CS4442/9542b Artificial Intelligence II prof. Olga Veksler

Lecture 15 Computer Vision Grouping and Segmentation

Some slides are from S. Seitz, D. Jacobs, O. Camps, A. Torralba

Outline

- Grouping problems in vision
 - Image segmentation: grouping of pixels
- Grouping cues in Human Visual System
 - Gestalt perceptual grouping laws
- Image Segmentation
 - 2-region (binary)
 - thresholding
 - graph cuts
 - used in MS office 2010 for background removal
 - based on the work of our faculty Yuri Boykov
- General Grouping (or unsupervised learning)
 - K-means clustering

Examples of Grouping in Vision

- Group pixels into regions
 - image segmentation

• Group video frames into shots

• Group image regions into objects

Image Segmentation

- For many applications, useful to segment image pixels into blobs that (hopefully) belong to the same object or surface
- How to do this without (necessarily) object recognition?
 - a bit subjective, but well-studied
- Inspiration from Gestalt psychology
 - humans perceive the world as a collection of objects with relationships between them, not as a set of pixels

Gestalt Psychology

- Whole is greater than the sum of its parts
 - eye sees an object in its entirety before perceiving its individual parts
- Identified factors that predispose a set of elements to be grouped by human visual system
 - perceptual grouping

Grouping

• Most human observers report no particular grouping

• Common form, includes:

• Proximity

Good continuation

- Connectivity
 - stronger than color

• Symmetry

• Familiarity

• Closure

Closure

 ${\color{black}\bullet}$

Closure

• Common fate

• Higher level knowledge?

- Many other Gestalt grouping principles
 - parallelism, convexity, colinearity, common depth, etc.
- Gestalt principles are an inspiration to computer vision
 - they seem to rely on nature of objects in the world, most do not involve higher level knowledge (object recognition)
 - should help to segment objects without necessarily performing object recognition
- But most are difficult to implement in algorithms
 - used often
 - color, proximity
 - we will use these as well
 - used sometimes
 - convexity, good continuation, common motion, colinearity

Image Segmentation

Many types of image segmentation

- We will focus on figure-ground (FG)
 - also called object/background segmentation

FG Segmentation: Thresholding

• Suppose the object is brighter than the background

Threshold gray scale image f:
 if f(x,y) < T then pixel (x,y) is background
 if f(x,y) ≥ T then pixel (x,y) is foreground

Τ-	120
1 -	TZO

T = 180

T = 220

FG Segmentation: Thresholding

- Tiny isolated foreground regions, isolated background regions
- Result looks wrong even if you did not know object is a swan

• Can we clean this result up?

FG Segmentation: Motivation

- Know object is light, background is dark
- Do not know object shape
 - show background with red, foreground with blue

input image

bad result: crazy object shape

bad result: object is dark, background light

good result: light object of good shape, dark background

FG Segmentation: Energy Function

- Formulate an objective or energy function *E* to measure how good segmentation is
 - low value means good segmentation
- After energy function is designed, search over all possible segmentations for the best one
 - one with lowest energy

FG Segmentation: Energy Function

- Energy has two terms
 - data term:
 - makes it cheap to assign light pixels to foreground, expensive to the background
 - makes it cheap to assign dark pixels to the background, and expensive to the foreground
 - smoothness term: ensures nice object shape
 - both terms are needed for a good energy function

input image f

FG Segmentation: Data Term

- Should be cheap to assign light pixels to foreground, expensive to the background
- For each pixel (x,y), we will pay D (x,y) (background) to assign it to background and D (x,y) (foreground) to assign it to the foreground
- Let the smallest image intensity be 5, and largest 20

 $D_{(x,y)}(background) = f(x,y) - 5$

 $D_{(x,y)}$ (foreground) = 20 - f(x,y)

background data term D

foreground data term D

• Brown pixel prefers foreground, green prefers background

FG Segmentation: Data Term

- *E*_{data} sums data *D*_(x,y) term over all pixels (*x*,*y*)
- Foreground blue, background red

background D

 $E_{data} = 6+3+1+6+1+$ 3+1+1+9+9+1+1+0+6+2+9+6+9+0+0+6+1+2+0+0= 73

 $E_{data} = 97$

FG Segmentation: Smoothness Term

- Smoothness term: ensures nice object shape
- Consider segmentations below

- discontinuity: when two nearby pixels are in different segments
- smoothness term is the number of discontinuities

FG Segmentation: Total Energy

• Now combine both data and smoothness energy terms

- What went wrong ?
- Smoothness term weighs very little relative to the data term
 - it basically gets ignored in the combined energy
- Solution: increase the weight of the smoothness term

FG Segmentation: Total Energy

• Solution: increase the weight of the smoothness term

 $E = E_{data} + \lambda E_{smooth}$

• Take, for example, $\lambda = 10$

FG Segmentation: Energy Formula

- Now we need to put everything into formulas
- *s*(*x*,*y*) is the segmentation **label**

s(x,y) = 1 means (x,y) is foreground pixel s(x,y) = 0 means (x,y) is background pixel

- Convenient to write pixel (x,y) as p (or q, r,...)
- Denote all pairs of nearby pixels: N

p	q	r	
V	u	W	
y	h	Ζ	

 $N = \{ (p,q), (p,r), (v,u), (u,w),$ (y,h), (h,z), (p,v), (v,y), $(q,u), (u,h), (r,w), (w,z) \}$

input image f

0	1	1	0	1
1	1	1	1	1
1	1	1	0	0
1	0	1	0	0
0	1	0	0	0

segmentation s

$$E(s) = E_{data}(s) + \lambda \cdot E_{smooth}(s) = \sum_{p} D_{p}(s_{p}) + \lambda \sum_{(p,q) \in N} [s_{p} \neq s_{q}]$$

• where [true] = 1, [false] = 0

FG Segmentation: Formula Practice with $\lambda = 1$

$$E(s) = \sum_{p} D_{p}(s_{p}) + \lambda \sum_{(p,q) \in N} \left[s_{p} \neq s_{q} \right]$$

pixel names background D

foreground D

 $E\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{array}{c} D_{p}(0) + D_{q}(1) + D_{r}(0) \\ D_{v}(0) + D_{u}(0) + D_{w}(0) + \\ D_{v}(0) + D_{h}(1) + D_{z}(1) \\ segmentation s \end{array} = \begin{array}{c} [s_{p} \neq s_{q}] + [s_{q} \neq s_{r}] + [s_{v} \neq s_{u}] \\ [s_{p} \neq s_{w}] + [s_{v} \neq s_{h}] + [s_{h} \neq s_{z}] \\ [s_{p} \neq s_{v}] + [s_{q} \neq s_{u}] + [s_{r} \neq s_{w}] \\ [s_{v} \neq s_{v}] + [s_{u} \neq s_{h}] + [s_{w} \neq s_{z}] \end{array}$

 $= \begin{array}{c} 9+12+1 \\ 3+1+1 \\ 1+14+15 \end{array} \begin{array}{c} 1+1+0 \\ 0+1+0 \\ 0+1+0 \\ 0+1+1 \end{array} = 57+6=63$

FG Segmentation: Contrast Sensitive Discontinuity

• Where is object boundary more likely?

- Make discontinuity cost depend on image contrast
 - helps align object boundary with image edges

- Replace $[\mathbf{s}_p \neq \mathbf{s}_q]$ with $\mathbf{w}_{pq} \cdot [\mathbf{s}_p \neq \mathbf{s}_q]$ where \mathbf{w}_{pq} is
 - large if intensities of pixels *p*,*q* are similar
 - small if intensities of pixels *p*,*q* are not similar

FG Segmentation: Contrast Sensitive Discontinuity

$$\frac{(f(p)-f(q))^2}{2\sigma^2}$$

- Good choice $w_{pq} = \lambda \cdot e$
- Here *f*(*p*) is intensity of pixel *p*, *f*(*q*) intensity of pixel *q*
 - for color image, replace $(f(p) f(q))^2$ with $||f(p) f(q)||^2$
 - equivalent to processing each color channel individually
- Parameter σ² is either
 - set by hand (trail and error)
 - or computed as average of $(f(p)-f(q))^2$ over all neighbors in **N**
- Complete energy:
 - note that is now folded into \boldsymbol{w}_{pq}

$$E(s) = \sum_{p} D_{p}(s_{p}) + \sum_{(p,q) \in N} W_{pq}[s_{p} \neq s_{q}]$$

FG Segmentation: Example

$$E(s) = \sum_{p} D_{p}(s_{p}) + \sum_{(p,q) \in N} W_{pq}[s_{p} \neq s_{q}]$$

contrast sensitive weights

$$E\left(\begin{array}{c} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right) = \text{data term as before} + \begin{array}{c} 3 \cdot [s_p \neq s_q] + 2 \cdot [s_q \neq s_r] + 6 \cdot [s_v \neq s_u] \\ 2 \cdot [s_u \neq s_w] + 7 \cdot [s_v \neq s_h] + 1 \cdot [s_h \neq s_z] \\ 3 \cdot [s_p \neq s_v] + 2 \cdot [s_q \neq s_u] + 6 \cdot [s_r \neq s_w] \\ 4 \cdot [s_v \neq s_v] + 2 \cdot [s_u \neq s_h] + 1 \cdot [s_w \neq s_z] \end{array}$$

$$= 57 + \begin{array}{c} 3 + 2 + 0 \\ 0 + 7 + 0 \\ 0 + 2 + 0 \\ 0 + 2 + 1 \end{array} = 57 + 15 = 72$$

FG Segmentation: Optimization

• We are all set to find the best segmentation **s***

s*=arg min E(s)

- How to do this efficiently?
- Even for a 9 pixel image, there are 2⁹ possible segmentations!

• O(2ⁿ) for an *n* pixel image

FG Segmentation: Optimization Graph

- Build weighted graph
 - one node per pixel
 - connect to neighbor pixel nodes with weight \boldsymbol{w}_{pq}
 - two special nodes (terminals) source s, sink t
 - **s** connects to each pixel node **p** with weight $D_p(0)$
 - **t** connects to each pixel node **p** with weight $D_p(1)$
 - graph below omits most of these edges for clarity

foreground D background D

FG Segmentation: Optimization with Graph Cut

- Cut is subset of edges C s.t. removing C
 from graph makes s and t disconnected
 - cost of cut *C* is sum of its edge weights
- Minimum Graph Cut Problem
 - find a cut **C** of minimum cost
- Minimum cut *C* gives the smallest cost segmentation [Boykov&Veksler, 1998]
 - nodes that stay connected to source in the `cut' graph become foreground
 - nodes that stay connected to sink in the `cut' graph become background
 - In the example, *p* gets background label,
 v and *y* get foreground label
- Efficient algorithms for min-cut/max-flow

FG Segmentation: Segmentation Result

input

- Data terms
 - blue means low weight, red high weight

foreground

background

- Contrast sensitive edge weights
 - dark means low weight, bright high weight

horizontal

vertical

FG Segmentation: Interactive

- What if we do not know object/background color?
- Can ask user for help
- Interactive Segmentation [Boykov&Jolly, 2001]

- User scribbles foreground and background seeds
 - these are **hard** constrained to be foreground and background, respectively
 - for any pixel **p** that user marks as a foreground, set $D_p(1) = 0$, $D_p(0) = \infty$
 - for any pixel **p** that user marks as a background, set $D_p(1) = \infty$, $D_p(0) = 0$
 - for unmarked pixels, set $D_p(1) = D_p(0) = 0$
- Smoothness term is as before
 - Contrast sensitive works best for interactive segmentation

FG Segmentation: Interactive Results

• Initial seeds:

• Add more seeds for correction:

FG Segmentation: More Interactive Results

General Grouping or Clustering

- General Clustering (Grouping)
- Have samples (also called feature vectors, examples, etc.) x₁,...,x_n
- Cluster similar samples into groups
- This is also called unsupervised learning
 - samples have no labels
 - think of clusters as 'discovering' labels

How does this Relate to Image Segmentation?

- Represent image pixels as feature vectors **x**₁,...,**x**_n
 - For example, each pixel can be represented as
 - intensity, gives one dimensional feature vectors
 - color, gives three-dimensional feature vectors
 - color + coordinates, gives five-dimensional feature vectors
- Cluster them into k clusters, i.e. k segments

- **[8 2 4] [5 8 5] [3 7 2]**
- **[9 4 5] [2 9 3] [1 4 4]**

How does this Relate to Image Segmentation?

input image

 feature vectors for color and image coordinates

 9
 4
 2
 0
 0]
 [7
 3
 1
 0
 1]
 [8
 6
 8
 0
 2]

 [8
 2
 4
 1
 0]
 [5
 8
 5
 1
 1]
 [3
 7
 2
 1
 2]

 [9
 4
 5
 2
 0]
 [2
 9
 3
 2
 1]
 [1
 4
 4
 2
 2]

K-means Clustering: Objective Function

- Probably the most popular clustering algorithm
 - assumes know the number of clusters should be **k**
- Optimizes (approximately) the following objective function

$$J_{SSE} = \sum_{i=1}^{k} \sum_{\mathbf{x} \in D_i} \left\| \mathbf{x} - \boldsymbol{\mu}_i \right\|^2$$

K-means Clustering: Objective Function

Good (tight) clustering smaller value of J_{SSE}

Bad (loose) clustering larger value of J_{SSE}

- Initialization step
 - 1. pick *k* cluster centers randomly

- Initialization step
 - 1. pick *k* cluster centers randomly

- Initialization step
 - 1. pick *k* cluster centers randomly
 - 2. assign each sample to closest center

- Initialization step
 - 1. pick *k* cluster centers randomly
 - 2. assign each sample to closest center
- Iteration step
 - 1. compute means in each cluster

- Initialization step
 - 1. pick *k* cluster centers randomly
 - 2. assign each sample to closest center
- Iteration step
 - 1. compute means in each cluster
 - 2. re-assign each sample to the closest mean

- Initialization step
 - 1. pick *k* cluster centers randomly
 - 2. assign each sample to closest center
- Iteration step
 - 1. compute means in each cluster
 - 2. re-assign each sample to the closest mean
- Iterate until clusters stop changing

- Initialization step
 - 1. pick *k* cluster centers randomly
 - 2. assign each sample to closest center
- Iteration step
 - 1. compute means in each cluster
 - 2. re-assign each sample to the closest mean
- Iterate until clusters stop changing
- Can prove that this procedure decreases the value of the objective function **J**_{SEE}

K-means: Approximate Optimization

- K-means is fast and works quite well in practice
- But can get stuck in a local minimum of objective J_{SFF} •
 - not surprising, since the problem is NP-hard

• with *k* = 2

feature vectors [9 4 2] [7 3 1] [8 6 8] [8 2 4] [5 8 5] [3 7 2] [9 4 5] [2 9 3] [1 4 4]

- with *k* = 2
- Initialize
 - pick [9 4 2] [5 8 5] as cluster centers

f	featur	e v	ec	tors			
[9 4	2]	[7	3	1]	[8	6	8]
[<mark>8 2</mark>	4]	[5	8	5]	[3	7	2]
[<mark>9 4</mark>	5]	[2	9	3]	[1	4	4]

- with *k* = 2
- Initialize
 - pick [9 4 2] [5 8 5] as cluster centers
 - assign each feature vector to closest center

dist($[9 \ 4 \ 2] - [9 \ 4 \ 2]) = 0 \implies [9 \ 4 \ 2]$ goes to pink cluster

- with *k* = 2
- Initialize
 - pick [9 4 2] [5 8 5] as cluster centers
 - assign each feature vector to closest center

dist($[9 \ 4 \ 2] - [9 \ 4 \ 2]) = 0 \implies [9 \ 4 \ 2]$ goes to pink cluster

dist($[7 \ 3 \ 1] - [9 \ 4 \ 2]$) = $(7-9)^2 + (3-4)^2 + (1-2)^2 = 6$ [7 3 1] goes dist($[7 \ 3 \ 1] - [5 \ 8 \ 5]$) = $(7-5)^2 + (3-8)^2 + (1-5)^2 = 45$ to pink cluster

- with *k* = 2
- Initialize
 - pick [9 4 2] [5 8 5] as cluster centers
 - assign each feature vector to closest center

dist($[9 \ 4 \ 2] - [9 \ 4 \ 2]) = 0 \implies [9 \ 4 \ 2]$ goes to pink cluster

dist($[7 \ 3 \ 1] - [9 \ 4 \ 2]$) = $(7-9)^2 + (3-4)^2 + (1-2)^2 = 6$ dist($[7 \ 3 \ 1] - [5 \ 8 \ 5]$) = $(7-5)^2 + (3-8)^2 + (1-5)^2 = 45$ [7 3 1] goes to pink cluster dist($[8 \ 6 \ 8] - [9 \ 4 \ 2]$) = $(8-9)^2 + (6-4)^2 + (8-2)^2 = 41$ dist($[8 \ 6 \ 8] - [5 \ 8 \ 5]$) = $(8-5)^2 + (6-8)^2 + (8-5)^2 = 22$ [8 \ 6 \ 8] goes to blue cluster

- with *k* = 2
- Initialize
 - pick [9 4 2] [5 8 5] as cluster centers
 - assign each feature vector to closest center
 - repeat for the rest of feature vectors
 - **[8 2 4] [5 8 5] [3 7 2]**

[9 4 5] [2 9 3] [1 4 4]

initial clustering

- Iterate
 - compute cluster means

$$\mu_{1} = \frac{[9 \ 4 \ 2] + [7 \ 3 \ 1] + [8 \ 2 \ 4] + [9 \ 4 \ 5]}{4} = [8.25 \ 3.25 \ 3]$$
$$\mu_{2} = \frac{[8 \ 6 \ 8] + [5 \ 8 \ 5] + [3 \ 7 \ 2] + [2 \ 9 \ 3] + [1 \ 4 \ 4]}{5} = [3.8 \ 6.8 \ 4.4]$$

• Iterate

• compute cluster means

 $\mu_1 = [8.25 \ 3.25 \ 3]$

 $\mu_2 = [3.8 \ 6.8 \ 4.4]$

reassign samples to the closest mean

dist($\begin{bmatrix} 9 & 4 & 2 \end{bmatrix}$ - $\begin{bmatrix} 8.25 & 3.25 & 3 \end{bmatrix}$) = $(8.25-9)^2 + (3.25-4)^2 + (3-2)^2 \approx 2$ [9 4 2] goes dist($\begin{bmatrix} 9 & 4 & 2 \end{bmatrix}$ - $\begin{bmatrix} 3.8 & 6.8 & 4.4 \end{bmatrix}$) = $(3.8-9)^2 + (6.8-4)^2 + (4.4-2)^2 \approx 41$ to pink cluster

• Iterate

• compute cluster means

 $\mu_1 = [8.25 \ 3.25 \ 3]$

 $\mu_2 = [3.8 \ 6.8 \ 4.4]$

- reassign samples to the closest mean
 - repeat for

[7 3 1] [8 6 8]

- **[8 2 4] [5 8 5] [3 7 2]**
- **[9 4 5] [2 9 3] [1 4 4]**
- Converged!

k = 3

k = 10

k = 5

K-means Properties

• Works best when clusters are spherical (blob like)

- Fails for elongated clusters
 - **J**_{SEE} is not an appropriate objective function in this case

• Sensitive to outliers

K-means Summary

- Advantages
 - Principled (objective function) approach to clustering
 - Simple to implement
 - Fast
- Disadvantages
 - Only a local minimum is found
 - May fail for non-blob like clusters
 - Sensitive to initialization
 - Sensitive to choice of *k*
 - Sensitive to outliers

Back to FG Segmentation: Improving Data Term

user strokes

initial result

- Can improve segmentation with more user strokes
- But can we get a better initial result?
- We are not using color information in the image effectively

FG Segmentation: Improving Data Term

- Data terms are 0 for most pixels
 - no preference to either foreground or background
- However
 - background strokes are mostly green
 - foreground strokes are mostly grey
- Can we push green non-seed pixels to prefer **background**?
- Can we push grey non-seed pixels to prefer **foreground**?

FG Segmentation: Improving Data Term

Currently have
$\boldsymbol{D}_{p}\left(0 ight)=0$
$D_{\rm p}(1) = 0$
۲
$D_{q}(0) = 0$
$D_{q}(1) = 0$

Want to have:

 $D_p(0) = small$ $D_p(1) = large$

 $D_q(0) = \text{large}$ $D_q(1) = \text{small}$

FG Segmentation: Color Distributions

• Build color *distribution* from foreground seeds

• Build color *distribution* from background seeds

FG Segmentation: Color Distributions

• Build color *distribution* from foreground seeds

• Build color *distribution* from background seeds

Normalized histogram for distribution

 $P_{\text{foreground}}(\text{color}) = \frac{\text{number of foreground seeds of color}}{\text{total number of foreground seeds}}$

FG Segmentation: Color Distributions

- For green pixels p, P_{background}(p) is high, P_{background}(p) low
- We want just the opposite for the data term
- Convert to "opposite" using -log()

• Do the same for the foreground

FG Segmentation: Color Distributions

- $D_{p}(\text{foreground}) = -\log P_{\text{foreground}}(\text{color of } p)$
- $D_p(background) = -\log P_{background}(color of p)$
- Problem:
- The number of colors is too high: 256³
 - too large to build a normalized histogram
- Cluster colors using kmeans clustering, and treat each cluster as the "new" color

FG Segmentation: Cluster Colors

- Need to reduce number of colors
- Group similar colors together and treat the group as the same color
- 10 color clusters with kmeans
 - cluster 1 = color 1
 - cluster 2 = color 2
 - •
 - cluster 10 = color 10
- Now we only have 10 colors
- Build foreground/background color models over 10 "new" colors

clusters visualized with random colors

pixels painted with average color of pixels in its cluster

FG Segmentation: Segmentation Result

segmentation

reduced colors

user input

background D

foreground D

blue pixels prefer foreground red pixels prefer background