
CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 5

Machine Learning

Neural Networks

Many presentation Ideas are due to Andrew NG

Outline

• Motivation

• Non linear discriminant functions

• Introduction to Neural Networks

• Inspiration from Biology

• History

• Perceptron

• Multilayer Perceptron

• Practical Tips for Implementation

Need for Non-Linear Discriminant

• Previous lecture studied linear discriminant

• Works for linearly (or almost) separable cases

• Many problems are far from linearly separable

• underfitting with linear model

x1

x2

g(x) = w0+w1x1+w2x2

x1

x2

Need for Non-Linear Discriminant

x1

x2

aZz

t
p zaaJ

• Can use other discriminant functions,
like quadratics

 g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2

• Methodology is almost the same as
in the linear case:

• f(x) = sign(w0+w1x1+w2x2+w12x1x2 +w11x1
2 + w22x2

2)

• z = [1 x1 x2 x1 x2 x1
2 x2

2]

• a = [w0 w1 w2 w12 w11
 w22]

• “normalization”: multiply negative class samples by -1

• gradient descent to minimize Perceptron objective
function

Need for Non-Linear Discriminant

x1

x2 • May need highly non-linear decision
boundaries

• This would require too many high order
polynomial terms to fit

 g(x) = w0+w1x1+w2x2+
 + w12x1x2 + w11x1

2 +w22x2
2 +

 + w111x1
3+ w112x1

2x2 +w122x1x2
2 + w222x2

3 +
 + even more terms of degree 4
 + super many terms of degree k

 • For n features, there O(nk) polynomial terms of degree k

• Many real world problems are modeled with hundreds and
even thousands features

• 10010 is too large of function to deal with

Neural Networks

x1

x2 • Neural Networks correspond to some
discriminant function gNN(x)

• Can carve out arbitrarily complex
decision boundaries without requiring so
many terms as polynomial functions

• Neural Nets were inspired by research in
how human brain works

• But also proved to be quite successful in
practice

• Are used nowadays successfully for a
wide variety of applications

• took some time to get them to work

• now used by US post for postal code
recognition

Neural Nets: Character Recognition

• http://yann.lecun.com/exdb/lenet/index.html

7

Yann LeCun et. al.

http://yann.lecun.com/exdb/lenet/index.html

Brain vs. Computer

• usually one very fast processor

• high reliability

• designed to solve logic and
arithmetic problems

• absolute precision

• can solve a gazillion arithmetic
and logic problems in an hour

• huge number of parallel but
relatively slow and unreliable
processors

• not perfectly precise, not
perfectly reliable

• evolved (in a large part) for
pattern recognition

• learns to solve various PR
problems

seek inspiration for classification from human brain

One Learning Algorithm Hypothesis

• Brain does many different things

• Seems like it runs many different
“programs”

• Seems we have to write tons of
different programs to mimic brain

• Hypothesis: there is a single underlying learning algorithm
shared by different parts of the brain

• Evidence from neuro-rewiring experiments

[Roe et al, 1992]

• Auditory cortex learns to see

• animals will eventually learn to perform a variety of object
recognition tasks

• There are other similar rewiring experiments

• Route signal from eyes to the auditory cortex

• Cut the wire from ear to auditory cortex

Seeing with Tongue
• Scientists use the amazing ability of the

brain to learn to retrain brain tissue

• Seeing with tongue

• BrainPort Technology

• Camera connected to a tongue array sensor

• Pictures are “painted” on the tongue
• Bright pixels correspond to high voltage

• Gray pixels correspond to medium voltage

• Black pixels correspond to no voltage

• Learning takes from 2-10 hours

• Some users describe experience resembling a
low resolution version of vision they once had

• able to recognize high contrast object, their location,
movement tongue array

sensor

One Learning Algorithm Hypothesis

• Experimental evidence that we can plug any sensor to any part
of the brain, and brain can learn how to deal with it

• Since the same physical piece of brain tissue can process sight,
sound, etc.

• Maybe there is one learning algorithm can process sight,
sound, etc.

• Maybe we need to figure out and implement an algorithm that
approximates what the brain does

• Neural Networks were developed as a simulation of networks
of neurons in human brain

Neuron: Basic Brain Processor

• Neurons (or nerve cells) are special cells that
process and transmit information by
electrical signaling
• in brain and also spinal cord

• Human brain has around 1011 neurons

• A neuron connects to other neurons to form
a network

• Each neuron cell communicates to anywhere
from 1000 to 10,000 other neurons

Neuron: Main Components

13

dendrites

nucleus

cell
body

axon

axon
terminals

• cell body
• computational unit

• dendrites
• “input wires”, receive inputs from other neurons

• a neuron may have thousands of dendrites, usually short

• axon
• “output wire”, sends signal to other neurons

• single long structure (up to 1 meter)

• splits in possibly thousands branches at the end, “axon terminals”

Neurons in Action (Simplified Picture)

• Cell body collects and processes
signals from other neurons
through dendrites

• If there the strength of incoming
signals is large enough, the cell
body sends an electricity pulse (a
spike) to its axon

• This is the process by which all human
thought, sensing, action, etc. happens

• Its axon, in turn, connects to
dendrites of other neurons,
transmitting spikes to other neurons

Artificial Neural Network (ANN) History: Birth

• 1943, famous paper by W. McCulloch (neurophysiologist) and W.
Pitts (mathematician)
• Using only math and algorithms, constructed a model of how neural

network may work

• Showed it is possible to construct any computable function with their
network

• Was it possible to make a model of thoughts of a human being?

• Can be considered to be the birth of AI

• 1949, D. Hebb, introduced the first (purely pshychological)
theory of learning
• Brain learns at tasks through life, thereby it goes through tremendous

changes

• If two neurons fire together, they strengthen each other’s responses and
are likely to fire together in the future

ANN History: First Successes

• 1958, F. Rosenblatt,

• perceptron, oldest neural network still in use today
• that’s what we studied in lecture on linear classifiers

• Algorithm to train the perceptron network

• Built in hardware

• Proved convergence in linearly separable case

• 1959, B. Widrow and M. Hoff

• Madaline

• First ANN applied to real problem

• eliminates echoes in phone lines

ANN History: Stagnation

• Early success lead to a lot of claims which were not
fulfilled

• 1969, M. Minsky and S. Pappert

• Book “Perceptrons”

• Proved that perceptrons can learn only linearly separable
classes

• In particular cannot learn very simple XOR function

• Conjectured that multilayer neural networks also limited by
linearly separable functions

• No funding and almost no research (at least in North
America) in 1970’s as the result of 2 things above

ANN History: Revival
• Revival of ANN in 1980’s

• 1982, J. Hopfield
• New kind of networks (Hopfield’s networks)

• Not just model of how human brain might work, but also how to create
useful devices; implements associative memory

• 1982 joint US-Japanese conference on ANN
• US worries that it will stay behind

• Many examples of mulitlayer NN appear

• 1986, re-discovery of backpropagation algorithm by Werbos,
Rumelhart, Hinton and Ronald Williams
• Allows a network to learn not linearly separable classes

• several successes, in particular on digit recognition, autonomous driving

• 2008-now: deep neural networks
• Better training procedures, much larger datasets for training, GPU

• more successes, several benchmark competitions won

Artificial Neural Nets (ANN): Perceptron

• Linear classifier f(x) = sign(wtx+w0) is a single neuron “net”

x1

x2

x3

w1

w2

w3

sign(wtx+w0)

1 w0

layer 2
output layer

layer 1
input layer

bias unit

• Input layer units output features, except bias outputs “1”

• Output layer unit applies sign() or some other function h()

• h() is also called an activation function

h()=sign()

Multilayer Perceptron (MLP)

x1

x2

x3

1

layer 3
output layer

layer 1
Input layer

layer 2
hidden layer

• First hidden unit outputs: h(…) = h(w0+w1x1 +w2x2 +w3x3)

w

w

 h(w∙h(…)+w∙h(…))

• Network corresponds to classifier f(x) = h(w∙h(…)+w∙h(…))

• More complex than Perceptron, more complex boundaries

• Second hidden unit outputs: h(…) = h(w0+w1x1 +w2x2 +w3x3)

MLP Small Example

x1

x2

1

layer 3: output layer 1: input layer 2: hidden

• Let activation function h() = sign()

• MLP Corresponds to classifier

f(x) = sign(4h(…)+2h(…) + 7)

 = sign(4sign(3x1+5x2)+2sign(6+3x2) + 7)

• MLP terminology: computing f(x) is called feed forward operation
• graphically, function is computed from left to right

• Edge weights are learned through training

7

6
3

5

3

4

2

MLP: Activation Function

• h() = sign() is discontinuous, not
good for gradient descent

• Instead can use continuous
sigmoid function

• Or another differentiable function

• Can even use different activation functions at
different layers/units

• From now, assume h() is a differentiable function

MLP: Multiple Classes

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• 3 classes, 2 features, 1 hidden layer

• 3 input units, one for each feature

• 3 output units, one for each class

• 2 hidden units

• 1 bias unit, usually drawn in layer 1

layer 3
output layer

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Classification:

layer 3
output layer

h(...)

h(...)

h(...)

• If f1(x) is largest, decide class 1

• If f2(x) is largest, decide class 2

• If f3(x) is largest, decide class 3

= f1(x)

• f(x) = [f1(x), f2(x), f3(x)] is multi-dimensional

= f2(x)

= f3(x)

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Input layer: d features, d input units

• Output layer: m classes, m output units

• Hidden layer: how many units?

layer 3
output layer

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Can have more than 1 hidden layer
• ith layer connects to (i+1)th layer

• except bias unit can connect to any layer

• can have different number of units in each hidden layer

layer 4
output layer

layer 3
hidden layer

• First output unit outputs:

 h(...) = h(wh(…) + w)

h(...) w

w
w

w

= h(wh(wh(…) + wh(…)) + w)

MLP: Overview

• A neural network corresponds to a classifier f(x,w) that
can be rather complex

• complexity depends on the number of hidden layers/units

• f(x,w) is a composition of many functions
• easier to visualize as a network

• notation gets ugly

• To train neural network, just as before

• formulate an objective function J(w)

• optimize it with gradient descent

• That’s all!

• Except we need quite a few slides to write down details due
to complexity of f(x,w)

Expressive Power of MLP
• Every continuous function from input to output can be

implemented with enough hidden units, 1 hidden layer,
and proper nonlinear activation functions

• easy to show that with linear activation function, multilayer
neural network is equivalent to perceptron

 • This is more of theoretical than practical interest

• Proof is not constructive (does not tell how construct MLP)

• Even if constructive, would be of no use, we do not know the
desired function, our goal is to learn it through the samples

• But this result gives confidence that we are on the right track
• MLP is general (expressive) enough to construct any required decision

boundaries, unlike the Perceptron

Decision Boundaries

• Perceptron (single
layer neural net)

• Arbitrarily complex
decision regions

• Even not contiguous

Nonlinear Decision Boundary: Example

• Start with two Perceptrons, h() = sign()

x1

x2

1 -1

-1

1

 – x1 + x2 – 1 > 0 class 1

x1

x2

1 -3

1

-1

 x1 - x2 – 3 > 0 class 1

x1

x2

-1

1
x1

x2

-3

3

Nonlinear Decision Boundary: Example

x1

x2

1
-1
-1
1

-3
 1
-1

• Now combine them into a 3 layer NN

1.5

1

1

x1

x2

-1

1
x1

x2

-3

3 + x1

x2

-3

3

1

-1

• For Neural Networks, due to historical reasons, training
and testing stages have special names

• Backpropagation (or training)

 Minimize objective function with gradient descent

• Feedforward (or testing)

MLP: Modes of Operation

MLP: Notation for Edge Weights

• wk
pj is edge weight from unit p in layer k-1 to unit j in layer k

1

x1

xd

…
.

layer 1
input

…
.

layer 2
hidden

…
.

layer k-1
hidden

bias unit
or unit 0

unit 1

unit d

wk
1m

• wk
0j is edge weight from bias unit to unit j in layer k

wk
0m

• wk
j is all weights to unit j in layer k, i.e. wk

0j , w
k

1j , …, wk
N(k-1)j

• N(k) is the number of units in layer k, excluding the bias unit

…
.

layer k
output

MLP: More Notation

x1

x2

1

layer 1

layer 2

layer 3

• For the input layer (k=1), z1
0 = 1 and z1

j = xj, j ≠ 0

• Denote the output of unit j in layer k as zk
j

• Convenient to set zk
0 = 1 for all k

• Set zk
 = [zk

0 , z
k

1,…, zk
N(k)]

z3
2 = h(…)

z1
0 = 1

z1
2 = x2

• For all other layers, (k > 1), zk
j = h(…)

z2
2 = h(…)

MLP: More Notation

x1

x2

1

layer 1

layer 2

layer 3

• Net activation at unit j in layer k > 1 is the sum of inputs

1

1
0

1
kN

p

k
j

k
pj

k
p

k
j wwza

• For k > 1, zk
j = h(ak

j)

kk
jwz 1

1

0

1
kN

p

k
pj

k
p wz

2
21

1
2

2
11

1
1

2
01

1
0

2
1 wzwzwza

MLP: Class Representation
• m class problem, let Neural Net have t layers

• Let xi be a example of class s

• It is convenient to denote its label as yi= row s

0

1

0

• Recall that zt
d is the output of unit s

in layer t (output layer)

• f(x)= zt= . If xi is of class s, want zt =

t
m

t
s

t

z

z

z

1

0

1

0

row s

• Want to minimize difference between yi and f(xi) = zt

• Use squared difference

• Let w be all edge weights in MLP collected in one vector

Training MLP: Objective Function

2

2

1 it
i yzwJ

• Error on one example xi , of class s

i
m

i
s

i

i
t

xf

xf

xf

xfz

1

0

1

0

row s

m

c

i
c

i
c yxf

1

2

2

1

Training MLP: Objective Function

n

i

m

c

i
c

i
c yxfwJ

1 1

2

2

1
• Error on all examples:

• Gradient descent:

m

c

i
c

i
ci yxfwJ

1

2

2

1
• Error on one example xi :

initialize w to random
choose ,
while ||J(w)|| >
 w = w - J(w)

• For simplicity, first consider error for one example xi

Training MLP: Single Sample

• Compute partial derivatives w.r.t. wk
pj for all k, p, j

• Suppose have t layers

m

c

i
c

i
c

ii
i yxfxfywJ

1

22

2

1

2

1

• fc(x
i) depends on w

• yi is independent of w

 t
c

tt
c

t
c

i
c wzhahzxf 1

Training MLP: Single Sample

• For weights wt
pj to the output layer t:

 iji
jt

pj

i
j

i
jt

pj

yxf
w

yxfwJ
w

m

c

i
c

i
ci yxfwJ

1

2

2

1

 1

 t
p

t
j

i
j

i
jit

pj

za'hyxfwJ
w

• 1

 t
p

t
j

i
j

i
jt

pj

za'hyxf
w

• Therefore,

 t
p

tt
p

i
p wzhahxf 1

• both and depend on xi t
ja'h 1t

pz

 t
mj

t
m

t
pj

t
p

t
j

t wzwzwzh 11
1

1
0

 222
11

2

1 i
m

i
m

i
p

i
p

ii yxfyxfyxf

Training MLP: Single Sample
• For a layer k, compute partial derivatives w.r.t. wk

pj

• Gets complex, since have lots of function compositions

• Will give the rest of derivatives

• First define ek
j, the error attributed to unit j in layer k:

• For layer t (output):

 1

 k
p

k
j

k
jik

pj

za'hewJ
w

 iji
j

t
j yxfe

• For layers k < t:

• And for 2 ≤ k ≤ t:

 11
1

1

1

 k
jc

k
c

kN

c

k
c

k
j wa'hee

MLP Training: Multiple Samples

n

i

m

c

i
c

i
c yxfwJ

1 1

2

2

1
• Error on all examples:

m

c

i
c

i
ci yxfwJ

1

2

2

1
• Error on one example xi :

 1

 k
p

k
j

k
jik

pj

za'hewJ
w

 n

i

k
p

k
j

k
jk

pj

za'hewJ
w 1

1

Training Protocols
• Batch Protocol

• true gradient descent

• weights are updated only after all examples are processed

• might be slow to converge

• Single Sample Protocol
• examples are chosen randomly from the training set

• weights are updated after every example

• converges much faster than batch

• Mini-Batch protocol
• In between batch and single sample protocols

• choose sets (batches) of examples

• Update weights after each batch

MLP Training: Single Sample

initialize w to small random numbers
choose ,
while ||J(w)|| >
 for i = 1 to n
 r = random index from {1,2,…,n}
 deltapjk = 0 p,j,k

 for k = t to 2

 wk

pj = wk
pj + deltapjk p,j,k

 jyxfe r
j

r
j

t
j

 1 k
p

k
j

k
jpjkpjk za'hedeltadelta

 jwa'hee k
jc

k
c

kN

c

k
c

k
j

1

1

MLP Training: Batch

initialize w to small random numbers
choose ,
while ||J(w)|| >
 for i = 1 to n
 deltapjk = 0 p,j,k

 for k = t to 2

 wk
pj = wk

pj + deltapjk p,j,k

 jyxfe i
j

i
j

t
j

 1 k
p

k
j

k
jpjkpjk za'hedeltadelta

 jwa'hee k
jc

k
c

kN

c

k
c

k
j

1

1

BackPropagation of Errors
• In MLP terminology, training is called backpropagation

• errors computed (propagated) backwards from the
output to the input layer

first last layer errors computed

then errors computed backwards

while ||J(w)|| >
 for i = 1 to n
 deltapjk = 0 p,j,k

 for k = t to 2

 wk

pj = wk
pj + deltapjk p,j,k

 jxfye r
j

r
j

t
j

 1 k
p

k
j

k
jpjkpjk za'hedeltadelta

 jwa'hee k
jc

k
c

kN

c

k
c

k
j

1

1

MLP Training

• Important: weights should be initialized to random
nonzero numbers

• if wk
jc = 0, errors ek

j are zero for layers k < t

• weights in layers k < t will not be updated

 1

 k
p

k
j

k
jik

pj

za'hewJ
w

 11
1

1

1

 k
jc

k
c

kN

c

k
c

k
j wa'hee

training time

Large training error:
random decision
regions in the
beginning - underfit

Small training error:
decision regions
improve with time

Zero training error:
decision regions fit
training data
perfectly - overfit

MLP Training: How long to Train?

can learn when to stop training through validation

MLP as Non-Linear Feature Mapping

x1

x2

1

• MLP can be interpreted as first mapping input
features to new features

• Then applying Perceptron (linear classifier) to the
new features

MLP as Non-Linear Feature Mapping

x1

x2

1

 this part implements
Perceptron (liner classifier)

y1

y2

y3

MLP as Non-Linear Feature Mapping

x1

x2

1

 this part implements
mapping to new features y

y1

y2

y3

MLP as Nonlinear Feature Mapping

x1

x2

1
-1
-1
1

-3
 1

-1

1.5

1

1

• Consider 3 layer NN example we saw previously:

x1

x2

non linearly separable in
the original feature space

+

y1

y2

linearly separable in the
new feature space

• How many layers should we choose?

 Shallow network

Shallow vs. Deep Architecture

 Deep network

• Deep network lead to many successful
applications recently

• 2 layer networks can represent any function

• But deep architectures are more efficient for representing some
classes of functions

• problems which can be represented with a polynomial number of nodes with
k layers, may require an exponential number of nodes with k-1 layers

• thus with deep architecture, less units might be needed overall

• less weights, less parameter updates

• maybe especially in image processing, with structure being mainly local

Why Deep Networks

• Sub-features created in deep
architecture can potentially be shared
between multiple tasks

Training Deep Networks

• Difficulties of supervised training of deep networks
• Early layers of MLN do not get trained well

• Diffusion of Gradient – error attenuates as it propagates to earlier
layers

• Exacerbated since top couple layers can usually learn any task
"pretty well" and thus the error to earlier layers drops quickly as
the top layers "mostly" solve the task– lower layers never get the
opportunity to use their capacity to improve results, they just do a
random feature map

• Need a way for early layers to do effective work

• Often not enough labeled data available while there may
be lots of unlabeled data

• Can we use unsupervised/semi-supervised approaches to take
advantage of the unlabeled data

• Deep networks tend to have more local minima problems
than shallow networks during supervised training

Greedy Layer-Wise Training

• Greedy layer-wise training to insure lower layers learn

1. Train first layer using your data without the labels (unsupervised)

• we do not know targets at this level anyway

• can use the more abundant unlabeled data which is not part of the training set

2. Freeze the first layer parameters and start training the second layer using
the output of the first layer as the unsupervised input to the second layer

3. Repeat this for as many layers as desired

• This builds our set of robust features

4. Use the outputs of the final layer as inputs to a supervised layer/model and
train the last supervised layer(s)

• leave early weights frozen

5. Unfreeze all weights and fine tune the full network by training with a
supervised approach, given the pre-processed weight settings

Greedy Layer-Wise Training
• Greedy layer-wise training avoids many of the problems of trying

to train a deep net in a supervised fashion

• Each layer gets full learning focus in its turn since it is the only
current "top" layer

• Can take advantage of the unlabeled data

• When you finally tune the entire network with supervised
training the network weights have already been adjusted so
that you are in a good error basin and just need fine tuning
This helps with problems of

• Ineffective early layer learning

• Deep network local minima

ConvNet on Image Classification

• To avoid overfitting, it is recommended to keep
weights small

• Implement weight decay after each weight update:

wnew = wnew(1-), 0 < < 1

• Additional benefit is that “unused” weights grow small
and may be eliminated altogether

• a weight is “unused” if it is left almost unchanged by the
backpropagation algorithm

Practical Tips: Weight Decay

• Gradient descent finds only a local minima

• Momentum: popular method to avoid local minima and
speed up descent in flat (plateau) regions

• Add temporal average direction in which weights have
been moving recently

• Previous direction: wt=wt-wt-1

• Weight update rule with momentum:

Practical Tips for BP: Momentum

previous
direction

steepest descent
direction

 11 1

 ttt w

w

J
ww

• Gradient descent works with any differentiable h,
however some choices are better

• Desirable properties for h:

• nonlinearity to express nonlinear decision boundaries

• Saturation, that is h has minimum and maximum values
• Keeps weights bounded, thus training time is reduced

• Monotonicity so that activation function itself does not
introduce additional local minima

• Linearity for a small values, so that network can produce linear
model, if data supports it

• antisymmetry, that is h(-1) = -h(1), leads to faster learning

Practical Tips for BP: Activation Function

• Sigmoid function h satisfies all of the properties

qbqb

qbqb

ee

ee
aqh

• Good parameter choices are a = 1.716, b = 2/3

• Linear range is roughly for –1 < q < 1

• Rectified linear is popular recently: h(q) = max(0,q)

• Asymptotic values ±1.716

• bigger than our labels, which are 1

• If asymptotic values were smaller than 1, training error will not
be small

Practical Tips for BP: Activation Function

• Features should be normalized for faster convergence

• Suppose we measure fish length in meters and weight
in grams

• Typical sample [length = 0.5, weight = 3000]

• Feature length will be almost ignored

• If length is in fact important, learning will be very slow

• Any normalization we looked at before (lecture on
kNN) will do

• Test samples should be normalized exactly as the training
samples

Practical Tips for BP: Normalization

• Depends on the activation function

• Rule of thumb for commonly used sigmoid function

• recall that N(k) is the number of units in layer k

• for layer k, choose weights from the range at random

 kN

w
kN

k
pj

11

Practical Tips: Initializing Weights

• As any gradient descent algorithm, backpropagation
depends on the learning rate

• Rule of thumb = 0.1

• However can adjust at the training time

• The objective function J(w) should decrease during
gradient descent

• If J(w) oscillates, is too large, decrease it

• If J(w) goes down but very slowly, is too small,
increase it

Practical Tips: Learning Rate

• Number of hidden units determines the expressive
power of the network

• Too small may not be sufficient to learn complex decision
boundaries

• Too large may overfit the training data

• Sometimes recommended that

• number of hidden units is larger than the number of input
units

• number of hidden units is the same in all hidden layers

• Can choose number of hidden units through
validation

Practical Tips for BP: Number of Hidden Units

Concluding Remarks
• Advantages

• MLP can learn complex mappings from inputs to
outputs, based only on the training samples

• Easy to incorporate a lot of heuristics

• Many competitions won recently

• Disadvantages

• May be difficult to analyze and predict its behavior

• May take a long time to train

• May get trapped in a bad local minima

• A lot of tricks for successful implementation

