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Neural Networks 

Many presentation Ideas are due to Andrew NG 
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Need for Non-Linear Discriminant 

• Previous lecture studied linear discriminant 

• Works for linearly (or almost) separable cases 

• Many problems are far from linearly separable 

• underfitting with linear model 

x1 

x2 

g(x) = w0+w1x1+w2x2 

x1 

x2 



Need for Non-Linear Discriminant 
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• Can use other discriminant functions, 
like quadratics 

            g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2 

• Methodology is almost the same as 
in the linear case: 

•  f(x)   = sign(w0+w1x1+w2x2+w12x1x2 +w11x1
2 + w22x2

2) 

•      z   =        [ 1        x1        x2            x1 x2         x1
2           x2

2] 

•      a   =       [ w0      w1       w2         w12           w11
          w22] 

• “normalization”:  multiply negative class samples by -1 

• gradient descent to minimize Perceptron objective 
function 

  



Need for Non-Linear Discriminant 

x1 

x2 • May need highly non-linear decision 
boundaries 

• This would require too many high order 
polynomial terms to fit  

 g(x) = w0+w1x1+w2x2+ 
         + w12x1x2 + w11x1

2 +w22x2
2 + 

         + w111x1
3+ w112x1

2x2 +w122x1x2
2 + w222x2

3 +  
         + even more  terms of degree 4 
         + super many terms of degree k 

 • For n features, there O(nk) polynomial terms of degree k 

• Many real world problems are modeled with  hundreds and 
even thousands features 

• 10010 is too large of function to deal with 



Neural Networks 

x1 

x2 • Neural Networks correspond to some 
discriminant function gNN(x) 

• Can carve out arbitrarily complex 
decision boundaries without requiring so 
many terms as polynomial functions 

• Neural Nets were inspired by research in 
how human brain works 

• But also proved to be quite successful in 
practice 

• Are used nowadays successfully for a 
wide variety of applications 

• took some time to get them to work 

• now used by US post for postal code 
recognition 

 



Neural Nets: Character Recognition 

• http://yann.lecun.com/exdb/lenet/index.html 
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Yann LeCun et. al. 

http://yann.lecun.com/exdb/lenet/index.html


Brain vs. Computer 

• usually one very fast processor 

• high reliability 

• designed to solve logic and 
arithmetic problems 

• absolute precision 

• can solve a gazillion arithmetic 
and logic problems in an hour 

 

• huge number of parallel but 
relatively slow and unreliable 
processors 

• not perfectly precise, not 
perfectly reliable 

• evolved (in a large part) for 
pattern recognition 

• learns to solve various PR 
problems 

seek inspiration for classification from human brain 



One Learning Algorithm Hypothesis 

• Brain does many different things 

• Seems like it runs many different 
“programs” 

• Seems we have to write tons of 
different programs to mimic brain 

• Hypothesis: there is a single underlying learning algorithm 
shared by different parts of the brain 

• Evidence from neuro-rewiring experiments 

[Roe et al, 1992] 

• Auditory cortex learns to see  

• animals will eventually learn to perform a variety of object 
recognition tasks 

• There are other similar rewiring experiments 
 

 

• Route signal from eyes to the auditory cortex 

 

• Cut the wire from ear to auditory cortex 



Seeing with Tongue 
• Scientists use the amazing ability of the 

brain to learn to retrain brain tissue  

• Seeing with tongue 

• BrainPort Technology  

• Camera connected to a tongue array sensor 

• Pictures are “painted” on the tongue 
• Bright pixels correspond to high voltage 

• Gray pixels correspond to medium voltage 

• Black pixels correspond to no voltage 

• Learning takes from 2-10 hours 

• Some users describe experience resembling a 
low resolution version of vision they once had 

• able to recognize high contrast object, their location, 
movement tongue array 

sensor 



One Learning Algorithm Hypothesis 

• Experimental evidence that we can plug any sensor to any part 
of the brain, and brain can learn how to deal with it 

• Since the same physical piece of brain tissue can process sight,  
sound, etc.  

• Maybe there is one learning algorithm can process sight, 
sound, etc.  

• Maybe we need to figure out and implement an algorithm that 
approximates what the brain does 

• Neural Networks were developed as a simulation of  networks 
of neurons in human brain 



Neuron: Basic Brain Processor 

• Neurons (or nerve cells) are special cells that 
process and transmit information by 
electrical signaling 
•  in brain and also spinal cord 

• Human brain has around 1011 neurons   

• A neuron connects to other neurons to form 
a network 

• Each neuron cell communicates to anywhere 
from 1000 to 10,000 other neurons 



Neuron: Main Components 
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dendrites 

nucleus 

cell 
body 

axon 

axon 
terminals 

• cell body 
• computational unit 

• dendrites  
• “input wires”, receive inputs from other neurons 

• a neuron may have thousands of dendrites, usually short 

• axon  
• “output wire”, sends signal to other neurons 

• single long structure (up to 1 meter) 

• splits in possibly thousands branches at the end, “axon terminals” 



Neurons in Action (Simplified Picture) 

• Cell body collects and processes  
signals from other neurons 
through dendrites  

• If there the strength of incoming 
signals is large enough, the cell 
body sends an electricity pulse (a 
spike)  to its axon 

• This is the process by which all human 
thought, sensing, action, etc. happens 

• Its axon, in turn,  connects to 
dendrites of other neurons, 
transmitting spikes to other neurons 

 



Artificial Neural Network (ANN) History: Birth 

• 1943, famous paper by W. McCulloch (neurophysiologist)  and W. 
Pitts (mathematician)  
• Using only math and algorithms, constructed a model of how neural 

network may work 

• Showed it is possible to construct any computable function with their 
network 

• Was it possible to make a model of thoughts of a human being? 

• Can be considered to be the birth of AI 

• 1949,  D. Hebb, introduced the first (purely pshychological) 
theory of learning 
• Brain learns at tasks through life, thereby it goes through tremendous 

changes 

• If two neurons fire together, they strengthen each other’s responses and 
are likely to fire together in the future 



ANN History: First Successes 

• 1958, F. Rosenblatt,  

• perceptron, oldest neural network still in use today 
• that’s what we studied in lecture on linear classifiers 

• Algorithm to train the perceptron network 

• Built in hardware 

• Proved convergence in linearly separable case 

• 1959, B. Widrow and M. Hoff  

• Madaline 

• First ANN applied to real problem 

• eliminates echoes in phone lines 



ANN History: Stagnation 

• Early success lead to a lot of claims which were not 
fulfilled 

• 1969, M. Minsky and S. Pappert 

• Book “Perceptrons” 

• Proved that perceptrons can learn only linearly separable 
classes 

• In particular cannot learn very simple XOR function 

• Conjectured that multilayer neural networks also limited by 
linearly separable functions 

• No funding and almost no research (at least in North 
America)  in 1970’s as the result of 2 things above   



ANN History: Revival 
• Revival of ANN in 1980’s 

• 1982, J. Hopfield 
• New kind of networks (Hopfield’s networks) 

• Not just model of how human brain might work, but also how to create 
useful devices;  implements associative memory 

• 1982 joint US-Japanese conference on ANN 
• US worries that it will stay behind 

• Many examples of mulitlayer NN appear 

• 1986, re-discovery of backpropagation algorithm by  Werbos, 
Rumelhart, Hinton and Ronald Williams  
• Allows a network to learn not linearly separable classes 

• several successes, in particular on digit recognition, autonomous driving 

• 2008-now: deep neural networks  
• Better training procedures, much larger datasets for training, GPU 

• more successes, several benchmark competitions won 

 



Artificial Neural Nets (ANN): Perceptron 

• Linear classifier f(x) = sign(wtx+w0) is a single neuron “net”  

x1 

x2 

x3 

w1 

w2 

w3 

sign(wtx+w0) 

1 w0 

layer 2 
output layer 

 

layer 1 
input layer 

 
bias unit 

• Input layer units output features, except bias outputs “1” 

• Output layer unit applies sign() or some other function h() 

• h() is also called an activation function 
 

h()=sign() 



Multilayer Perceptron (MLP) 

x1 

x2 

x3 

1 

layer 3 
output layer 

 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• First hidden unit outputs:       h(…) = h(w0+w1x1 +w2x2 +w3x3)                

w 

w 

 h( w∙h(…)+w∙h(…) ) 

• Network corresponds to classifier f(x) = h( w∙h(…)+w∙h(…)   )  

• More complex than Perceptron, more complex boundaries 

• Second hidden unit outputs:  h(…) = h(w0+w1x1 +w2x2 +w3x3) 



MLP Small Example 

x1 

x2 

1 

layer 3: output  layer 1:  input layer 2:  hidden 

• Let activation function h()  = sign() 

• MLP Corresponds to classifier  

f(x) = sign(  4h(…)+2h(…) + 7 )  

                                = sign(4sign(3x1+5x2)+2sign(6+3x2) + 7)  

• MLP terminology: computing f(x) is called feed forward operation 
• graphically, function is computed from left to right 

• Edge weights are learned through training  
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MLP: Activation Function 

• h() = sign() is discontinuous, not 
good for gradient descent 

• Instead can use continuous 
sigmoid function 

• Or another differentiable function 

• Can even use different activation functions at 
different layers/units 

• From now, assume h()  is a differentiable function 



MLP: Multiple Classes 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• 3 classes, 2 features, 1 hidden layer 

• 3 input units, one for each feature 

• 3 output units, one for each class 

• 2 hidden units 

• 1 bias unit, usually drawn in layer 1 

layer 3 
output layer 

 



MLP: General Structure 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• Classification: 

layer 3 
output layer 

 
h(...) 

h(...) 

h(...) 

• If f1(x) is largest, decide class 1 

• If f2(x) is largest, decide class 2 

• If f3(x) is largest, decide class 3 

  

= f1(x) 

• f(x) = [f1(x), f2(x), f3(x)] is multi-dimensional   

= f2(x) 

= f3(x) 



MLP: General Structure 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• Input layer: d features, d input units 

• Output layer: m classes, m output units 

• Hidden layer: how many units? 

layer 3 
output layer 

 



MLP: General Structure 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• Can have more than 1 hidden layer 
• ith layer connects to (i+1)th  layer 

• except bias unit can connect to any layer 

• can have different number of units in each hidden layer 

layer 4 
output layer 

 

layer 3 
hidden layer 

 

• First output unit outputs: 

 h(...) = h( wh(…) + w ) 

h(...) w 

w 
w 

w 

= h( wh(wh(…) + wh(…)) + w )  

 



MLP: Overview 

• A neural network corresponds to a classifier f(x,w) that 
can be rather complex  

• complexity depends on the number of hidden layers/units 

• f(x,w) is a composition of many functions 
• easier to visualize as a network 

• notation gets ugly 

• To train neural network, just as before 

•  formulate an objective function J(w)   

• optimize it with gradient descent 

• That’s all!  

• Except we need quite a few slides to write down details due 
to complexity of f(x,w) 

 



Expressive Power of MLP 
• Every continuous function from input to output can be 

implemented with enough hidden units, 1 hidden layer, 
and proper nonlinear activation functions 

• easy to show that with linear activation function, multilayer 
neural network is equivalent to perceptron  

 • This is more of theoretical than practical interest 

• Proof is not constructive (does not tell how construct  MLP) 

• Even if constructive, would be of no use, we do not know the 
desired function, our goal is to learn it through the samples 

• But this result gives confidence that we are on the right track  
• MLP is general (expressive) enough to construct any required decision 

boundaries, unlike the Perceptron 

 



Decision Boundaries 

• Perceptron (single 
layer neural net) 

• Arbitrarily complex 
decision regions 

• Even not contiguous 



Nonlinear Decision Boundary: Example 

• Start with two Perceptrons,  h() = sign()  

x1 

x2 

1 -1 

-1 

1 

 – x1 + x2 – 1 > 0  class 1 

x1 

x2 

1 -3 

1 

-1 

  x1  - x2 – 3  > 0 class 1  

x1 

x2 

-1 

1 
x1 

x2 

-3 

3 



Nonlinear Decision Boundary: Example 

x1 

x2 

1 
-1 
-1 
1 

-3 
 1 
-1 

• Now combine them into a 3 layer NN 

1.5 
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1 

x1 

x2 

-1 

1 
x1 

x2 

-3 

3 + x1 

x2 

-3 

3 

1 

-1 



• For Neural Networks, due to historical reasons, training 
and testing stages have special names 

• Backpropagation (or training)  

 Minimize objective function with gradient descent 

• Feedforward (or testing) 

  

 

MLP: Modes of Operation 



MLP: Notation for Edge Weights 

• wk
pj  is edge weight from unit p in layer k-1 to unit j in layer k 

 

1 

x1 

xd 

…
. 

layer 1 
input 

 

…
. 

layer 2 
hidden 

 

…
. 

layer k-1 
hidden 

 

bias unit 
or unit 0 

unit 1 
 

unit d 
 

wk
1m 

• wk
0j  is edge weight from bias unit to unit  j in layer k 

 

wk
0m 

• wk
j  is all weights to unit j in layer k, i.e. wk

0j , w
k

1j , …, wk
N(k-1)j 

• N(k) is the number of units in layer k, excluding the bias unit 

 

…
. 

layer k 
output 

 



MLP: More Notation 

x1 

x2 

1 

layer 1 
 

layer 2 
 

layer 3 
 

• For the input layer (k=1),  z1
0  = 1 and z1

j = xj, j ≠ 0 
 

• Denote the output of unit j in layer k as zk
j 

• Convenient to set zk
0 = 1 for all k 

• Set zk
  = [zk

0 , z
k

1,…, zk
N(k)]  

z3
2 = h(…) 

z1
0  = 1 

z1
2  = x2 

• For all other layers, (k > 1), zk
j = h(…) 

z2
2 = h(…) 



MLP: More Notation 

x1 

x2 

1 

layer 1 
 

layer 2 
 

layer 3 
 

• Net activation at unit j in layer k > 1 is the sum of inputs   
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MLP: Class Representation 
• m class problem, let Neural Net have t layers 

• Let xi be a example of class s 
 

• It is convenient to denote its label as yi=  row s 



















0

1

0





• Recall that zt
d is the output of unit s 

in layer t (output layer)  

 

• f(x)= zt=         .  If xi is of class s, want zt =  
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• Want to minimize difference between yi and f(xi) = zt 

• Use squared difference 

• Let w be all edge weights in MLP collected in one vector 

Training MLP: Objective Function 
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• Error on one example xi , of class s 

 

 

 

 



















i
m

i
s

i

i
t

xf

xf

xf

xfz



1





















0

1

0




row s 

  



m

c

i
c

i
c yxf

1

2

2

1



Training MLP: Objective Function 
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1
• Error on all examples:  

• Gradient descent: 
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1
• Error on one example xi :  

initialize w to random 
choose  ,  
while ||J(w)|| >  
 w = w - J(w) 
  



• For simplicity, first consider error for one example xi
  

Training MLP: Single Sample 

• Compute partial derivatives w.r.t. wk
pj  for all k, p, j 

• Suppose have t layers 
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Training MLP: Single Sample 

• For weights wt
pj  to the output layer t: 
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Training MLP: Single Sample 
• For a layer k, compute partial derivatives w.r.t. wk

pj 

• Gets complex, since have lots of function compositions 

• Will give the rest of derivatives 

• First define ek
j, the error attributed to unit j in layer k: 

 

• For layer t (output):  

 

    1


 k
p

k
j

k
jik

pj

za'hewJ
w

  iji
j

t
j yxfe 

• For layers k < t: 

• And  for  2 ≤ k ≤ t: 
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MLP Training: Multiple Samples 
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Training Protocols 
• Batch Protocol 

• true gradient descent 

• weights are updated only after all examples are processed 

• might be slow to converge 

• Single Sample Protocol 
• examples are chosen randomly from the training set 

•  weights are updated after every example 

• converges much faster than batch 

• Mini-Batch protocol 
• In between batch and single sample protocols 

• choose sets (batches) of examples  

• Update weights after each batch 



MLP Training: Single Sample 

initialize w to small random numbers 
choose  ,  
while ||J(w)|| >  
 for i = 1 to n  
  r = random index from {1,2,…,n} 
  deltapjk = 0         p,j,k 
 

                                        
  for  k = t  to  2 
   
   
 

   
  wk

pj = wk
pj + deltapjk  p,j,k 

  

   jyxfe r
j

r
j

t
j 

  1 k
p

k
j

k
jpjkpjk za'hedeltadelta

 

  jwa'hee k
jc

k
c

kN

c

k
c

k
j 





1

1



MLP Training: Batch 

initialize w to small random numbers 
choose  ,  
while ||J(w)|| >  
 for i = 1 to n    
  deltapjk = 0         p,j,k 
 

                                        
  for k = t  to  2 
   
   
 

 

 wk
pj = wk

pj + deltapjk  p,j,k 
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BackPropagation of Errors 
• In MLP terminology, training is called backpropagation 

• errors computed (propagated) backwards from the 
output to the input layer 

first last layer errors computed 

then errors computed backwards 

 
while ||J(w)|| >  
 for i = 1 to n    
  deltapjk = 0         p,j,k 
 

                                        
  for k = t  to  2 
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MLP Training 

• Important:  weights should be initialized to random 
nonzero numbers 

• if wk
jc = 0, errors ek

j are zero for layers k < t 

• weights in  layers k < t will not be updated 
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training time 

Large training error: 
random decision 
regions in the 
beginning - underfit 

Small training error: 
decision regions 
improve with time 

Zero training error:  
decision regions fit 
training data 
perfectly - overfit 

MLP Training: How long to Train?  

can learn when to stop training through validation 



MLP as Non-Linear Feature Mapping 

x1 

x2 

1 

• MLP can be interpreted as first mapping input 
features to new features 

• Then applying Perceptron (linear classifier) to the 
new features 



MLP as Non-Linear Feature Mapping 

x1 

x2 

1 

 this part implements 
Perceptron (liner classifier) 

y1 

y2 

y3 



MLP as Non-Linear Feature Mapping 

x1 

x2 

1 

 this part implements 
mapping to new features y 

y1 

y2 

y3 



MLP as Nonlinear Feature Mapping 

x1 

x2 

1 
-1 
-1 
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-3 
 1 

-1 

1.5 
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• Consider 3 layer NN example we saw previously: 

x1 

x2 

non linearly separable in 
the original feature space 

+ 

y1 

y2 

linearly separable in the 
new feature space 



• How many layers should we choose? 

     Shallow network 

Shallow vs. Deep Architecture 

    Deep network 

• Deep network lead to many successful 
applications recently 



• 2 layer networks can represent any function 

• But deep architectures are more efficient for representing some 
classes of functions 

• problems which can be represented with a polynomial number of nodes with 
k layers, may require an exponential number of nodes with k-1 layers 

• thus with deep architecture, less units might be needed overall 

• less weights, less parameter updates 

• maybe especially in image processing, with structure being mainly local 

 

 

 

 

 

 

Why Deep Networks 

 

• Sub-features created in deep 
architecture can potentially be shared 
between multiple tasks 

 

 

 

 



Training Deep Networks 

• Difficulties of supervised training of deep networks 
• Early layers of MLN do not get trained well 

• Diffusion of Gradient – error attenuates as it propagates to earlier 
layers 

• Exacerbated since top couple layers can usually learn any task 
"pretty well" and thus the error to earlier layers drops quickly as 
the top layers "mostly" solve the task– lower layers never get the 
opportunity to use their capacity to improve results, they just do a 
random feature map 

• Need a way for early layers to do effective work 

• Often not enough labeled data available while there may 
be lots of unlabeled data 

• Can we use unsupervised/semi-supervised approaches to take 
advantage of the unlabeled data 

• Deep networks tend to have more local minima problems 
than shallow networks during supervised training 

 
 



Greedy Layer-Wise Training 

• Greedy layer-wise training to insure lower layers learn 

1. Train first layer using your data without the labels (unsupervised) 

• we do not know targets at this level anyway 

• can use the more abundant unlabeled data which is not part of the training set  

2. Freeze the first layer parameters and start training the second layer using 
the output of the first layer as the unsupervised input to the second layer 

3. Repeat this for as many layers as desired 

• This builds our set of robust features 

4. Use the outputs of the final layer as inputs to a supervised layer/model and 
train the last supervised layer(s)  

• leave early weights frozen 

5. Unfreeze all weights and fine tune the full network by training with a 
supervised approach, given the pre-processed weight settings 

 



Greedy Layer-Wise Training 
• Greedy layer-wise training avoids many of the problems of trying 

to train a deep net in a supervised fashion 

• Each layer gets full learning focus in its turn since it is the only 
current "top" layer 

• Can take advantage of the unlabeled data 

• When you finally tune the entire network with supervised 
training the network weights have already been adjusted so 
that you are in a good error basin and just need fine tuning  
This helps with problems of 

• Ineffective early layer learning 

• Deep network local minima 



ConvNet on Image Classification 



• To avoid overfitting, it is recommended to keep 
weights small 

• Implement  weight decay after each weight update: 

wnew = wnew(1-), 0 <  < 1 

• Additional benefit is that “unused” weights  grow small 
and may be eliminated altogether 

• a weight is “unused” if it is left almost unchanged by the 
backpropagation algorithm 

 

Practical Tips: Weight Decay 



• Gradient descent finds only a local minima 

• Momentum: popular method to avoid local minima and 
speed up descent in flat (plateau) regions 

• Add temporal average direction in which weights have 
been moving recently 

• Previous direction: wt=wt-wt-1 

• Weight update rule with momentum: 

Practical Tips for BP: Momentum 

previous  
direction 

steepest descent  
direction 
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• Gradient descent works with any differentiable h, 
however some choices are better  

• Desirable properties for h: 

• nonlinearity to express nonlinear decision boundaries 

• Saturation, that is h has minimum and maximum values 
• Keeps  weights bounded, thus training time is reduced 

• Monotonicity so that activation function itself does not 
introduce additional local minima 

• Linearity for a small values, so that network can produce linear 
model, if data supports it 

• antisymmetry, that is h(-1) = -h(1), leads to faster learning 

 

Practical Tips for BP: Activation Function 



• Sigmoid function h  satisfies all of  the properties 
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• Good parameter choices are a = 1.716, b = 2/3 

• Linear range is roughly for  –1 < q < 1 

• Rectified linear is popular recently: h(q) = max(0,q) 

• Asymptotic values ±1.716 

• bigger  than our labels, which are 1  

• If asymptotic values were smaller than 1, training error will not 
be small  

Practical Tips for BP: Activation Function 



• Features should be normalized for faster convergence 

• Suppose we measure fish length in meters and weight 
in grams 

• Typical sample [length = 0.5, weight = 3000] 

• Feature length will be almost ignored 

• If length is in fact important, learning will be very slow 

• Any normalization we looked at before (lecture on 
kNN) will do 

• Test samples should be normalized exactly as the training 
samples 

 

Practical Tips for BP: Normalization 



• Depends on the activation function 

• Rule of thumb for commonly used  sigmoid function 

• recall that  N(k) is the number of units in layer k 

• for layer k, choose weights from the range at random 
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Practical Tips: Initializing Weights 



• As any gradient descent algorithm, backpropagation 
depends on the learning rate  

• Rule of thumb   = 0.1 

• However can adjust  at the training time 

• The objective function J(w) should decrease during 
gradient descent 

• If J(w) oscillates,  is too large, decrease it 

• If J(w) goes down but very slowly,   is too small, 
increase it 

Practical Tips: Learning Rate 



• Number of hidden units determines the expressive 
power of the network 

• Too small  may not be sufficient to learn complex decision 
boundaries 

• Too large may overfit the training data 

• Sometimes recommended that  

• number of hidden units is larger than the number of input 
units 

• number of hidden units is the same in all hidden layers 

• Can choose number of hidden units through 
validation 

 

Practical Tips for BP: Number of Hidden Units 



Concluding Remarks 
• Advantages 

• MLP can learn complex mappings from inputs to 
outputs, based only on the training samples 

• Easy to incorporate a lot of heuristics 

• Many competitions won recently 

• Disadvantages 

• May be difficult to analyze and predict its behavior 

• May take a long time to train 

• May get trapped in a bad local minima 

• A lot of tricks for successful implementation 

 


