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Boosting: Motivation 

• Hard to design accurate classifier which generalizes well 

• Easy to find many rule of thumb or weak classifiers 

• a classifier is weak if it is slightly better than random guessing 

• example: if an email has word “money” classify it as spam, 
otherwise  classify it as not spam 

• likely to be better than random guessing 

• Can we combine several weak classifiers to produce an 
accurate classifier? 

• Question people have been working on since 1980’s 

• Ada-Boost (1996)  was the first practical boosting algorithm 

 



Ada Boost: General form 
• Assume 2-class problem, with labels +1 and -1 

• yi in {-1,1}  

• Ada boost produces a discriminant function:  
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• Where ht(x) is a weak classifier, for example: 

• The final classifier is the sign of the discriminant function  

ffinal(x) = sign[g(x)]  
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Ada Boost: Weak Classifiers 
• Degenerate decision trees   (decision stumps) are 

frequently used as weak classifiers 
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• Based on thresholding just one feature  
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Ada Boost: Weak Classifiers 

• Based on thresholding one feature  
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• Reverse polarity: 
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• There are approximately 2*n*d  distinct decision stump 
classifiers, where 

• n is number of training samples, d is dimension of samples 

• We will see why later 

• Small decision trees are also popular weak classifiers 

 



Idea Behind Ada Boost 

• Algorithm is iterative 

• Maintains distribution of weights over the training 
examples 

• Initially weights are equal 

• Main Idea: at successive iterations, the weight of 
misclassified examples is increased 

• This forces the algorithm to concentrate on examples 
that have not been classified correctly so far 



Weighted Examples 

• Training examples are weighted with distribution D(x)  

• Many classifiers can handle weighted examples 

• But if  classifier does not handle weighted examples we can 
sample k > n examples according to distribution  D(x):  

• Apply classifier to the resampled data 

1/16 1/4 1/16 1/16 1/4 1/16 1/4 

original data: 

D(x): 
 

data resampled 
according to D(x): 



Idea Behind Ada Boost 
• misclassified examples get more weight 

• more attention to examples of high weight 

• Face/nonface classification problem: 

Round 1 

1/7 1/7 1/7 1/7 1/7 1/7 1/7 

change weights: 1/16 1/4 1/16 1/16 1/4 1/16 1/4 

              best weak classifier: 

                    best weak classifier: 

1/8 1/32 11/32 1/2 1/8 1/32 1/32 change weights: 

Round 2 



Idea Behind Ada Boost 
Round 3 

                        

• out of all available weak classifiers, we choose the one 
that works best on the data we have at round 3 

• we assume there is always a weak classifier better than 
random (better than 50% error)     

•        image is 50% of our data 

• chosen weak classifier has to classify this image correctly        



More Comments on Ada Boost 

• Ada boost is very simple to implement, provided you have 
an implementation of a “weak learner” 

•  Will work as long as the “basic” classifier ht(x) is at least 
slightly better than random  

• will work if the error rate of ht(x) is less than  0.5  

• 0.5 is the error rate of a random guessing  for a 2-class problem 

• Can be applied to boost any classifier, not necessarily 
weak 

• but there may be no benefits in boosting a “strong” classifier 

 



 
Ada Boost for 2 Classes 

 Initialization step: for each example x, set  

Iteration step (for t = 1…T): 
1. Find best weak classifier ht(x) using weights D(x) 

2. Compute the error rate  εt  as  
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Ada Boost: Step 1 
1. Find best weak classifier ht(x) using weights D(x) 

• use resampled data if classifier does not handle weights 

• decision stump weak classifier handles weights 
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if  x3  ≤  5 
• weak classifier:  

• error rate: 1/16 + 1/16 + 1/4 =  3/8   



1. Find best weak classifier ht(x) using weights D(x) 

• To find the best weak classifier, go through all 
weak classifiers, and find the one that gives the 
smallest error on the re-sampled examples 

h1(x)  h2(x)  h3(x)  hm(x)  ……..… 

errors: 0.46 0.36 0.16 0.43 

the best classifier ht(x) 
to choose at  iteration t 

Ada Boost: Step 1 

• Give to the classifier the re-sampled examples: 

weak 
classifiers 



2. Compute εt  the error rate as  

• εt  is the weight of all misclassified examples added 

• the error rate is computed over original examples, not the 
re-sampled examples 

• If a weak classifier is better than random, then εt < ½ 

1/16 1/4 1/16 1/16 1/4 1/16 1/4 
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3. compute weight t  of classifier ht   

t = ½ log ((1 – εt )/εt ) 

• Recall that  εt < ½ 

• Thus (1- ε t)/ εt > 1     t > 0 

• The smaller is εt, the larger is t, and thus the more 
importance (weight) classifier ht(x)   

                      final(x) =sign [ ∑ t ht (x) ] 

 

In example from previous slide:  
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Ada Boost: Step 3 



4. For each xi
 , D(xi) =D(xi)exp(- ty

i ht(x
i
 ) ]) 

• weight of misclassified examples is increased 

• weight of correctly classified examples is decreased 
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Ada Boost: Step 4 



5. Normalize D(xi) so that  ∑ D(xi) = 1 

• In Matlab, if D is weights vector, normalize with 

  D = D./sum(D) 

0.04 0.17 0.04 0.14 0.56 0.04 0.17 

from previous slide:  

•    after normalization 

0.03 0.15 0.03 0.12 0.48 0.03 0.15 

Ada Boost: Step 5 



AdaBoost  Example 
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AdaBoost  Example 

• Decision stump weak 
classifiers 
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error 0.6 
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AdaBoost  Example 

• How many distinct classifiers 
based on thresholding feature 
1 are there ? 
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AdaBoost  Example 

• How many distinct classifiers 
based on thresholding feature 
1 are there ? 
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•  6 samples misclassified, same 
classifier as with threshold 7 
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AdaBoost  Example 

• Values of feature 1 in C1 and C2: 

1, 2, 3, 4, 5, 6, 8, 9 
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• Thresholds between any two consecutive values give same classifier 

• take two thresholds between 4 and 5, for example: 

   

• get the same classifier with error 0.3 
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AdaBoost  Example 

• Values of feature 1 in C1 and C2: 

1, 2, 3, 4, 5, 6, 8, 9 

• Take one  threshold between each 
pair of feature values: 

a {1.5, 2.5, 3.5, 4.5, 5.5, 7, 8.5} 
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AdaBoost  Example 

• Values of feature 1 in C1 and C2: 

1, 2, 3, 4, 5, 6, 8, 9 

• Two more distinct classifiers using a 
value smaller and larger than any 
value for feature 1, but these 
classifiers are largely useless: 

a {0,10} 
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• Thresholds leading to distinct 
classifiers 

a {0, 1.5, 2.5, 3.5, 4.5, 5.5, 7, 8.5, 10} 

   



AdaBoost  Example 
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• Reverse polarity to double number 
of  classifiers: 

   

• Note error rates are reversed, 
compared to the same threshold 
but different polarity 

   

• Thresholds leading to distinct 
classifiers 

a {0, 1.5, 2.5, 3.5, 4.5, 5.5, 7, 8.5, 10} 
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AdaBoost  Example 
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a {1, 2.5, 4.5, 6.5, 7.5, 8.5, 9.5, 11} 

   

• Similar for feature 2 

   



























88

106

95

61

32

1C

• Distinct values of feature 2: 
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AdaBoost  Example 
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• Thresholds leading to distinct 
classifiers 

a {1, 2.5, 4.5, 6.5, 7.5, 8.5, 9.5, 11} 

   

• Reverse polarity 

   



AdaBoost  Example 

• Thus total number of decision-stump weak classifiers is, 
approximately,    2 ∙ n ∙ d 

• d is number of features 

• n is times number of samples 

• 2 comes from polarity 

• Small (shallow) decision trees are also popular as weak 
classifiers 

• gives more weak classifiers 



AdaBoost  Example 
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• Initialization: all examples have equal weights 
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AdaBoost  Example: Round 1 

1
x

2
x• Classifier chosen: 
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AdaBoost  Example: Round 2 

1
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x• Classifier chosen: 

   

• ε2 = 0.21, α 2 = 0.66 
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AdaBoost  Example: Round 3 
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• ε3 = 0.12, α 3 = 1.0 

   



AdaBoost  Final Classifier 

ffinal (x)=  

 

   sign  0.42                      +0.66                         +1.0                        

      =                  



AdaBoost Comments 
• Can show that training error drops exponentially fast 

 
t ttrain

expErr
2

2 

• Here t  =  t  – 1/2, where t is classification error at 
round t   

 • Example: let errors for the first four rounds be, 0.3, 
0.14, 0.06, 0.03, 0.01 respectively. Then 

  
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• Thus log (n) rounds of boosting are sufficient to get 
zero training error  

• provided weak learners are better than random 



AdaBoost Comments 
• We are really interested in the generalization properties of  

fFINAL(x), not the training error 

• AdaBoost was shown to have excellent generalization 
properties in practice 
• the more rounds, the more complex is the final classifier, so overfitting 

is expected as the training proceeds  

• but in the beginning researchers observed no overfitting of the data 

• It turns out it does overfit data eventually, if you run it really long 

• It can be shown that boosting increases the margins of 
training examples, as iterations proceed 
• larger margins help better generalization 

• margins continue to increase even when training error reaches zero 

• helps to explain empirically observed phenomena: test error continues 
to drop even after training error reaches zero 

 



AdaBoost Example 
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Margin Distribution 

Iteration number 5 100 1000 

training error 0.0 0.0 0.0 

test error 8.4 3.3 3.1 

%margins0.5 7.7 0.0 0.0 

Minimum margin 0.14 0.52 0.55 



Practical Advantages of AdaBoost 

• Can construct arbitrarily complex decision 
regions 

• Fast 

• Simple 

• Has only one parameter to tune, T 

• Flexible: can be combined with any classifier  

• provably effective (assuming weak learner) 

• shift in mind set: goal now is merely to find 
hypotheses that are better than random guessing 



Caveats 

• AdaBoost can fail if 

• weak hypothesis too complex (overfitting) 

• weak hypothesis too weak (t0 too quickly), 

• underfitting 

• empirically, AdaBoost seems especially 
susceptible to noise 

• noise is the data with wrong labels 



Applications 

• Face Detection 

 

 

 

 

 

 

• Object Detection 
http://www.youtube.com/watch?v=2_0SmxvDbKs  

http://www.youtube.com/watch?v=2_0SmxvDbKs

