>> h = fspecial(‘gaussian’, hsize, sigma); 

 

>> mesh(h); 

 

>> imagesc(h); 

 

>> outim = imfilter(im, h); % correlation  

>> imshow(outim); 

outim im 



Average vs. Gaussian Filter 

mean filter Gaussian filter 



More Average vs. Gaussian Filter 

mean filter Gaussian filter 

5  5 

15  15 

31  31 



Gaussian Filter with different Ϭ  

Ϭ=3 Ϭ=10 Ϭ=20 

original image 

corrupted by 
noise  Ϭ = 10 

corrupted by 
noise  Ϭ = 20 

corrupted by 
noise  Ϭ = 30 

filtered with different Ϭ  



Boundary Issues 

• What is the size of the output? 

• MATLAB: output size / “shape” options 

• shape = ‘full’: output size is sum of sizes of f and g 

• shape = ‘same’: output size is same as f 

• shape = ‘valid’: output size is difference of sizes of f and g  

f 

g g 

g g 

f 

g g 

g g 

f 

g g 

g g 

full same valid 



Boundary issues 
• What about near the edge? 

• the filter window falls off the edge of the image 

• need to extrapolate image 

clip filter (black) copy edge 

reflect across edge wrap around 



Properties of Smoothing Filters 

• Values positive  

• Sum to 1  

• constant regions same as input 

• overall image brightness stays unchanged 

• Amount of smoothing proportional to mask size 

• larger mask means more extensive smoothing 

 



Filtering an Impulse Signal 
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• What is the result of filtering the impulse signal 
(image) with arbitrary kernel H? 

H[u,v]  

g(x,y)=?  f(x,y) 

  =  



Filtering an Impulse Signal 
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• What is the result of filtering the impulse signal 
(image) with arbitrary kernel H? 
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Convolution 
• Convolution:  

• Flip the mask in both dimensions  
• bottom to top, right to left 

• Then apply cross-correlation 
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• Notation for convolution: g = H*f 



Convolution vs. Correlation 

• Convolution: g = H*f  
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• Correlation: g = H  f 
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• For  Gaussian or box filter, how the outputs differ?  

• If the input is an impulse signal, how the outputs differ? 



Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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 • Why sharpens? 
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Sharpening Example 

before after 



Separability 

• Sometimes filter is separable, can split into 
two steps: 
• Convolve all rows with 1D filter 

• Convolve all columns with 1D filter 

• Both box and Gaussian filters are separable 

• Great for efficiency! 



Box Filter 
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Gaussian Filter: Example 

• To convolve image with this: 

• First convolve each row with: 

• Then each column with: 

H 

Hc 

Hr 



Gaussian Filter: Example 

• Straightforward convolution with 55 kernel 

• 25 multiplications, 24 additions per pixel 

• Smart convolution 

• 10 multiplications,  9 additions per pixel 

• Savings are even larger for larger kernels 

• for nn kernel, straightforward convolution is O(n2) 

• Smart convolution is O(n) per pixel 

 



Median Filters 

• A Median Filter selects median intensity in the window 

• No new intensities are introduced 

• Median filter preserves sharp details better than mean 
filter, it is not so prone to oversmoothing 

• Better for salt and pepper, impulse (spiky) noise 

• Is a median filter a kind of convolution? 

 

1 2 25 

3 24 22 

20 21 23 

X X X 

X 21 X 

X X X 

Median of {1,2,25,3,24,22,20,21,23} = {1,2,3,20,21,22,23,24,25}  is 21 



Median Filter 

• Median filter is edge preserving 

input: 

average: 

median: 



Median filter 

row of noisy image 

Salt and pepper noise median filtered 

row of filtered image 



Comparison: Salt and Pepper Noise Image 

5  5 

7  7 

Gaussian filter median filter 
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Comparison: Gaussian Noise Image 

5  5 

7  7 

Gaussian filter median filter 

3  3 



Filtering Fun: Face of Faces 

http://www.salle.url.edu/~ftorre/ 

http://www.salle.url.edu/~ftorre/


Salvador Dali, “Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the 

portrait of Abraham Lincoln”, 1976 



Summary 

• Image “noise” 

• Linear filters and convolution useful for 

• Enhancing images (smoothing, removing noise) 
• Box filter 

• Gaussian filter 

• Impact of scale / width of smoothing filter 

• Detecting features (next time) 

• Separable filters more efficient  

• Median filter: a non-linear filter, edge-preserving 

 


