
Some slides are from S. Seitz, D. Jacobs, O. Camps, A. Torralba

CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 15

Computer Vision

Grouping and Segmentation

Outline

• Grouping problems in vision

• Image segmentation: grouping of pixels

• Grouping cues in Human Visual System

• Gestalt perceptual grouping laws

• Image Segmentation

• 2-region (binary)
• thresholding

• graph cuts

• used in MS office 2010 for background removal

• based on the work of our faculty Yuri Boykov

• General Grouping (or unsupervised learning)

• K-means clustering

Examples of Grouping in Vision
• Group pixels into regions

• image segmentation

• Group video frames into shots

• Group image regions into objects

Image Segmentation

• For many applications, useful to segment image pixels into
blobs that (hopefully) belong to the same object or surface

• How to do this without (necessarily) object recognition?
• a bit subjective, but well-studied

• Inspiration from Gestalt psychology
• humans perceive the world as a collection of objects with relationships

between them, not as a set of pixels

Gestalt Psychology

• Whole is greater than
the sum of its parts
• eye sees an object in

its entirety before
perceiving its
individual parts

• Identified factors that
predispose a set of
elements to be
grouped by human
visual system
• perceptual grouping

Grouping

• Most human observers report no particular grouping

Gestalt Principles of Grouping

• Common form, includes:

shape color size

• Proximity

Gestalt Principles of Grouping

Gestalt Principles of Grouping

• Good continuation

Gestalt Principles of Grouping

• Connectivity

• stronger than color

Gestalt Principles of Grouping

• Symmetry

Gestalt Principles of Grouping

• Familiarity

Gestalt Principles of Grouping
• Closure

Gestalt Principles of Grouping

• Closure

Gestalt Principles of Grouping

• Closure

Gestalt Principles of Grouping

• Common fate

Gestalt Principles of Grouping

• Higher level knowledge?

• Many other Gestalt grouping principles
• parallelism, convexity, colinearity, common depth, etc.

• Gestalt principles are an inspiration to computer vision
• they seem to rely on nature of objects in the world, most do

not involve higher level knowledge (object recognition)

• should help to segment objects without necessarily
performing object recognition

• But most are difficult to implement in algorithms
• used often

• color, proximity
• we will use these as well

• used sometimes
• convexity, good continuation, common motion, colinearity

Gestalt Principles of Grouping

Image Segmentation

• Many types of image segmentation

superpixels regions figure-ground

• We will focus on figure-ground (FG)
• also called object/background segmentation

FG Segmentation: Thresholding
• Suppose the object is brighter than the background

• Threshold gray scale image f:

if f(x,y) < T then pixel (x,y) is background

if f(x,y) ≥ T then pixel (x,y) is foreground

T = 120 T = 180 T = 220

FG Segmentation: Thresholding

• Tiny isolated foreground regions, isolated background regions

• Result looks wrong even if you did not know object is a swan

• Can we clean this result up?

FG Segmentation: Motivation

• Know object is light, background is dark

• Do not know object shape
• show background with red, foreground with blue

bad result: crazy
object shape

bad result: object
is dark,

background light

good result: light
object of good shape,

dark background

input image

FG Segmentation: Energy Function
• Formulate an objective or energy

function E to measure how good
segmentation is
• low value means good segmentation

E()= high

E()=high

E()=low

• After energy function is designed,
search over all possible
segmentations for the best one
• one with lowest energy

FG Segmentation: Energy Function
• Energy has two terms

• data term:
• makes it cheap to assign light pixels to

foreground, expensive to the background

• makes it cheap to assign dark pixels to the
background, and expensive to the foreground

• smoothness term: ensures nice
object shape

• both terms are needed for a good energy
function

input image f

19

19
19 19 19

19

19 17
17 17

10 10

10 10
10

10 10 10

10 5
5

5
5

7

7

FG Segmentation: Data Term
• Should be cheap to assign light pixels to foreground, expensive

to the background

• For each pixel (x,y), we will pay D (x,y)(background) to assign it to
background and D(x,y))(foreground) to assign it to the foreground

• Let the smallest image intensity be 5, and largest 20

D(x,y)(background) = f(x,y) – 5

 D(x,y)(foreground) = 20 - f(x,y)

input image f

19
19
20 19 19

19

19 17
19 17

11 11
11 11
11

11 11 11
11 5

5
5
5

7

7

foreground data term D

 1

 1

 0
 1
 1

 1
 1 1

 3
 3 9 9

 9 9
 9

 9
 9 9 9

 13

 13

 15 15
 15 15

background data term D

 14

14

 15
 14
 14

 14
 14 14

 12
 12 6 6

 6 6
 6

 6
 6 6 6

 2

 2

 0 0
 0 0

• Brown pixel prefers foreground, green prefers background

FG Segmentation: Data Term

foreground D

 1

 1

 0
 1
 1

 1
 1 1

 3
 3 9 9

 9 9
 9

 9
 9 9 9

 13

 13

 15 15
 15 15

background D

 14

14

 15
 14
 14

 14
 14 14

 12
 12 6 6

 6 6
 6

 6
 6 6 6

 2

 2

 0 0
 0 0

• Edata sums data D (x,y) term
over all pixels (x,y)

• Foreground blue, background red

Edata = 6+3+1+6+1+
 3+1+1+9+9+
 1+1+0+6+2+
 9+6+9+0+0+
 6+1+2+0+0
 = 73

Edata = 283

Edata = 97

FG Segmentation: Smoothness Term
• Smoothness term: ensures nice object shape

• Consider segmentations below

17 discontinuities 8 discontinuities

bad shape nice shape

• discontinuity: when two nearby pixels are in different segments

• smoothness term is the number of discontinuities

nice shape

7 discontinuities

Esmooth = 17 Esmooth = 8 Esmooth = 7

FG Segmentation: Total Energy

Edata = 73
Esmooth = 17
E = Edata + Esmooth = 90

• Now combine both data and smoothness energy terms

Edata = 283
Esmooth = 7
E = Edata + Esmooth = 290

Edata = 97
Esmooth = 8
E = Edata + Esmooth = 105

• What went wrong ?

• Smoothness term weighs very little relative to the data term
• it basically gets ignored in the combined energy

• Solution: increase the weight of the smoothness term

best

FG Segmentation: Total Energy

Edata = 73
Esmooth = 170
E = Edata + Esmooth = 243

Edata = 83
Esmooth = 70
E = Edata + Esmooth = 353

Edata = 97
Esmooth = 80
E = Edata + Esmooth = 177

• Solution: increase the weight of the smoothness term

E = Edata +λ Esmooth

• Take, for example, λ = 10
best

FG Segmentation: Energy Formula
• Now we need to put everything into formulas

• s(x,y) is the segmentation label
s(x,y) = 1 means (x,y) is foreground pixel

s(x,y) = 0 means (x,y) is background pixel

input image f

     sEsEsE smoothdata      



Nqp

qp
p

pp sssD
),(



segmentation s

• Convenient to write pixel (x,y) as p (or q, r,…)

• Denote all pairs of nearby pixels: N

p q r
v u w

z h y

N ={ (p,q), (p,r), (v,u), (u,w),
 (y,h), (h,z), (p,v), (v,y),
 (q,u), (u,h), (r,w), (w,z) }

• where [true] = 1, [false] = 0

0 0

0 0
0

0
0 0

0 0 0

1 1 1

1
1
1

1
1

1

1
1
1

1 1

FG Segmentation: Formula Practice with λ= 1

     



Nqp

qp
p

pp sssDsE
),(



 Dp(0) + Dq(1) + Dr(0)
 Dv(0) + Du(0) + Dw(0)
 Dy(0) + Dh(1) + Dz(1)

background D

 0
 1
 1

 1
 1 1

 3
 3 9

foreground D

 15
 14
 14

 14
 14 14

 12
 12 6 p q r

v u w
z h y

pixel names

 [sp≠sq] + [sq≠sr] + [sv≠su]
 [su≠sw] + [sy≠sh] + [sh≠sz]
 [sp≠sv] + [sq≠su] + [sr≠sw]
 [sv≠sy] + [su≠sh] + [sw≠sz] segmentation s

1

1 1

0 0
0
0

0 0 E()=

=
 9 + 12 + 1
 3 + 1 + 1
 1 + 14 + 15

+

+

1 + 1 + 0
0 + 1 + 0
0 + 1 + 0
0 + 1 + 1

= 57+ 6= 63

FG Segmentation: Contrast Sensitive Discontinuity

• Where is object boundary more likely?

• Make discontinuity cost depend on image contrast
• helps align object boundary with image edges

small cost

large cost

• Replace [sp≠sq] with wpq[sp≠sq] where wpq is
• large if intensities of pixels p,q are similar

• small if intensities of pixels p,q are not similar

FG Segmentation: Contrast Sensitive Discontinuity

• Good choice wpq

    
2

2

2
qfpf

e






• Here f(p) is intensity of pixel p, f(q) intensity of pixel q

• for color image, replace (f(p) - f(q))2 with f(p) – f(q) 2

• equivalent to processing each color channel individually

• Parameter σ2 is either

• set by hand (trail and error)

• or computed as average of (f(p)-f(q))2 over all neighbors in N

  



Nqp

qppq
p

pp sswsDsE
),(

][)(

• Complete energy:

• note that is now folded into wpq

FG Segmentation: Example

contrast sensitive
weights

p q r
v u w

z h y

pixel names

 3[sp≠sq] + 2[sq≠sr] + 6[sv≠su]
 2[su≠sw] + 7[sy≠sh] + 1[sh≠sz]
 3[sp≠sv] + 2[sq≠su] + 6[sr≠sw]
 4[sv≠sy] + 2[su≠sh] + 1[sw≠sz] segmentation s

E()= data term as before

= 57

+

+

3 + 2 + 0
0 + 7 + 0
0 + 2 + 0
0 + 2 + 1

= 57+ 15= 72

  



Nqp

qppq
p

pp
sswsDsE

),(

][)(
3 5 6

1

1

2
2

4

7

6

3 2

1

1 1

0 0
0
0

0 0

FG Segmentation: Optimization

• We are all set to find the best segmentation s*

s*=arg min E(s)
s

• How to do this efficiently?

• Even for a 9 pixel image, there are 29 possible
segmentations!

...

• O(2n) for an n pixel image

 FG Segmentation: Optimization Graph
• Build weighted graph

• one node per pixel
• connect to neighbor pixel nodes with weight wpq

foreground D

 0
 1
 1

 1
 1 1

 3
 3 9

background D

 15
 14
 14

 14
 14 14

 12
 12 6

contrast sensitive
weights

3 5 6

1

1

2
2

4

7

6

3 2

p q r
v u w

z h y
pixel names

3 2

6 2

7 1

3

4 2

5 6

1

s t

 6

 12

 14

 1

 1

 0
v u

p

y h z

w

r q

• two special nodes (terminals) source s, sink t
 • s connects to each pixel node p with weight Dp(0)

 • t connects to each pixel node p with weight Dp(1)

 • graph below omits most of these edges for clarity

 FG Segmentation: Optimization with Graph Cut

• Cut is subset of edges C s.t. removing C
from graph makes s and t disconnected
• cost of cut C is sum of its edge weights

+

v

p

y

3

4

s t

 6

 12

 14

 9

 3

 1
• Minimum Graph Cut Problem

• find a cut C of minimum cost

cut of cost 38

min cut of cost 13

• Efficient algorithms for min-cut/max-flow

v

p

y

3

4

s t

 6

 12

 14

 9

 3

 1

• Minimum cut C gives the smallest cost
segmentation [Boykov&Veksler, 1998]
• nodes that stay connected to source in

the `cut’ graph become foreground

• nodes that stay connected to sink in the
`cut’ graph become background

• In the example, p gets background label,
v and y get foreground label

FG Segmentation: Segmentation Result

horizontal vertical

• Contrast sensitive edge weights

• dark means low weight, bright high
weight

• Data terms

• blue means low weight, red high
weight

input segmentation

background foreground

FG Segmentation: Interactive
• What if we do not know object/background color?

• Can ask user for help

• Interactive Segmentation [Boykov&Jolly, 2001]

• User scribbles foreground and background seeds
• these are hard constrained to be foreground and background, respectively

• for any pixel p that user marks as a foreground, set Dp(1) = 0, Dp(0) = 

• for any pixel p that user marks as a background, set Dp(1) = , Dp(0) = 0

• for unmarked pixels, set Dp(1) = Dp(0) = 0

• Smoothness term is as before
• Contrast sensitive works best for interactive segmentation

Dp(0) = 

Dp(1) = 0

Dp(0) = 0

Dp(1) = 

background D foreground D

FG Segmentation: Interactive Results

• Initial seeds:

• Add more seeds for correction:

FG Segmentation: More Interactive Results

General Grouping or Clustering
• General Clustering (Grouping)

• Have samples (also called feature vectors,
examples, etc.) x1,…,xn

recall supervised learning

• Cluster similar samples into groups

• This is also called unsupervised learning
• samples have no labels

• think of clusters as ‘discovering’ labels

horror movies

documentaries

sci-fi movies

How does this Relate to Image Segmentation?

• Represent image pixels as feature vectors x1,…,xn
• For example, each pixel can be represented as

• intensity, gives one dimensional feature vectors

• color, gives three-dimensional feature vectors

• color + coordinates, gives five-dimensional feature vectors

• Cluster them into k clusters, i.e. k segments

 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

input image feature vectors for
clustering based on color

[9 4 2] [7 3 1] [8 6 8]

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

How does this Relate to Image Segmentation?

 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

input image feature vectors for
clustering based on color

and image coordinates

[9 4 2 0 0] [7 3 1 0 1] [8 6 8 0 2]

[8 2 4 1 0] [5 8 5 1 1] [3 7 2 1 2]

[9 4 5 2 0] [2 9 3 2 1] [1 4 4 2 2]

K-means Clustering: Objective Function

• Probably the most popular clustering algorithm
• assumes know the number of clusters should be k

• Optimizes (approximately) the following objective function


 


k

i Dx
iSSE

i

xJ
1

2



D1 D2

D3 3

1

2


SSE

J + +

K-means Clustering: Objective Function

D1 D2

D3 3

1

2


SSE

J + +

D1

D2

D3 3

1

2

Good (tight) clustering
smaller value of JSSE

Bad (loose) clustering
larger value of JSSE


SSE

J + +

K-means Clustering: Algorithm

• Initialization step

1. pick k cluster centers randomly

K-means Clustering: Algorithm

• Initialization step

1. pick k cluster centers randomly

K-means Clustering: Algorithm

• Initialization step

1. pick k cluster centers randomly

2. assign each sample to closest center

K-means Clustering: Algorithm

• Initialization step

1. pick k cluster centers randomly

2. assign each sample to closest center

 • Iteration step

1. compute means in each cluster

K-means Clustering: Algorithm

• Initialization step

1. pick k cluster centers randomly

2. assign each sample to closest center

 • Iteration step

1. compute means in each cluster

2. re-assign each sample to the closest mean

K-means Clustering: Algorithm

• Initialization step

1. pick k cluster centers randomly

2. assign each sample to closest center

 • Iteration step

1. compute means in each cluster

2. re-assign each sample to the closest mean

• Iterate until clusters stop changing

K-means Clustering: Algorithm

• Initialization step

1. pick k cluster centers randomly

2. assign each sample to closest center

 • Iteration step

1. compute means in each cluster

2. re-assign each sample to the closest mean

• Iterate until clusters stop changing

 • Can prove that this procedure decreases the
value of the objective function JSEE

K-means: Approximate Optimization

• K-means is fast and works quite well in practice

• But can get stuck in a local minimum of objective JSEE

• not surprising, since the problem is NP-hard

global minimum converged to local min

initialization

K-means Clustering: Example

 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

• with k = 2

feature vectors

[9 4 2] [7 3 1] [8 6 8]

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

K-means Clustering: Example

 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

• with k = 2

• Initialize

• pick [9 4 2] [5 8 5] as
cluster centers

feature vectors

[9 4 2] [7 3 1] [8 6 8]

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

K-means Clustering: Example

• with k = 2

• Initialize

• pick [9 4 2] [5 8 5] as
cluster centers

• assign each feature vector
to closest center

 dist([9 4 2] - [9 4 2]) = 0  [9 4 2] goes to pink cluster

 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

K-means Clustering: Example

• with k = 2

• Initialize

• pick [9 4 2] [5 8 5] as
cluster centers

• assign each feature vector
to closest center

 dist([9 4 2] - [9 4 2]) = 0  [9 4 2] goes to pink cluster

dist([7 3 1] - [9 4 2]) = (7-9)2 + (3-4)2 + (1-2)2 = 6

dist([7 3 1] – [5 8 5]) = (7-5)2 + (3-8)2 + (1-5)2 = 45

 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

 [7 3 1] goes
to pink cluster

K-means Clustering: Example

• with k = 2

• Initialize

• pick [9 4 2] [5 8 5] as
cluster centers

• assign each feature vector
to closest center

 dist([9 4 2] - [9 4 2]) = 0  [9 4 2] goes to pink cluster

dist([7 3 1] - [9 4 2]) = (7-9)2 + (3-4)2 + (1-2)2 = 6

dist([7 3 1] – [5 8 5]) = (7-5)2 + (3-8)2 + (1-5)2 = 45

 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

 [7 3 1] goes
to pink cluster

dist([8 6 8] - [9 4 2]) = (8-9)2 + (6-4)2 + (8-2)2 = 41

dist([8 6 8] – [5 8 5]) = (8-5)2 + (6-8)2 + (8-5)2 = 22

 [8 6 8] goes
to blue cluster

K-means Clustering: Example

• with k = 2

• Initialize

• pick [9 4 2] [5 8 5] as
cluster centers

• assign each feature vector
to closest center

• repeat for the rest of
feature vectors

 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

initial clustering

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

K-means Clustering: Example

• Iterate

• compute cluster means
 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

initial clustering

[8 6 8] + [5 8 5] + [3 7 2] + [2 9 3] + [1 4 4]

 [9 4 2] + [7 3 1] + [8 2 4] + [9 4 5]

1 = =
4

[8.25 3.25 3]

2 = =
5

[3.8 6.8 4.4]

K-means Clustering: Example

• Iterate

• compute cluster means
 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

initial clustering

1 = [8.25 3.25 3]

 2 = [3.8 6.8 4.4]

 • reassign samples to the closest mean

dist([9 4 2] - [8.25 3.25 3]) = (8.25-9)2 + (3.25-4)2 + (3-2)2  2

dist([9 4 2] – [3.8 6.8 4.4]) = (3.8-9)2 + (6.8-4)2 + (4.4-2)2  41

 [9 4 2] goes
to pink cluster

K-means Clustering: Example

• Iterate

• compute cluster means
 8

4
 2

 5

5
 8

 3

2
 7

 9

2
 4

 7

1
 3

 8

8
 6

 9

5
 4

 2

3
 9

 1

4
 4

initial clustering

1 = [8.25 3.25 3]

 2 = [3.8 6.8 4.4]

 • reassign samples to the closest mean

• repeat for
[7 3 1] [8 6 8]

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

• Converged!

K-means Clustering: Examples

k = 3

k = 10 k = 5

K-means Properties
• Works best when clusters are spherical (blob like)

• Fails for elongated clusters
• JSEE is not an appropriate objective function in this case

• Sensitive to outliers

K-means Summary

• Advantages

• Principled (objective function) approach to clustering

• Simple to implement

• Fast

• Disadvantages

• Only a local minimum is found

• May fail for non-blob like clusters

• Sensitive to initialization

• Sensitive to choice of k

• Sensitive to outliers

Back to FG Segmentation: Improving Data Term

• Can improve segmentation with more user strokes

• But can we get a better initial result?

• We are not using color information in the image effectively

initial result user strokes

FG Segmentation: Improving Data Term

• Data terms are 0 for most pixels
• no preference to either foreground or background

• However
• background strokes are mostly green

• foreground strokes are mostly grey

• Can we push green non-seed pixels to prefer background?

• Can we push grey non-seed pixels to prefer foreground?

foreground D background D

FG Segmentation: Improving Data Term

 Dp (0) = 0 Dp(0) = small

 Dp (1) = 0 Dp(1) = large

foreground D background D

p q

 Dq (0) = 0 Dq(0) = large

 Dq (1) = 0 Dq(1) = small

Currently have: Want to have:

FG Segmentation: Color Distributions

• Build color distribution from foreground seeds

• Build color distribution from background seeds

color

P(color)

color

P(color)

FG Segmentation: Color Distributions
• Build color distribution from foreground seeds

• Build color distribution from background seeds

color

P(color)

color

P(color)

• Normalized histogram for distribution

 Pforeground(color) = number of foreground seeds of color
total number of foreground seeds

FG Segmentation: Color Distributions
• For green pixels p, Pbackground(p) is high, Pbackground(p) low

• We want just the opposite for the data term

• Convert to “opposite” using –log()

• Do the same for the foreground

Pforeground(color)

color

Pbackground(color)

color color

-log Pforeground(color)

color

-log Pbackground(color)

FG Segmentation: Color Distributions

• Dp(foreground) = - log Pforeground(color of p)

• Dp(background) = - log Pbackground(color of p)

• Problem:

• The number of colors is too high: 2563

• too large to build a normalized histogram

• Cluster colors using kmeans clustering, and treat each cluster as
the “new” color

color

-log Pforeground(color)

color

-log Pbackground(color)

FG Segmentation: Cluster Colors
• Need to reduce number of colors

• Group similar colors together and treat
the group as the same color

• 10 color clusters with kmeans
• cluster 1 = color 1

• cluster 2 = color 2

• …

• cluster 10 = color 10

 • Now we only have 10 colors

• Build foreground/background color
models over 10 “new” colors

clusters visualized with
random colors

pixels painted with average
color of pixels in its cluster

FG Segmentation: Segmentation Result

user input reduced colors segmentation

foreground D background D blue pixels prefer foreground
red pixels prefer background

