CS4442/9542b Artificial Intelligence II prof. Olga Veksler

Lecture 10
Computer Vision
Grouping and Segmentation

Outline

- Grouping problems in vision
 - Image segmentation: grouping of pixels
- Grouping cues in Human Visual System
 - Gestalt perceptual grouping laws
- Image Segmentation
 - 2-region (binary)
 - thresholding
 - graph cuts
 - used in MS office 2010 for background removal
 - based on the work of our faculty Yuri Boykov
- General Grouping (or unsupervised learning)
 - K-means clustering

Examples of Grouping in Vision

- Group pixels into regions
 - image segmentation

Group video frames into shots

Group image regions into objects

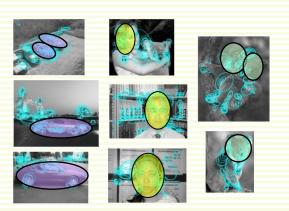
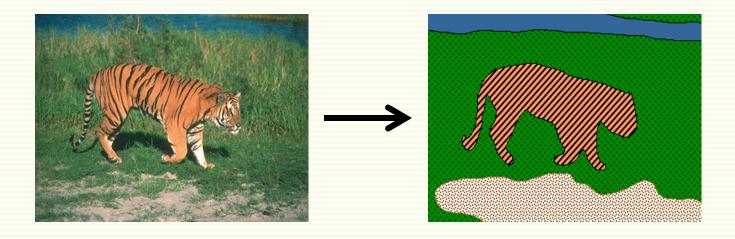


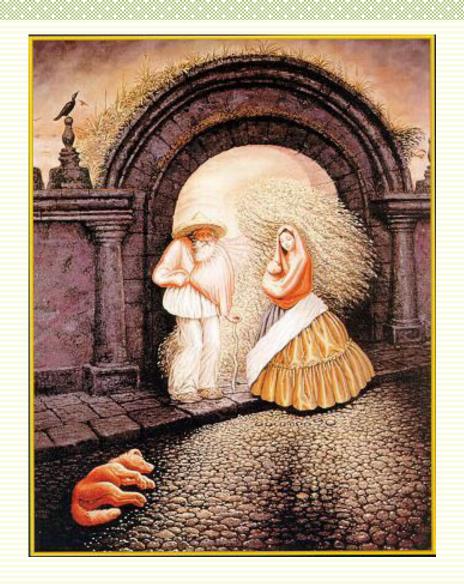
Image Segmentation



- For many applications, useful to segment image pixels into blobs that (hopefully) belong to the same object or surface
- How to do this without (necessarily) object recognition?
 - a bit subjective, but well-studied
- Inspiration from Gestalt psychology
 - humans perceive the world as a collection of objects with relationships between them, not as a set of pixels

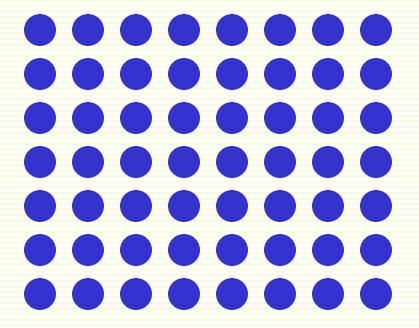
Gestalt Psychology

- Whole is greater than the sum of its parts
 - eye sees an object in its entirety before perceiving its individual parts
- Identified factors that predispose a set of elements to be grouped by human visual system
 - perceptual grouping

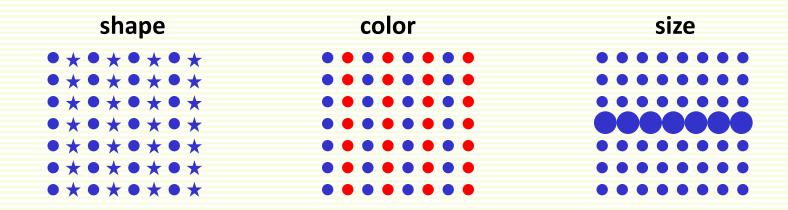


Grouping

Most human observers report no particular grouping

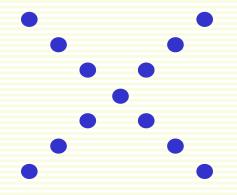


Common form, includes:

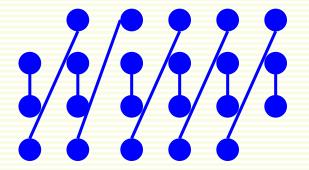


Proximity

Good continuation



- Connectivity
 - stronger than color





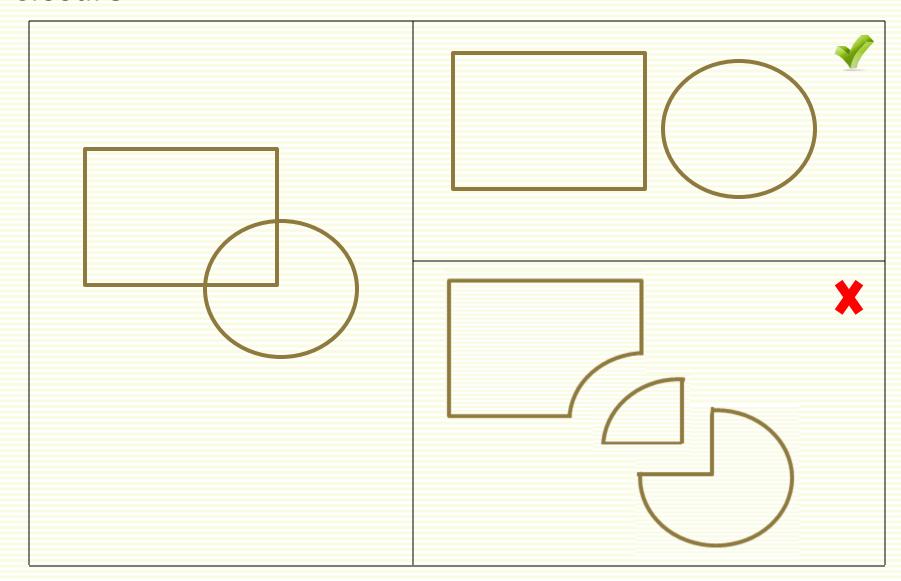
Symmetry



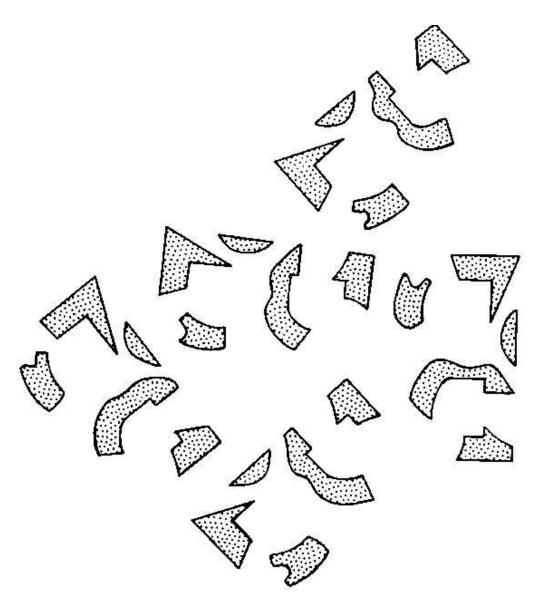
Familiarity



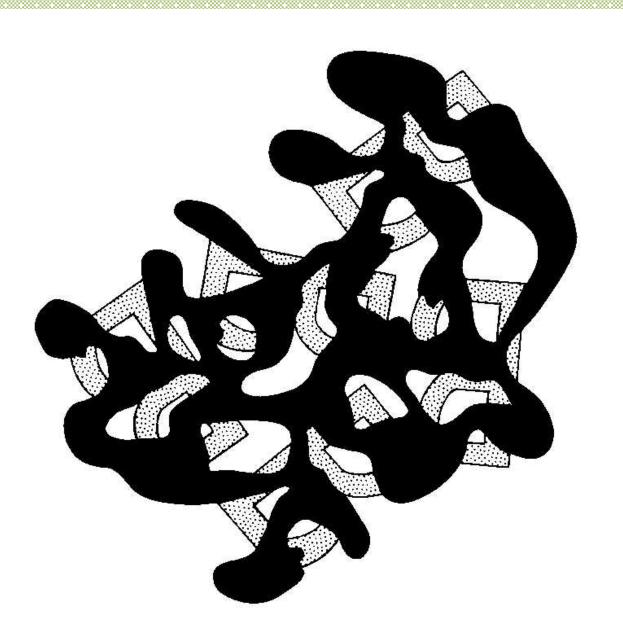
• Closure



• Closure



• Closure



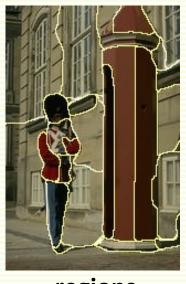
Common fate

Higher level knowledge?

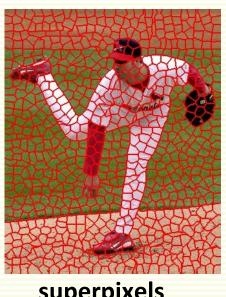
- Many other Gestalt grouping principles
 - parallelism, convexity, colinearity, common depth, etc.
- Gestalt principles are an inspiration to computer vision
 - they seem to rely on nature of objects in the world, most do not involve higher level knowledge (object recognition)
 - should help to segment objects without necessarily performing object recognition
- But most are difficult to implement in algorithms
 - used often
 - color, proximity
 - we will use these as well
 - used sometimes
 - convexity, good continuation, common motion, colinearity

Image Segmentation

Many types of image segmentation



regions



superpixels

figure-ground

- We will focus on figure-ground (FG)
 - also called object/background segmentation

FG Segmentation: Thresholding

Suppose the object is brighter than the background

Threshold gray scale image f:

if f(x,y) < T then pixel (x,y) is background

if $f(x,y) \ge T$ then pixel (x,y) is foreground

T = 180

T = 220

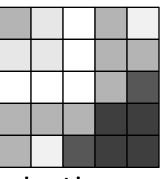
FG Segmentation: Thresholding

- Tiny isolated foreground regions, isolated background regions
- Result looks wrong even if you did not know object is a swan

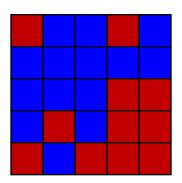
Can we clean this result up?

FG Segmentation: Motivation

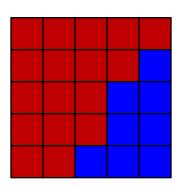
- Know object is light, background is dark
- Do not know object shape
 - show background with red, foreground with blue



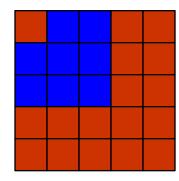
input image



bad result: crazy object shape



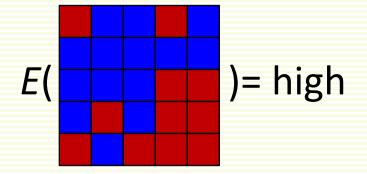
is dark, background light

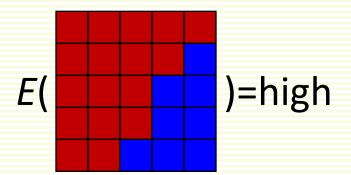


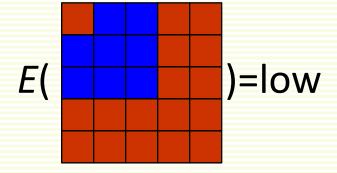
good result: light object of good shape, dark background

FG Segmentation: Energy Function

- Formulate an **objective** or **energy** function **E** to measure how good segmentation is
 - low value means good segmentation
- After energy function is designed, search over all possible segmentations for the best one
 - one with lowest energy







FG Segmentation: Energy Function

- Energy has two terms
 - data term:
 - makes it cheap to assign light pixels to foreground, expensive to the background
 - makes it cheap to assign dark pixels to the background, and expensive to the foreground
 - smoothness term: ensures nice object shape
 - both terms are needed for a good energy function

10	17	19	10	19
17	17	19	10	10
19	19	19	10	7
10	10	10	5	5
10	19	7	5	5

input image f

FG Segmentation: Data Term

- Should be cheap to assign light pixels to foreground, expensive to the background
- For each pixel (x,y), we will pay $D_{(x,y)}$ (background) to assign it to background and $D_{(x,y)}$ (foreground) to assign it to the foreground
- Let the smallest image intensity be 5, and largest 20

$$D_{(x,y)}$$
(background) = $f(x,y) - 5$
 $D_{(x,y)}$ (foreground) = $20 - f(x,y)$

11	17	19	11	19
17	19	19	11	11
19	19	20	11	7
11	11	11	5	5
11	19	7	5	5
input image f				

6	12	14	6	14
12	14	14	6	6
14	14	15	6	2
6	6	6	0	0
6	14	2	0	0

9	3	1	9	1
3	1	1	9	9
1	1	0	9	13
9	9	9	15	15
9	1	13	15	15

background data term D

foreground data term D

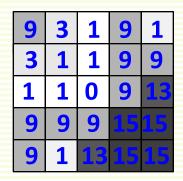
Brown pixel prefers foreground, green prefers background

FG Segmentation: Data Term

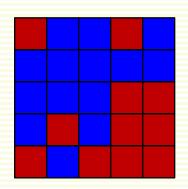
- E_{data} sums data $D_{(x,y)}$ term over all pixels (x,y)
- Foreground blue, background red

6	12	14	6	14
12	14	14	6	6
14	14	15	6	2
6	6	6		0
6	14	2	0	0

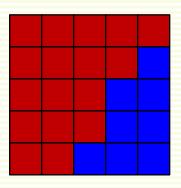
background D



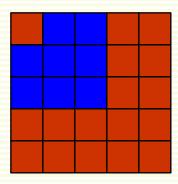
foreground D



$$\mathbf{E_{data}} = 6+3+1+6+1+ \\ 3+1+1+9+9+ \\ 1+1+0+6+2+ \\ 9+6+9+0+0+ \\ 6+1+2+0+0 \\ = 73$$



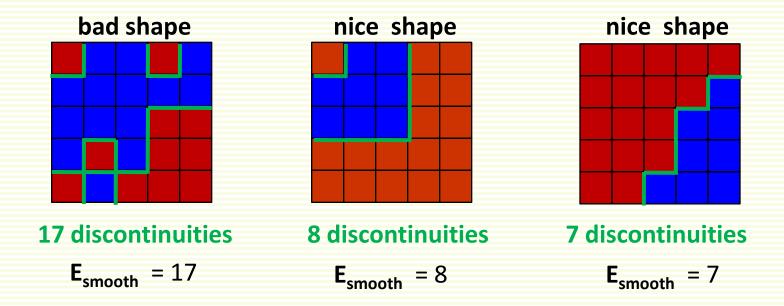
$$E_{data} = 283$$



 $E_{data} = 97$

FG Segmentation: Smoothness Term

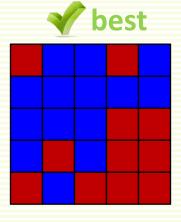
- Smoothness term: ensures nice object shape
- Consider segmentations below



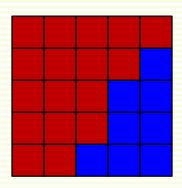
- discontinuity: when two nearby pixels are in different segments
- smoothness term is the number of discontinuities

FG Segmentation: Total Energy

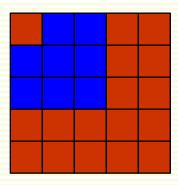
Now combine both data and smoothness energy terms



$$E_{data} = 73$$
 $E_{smooth} = 17$
 $E = E_{data} + E_{smooth} = 90$



$$E_{data} = 283$$
 $E_{smooth} = 7$
 $E = E_{data} + E_{smooth} = 290$



$$E_{data} = 97$$
 $E_{smooth} = 8$
 $E = E_{data} + E_{smooth} = 105$

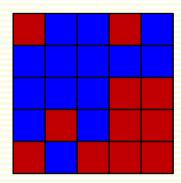
- What went wrong?
- Smoothness term weighs very little relative to the data term
 - it basically gets ignored in the combined energy
- Solution: increase the weight of the smoothness term

FG Segmentation: Total Energy

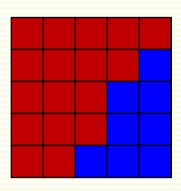
Solution: increase the weight of the smoothness term

$$\mathbf{E} = \mathbf{E}_{data} + \lambda \mathbf{E}_{smooth}$$

• Take, for example, $\lambda = 10$



$$E_{data}$$
 = 73
 E_{smooth} = 170
 $E = E_{data} + E_{smooth}$ = 243



$$E_{data} = 83$$

 $E_{smooth} = 70$
 $E = E_{data} + E_{smooth} = 353$

$$E_{data} = 97$$
 $E_{smooth} = 80$
 $E = E_{data} + E_{smooth} = 177$

FG Segmentation: Energy Formula

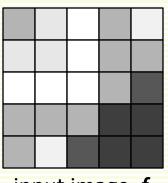
- Now we need to put everything into formulas
- s(x,y) is the segmentation **label**

```
s(x,y) = 1 means (x,y) is foreground pixel s(x,y) = 0 means (x,y) is background pixel
```

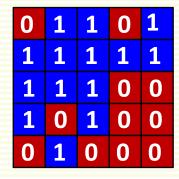
- Convenient to write pixel (x,y) as p (or q, r,...)
- Denote all pairs of nearby pixels: N

p	q	r	
V	u	W	
У	h	Z	

$$N = \{ (p,q), (p,r), (v,u), (u,w), (y,h), (h,z), (p,v), (v,y), (q,u), (u,h), (r,w), (w,z) \}$$



input image f



segmentation s

$$E(s) = E_{data}(s) + \lambda \cdot E_{smooth}(s) = \sum_{p} D_{p}(s_{p}) + \lambda \sum_{(p,q) \in N} [s_{p} \neq s_{q}]$$

where [true] = 1, [false] = 0

FG Segmentation: Formula Practice with $\lambda = 1$

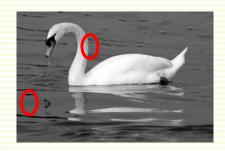
$$E(s) = \sum_{p} D_{p}(s_{p}) + \lambda \sum_{(p,q) \in N} [s_{p} \neq s_{q}]$$

foreground D

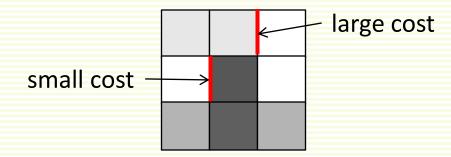
$$E(0 \ 0 \ 1 \ 0) = D_{p}(0) + D_{q}(1) + D_{r}(0) D_{p}(0) + D_{q}(1) + D_{r}(0) + [s_{p} \neq s_{q}] + [s_{q} \neq s_{r}] + [s_{v} \neq s_{u}] D_{p}(0) + D_{q}(0) + D_{p}(0) + [s_{q} \neq s_{w}] + [s_{p} \neq s_{p}] + [s_{p} \neq s_{q}] + [s$$

FG Segmentation: Contrast Sensitive Discontinuity

Where is object boundary more likely?



- Make discontinuity cost depend on image contrast
 - helps align object boundary with image edges



- Replace $[s_p \neq s_q]$ with $w_{pq} \cdot [s_p \neq s_q]$ where w_{pq} is
 - large if intensities of pixels p,q are similar
 - small if intensities of pixels p,q are not similar

FG Segmentation: Contrast Sensitive Discontinuity

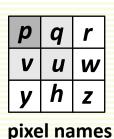
• Good choice
$$w_{pq} = \lambda \cdot e^{-\frac{(f(p)-f(q))^2}{2\sigma^2}}$$

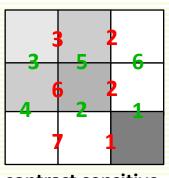
- Here f(p) is intensity of pixel p, f(q) intensity of pixel q
 - for color image, replace $(f(p) f(q))^2$ with $||f(p) f(q)||^2$
 - equivalent to processing each color channel individually
- Parameter σ^2 is either
 - set by hand (trail and error)
 - or computed as average of $(f(p)-f(q))^2$ over all neighbors in **N**
- Complete energy:
 - note that is now folded into w_{pq}

$$E(s) = \sum_{p} D_{p}(s_{p}) + \sum_{(p,q) \in N} w_{pq}[s_{p} \neq s_{q}]$$

FG Segmentation: Example

$$E(s) = \sum_{p} D_{p}(s_{p}) + \sum_{(p,q) \in N} W_{pq}[s_{p} \neq s_{q}]$$





$$E(\begin{array}{c|c} 0 & 1 & 0 \\ 0 & 0 & 0 \\ \hline 0 & 1 & 1 \end{array}) = data term as before + segmentation s$$

$$3 \cdot [\mathbf{s}_{p} \neq \mathbf{s}_{q}] + 2 \cdot [\mathbf{s}_{q} \neq \mathbf{s}_{r}] + 6 \cdot [\mathbf{s}_{v} \neq \mathbf{s}_{u}]$$

$$2 \cdot [\mathbf{s}_{u} \neq \mathbf{s}_{w}] + 7 \cdot [\mathbf{s}_{y} \neq \mathbf{s}_{h}] + 1 \cdot [\mathbf{s}_{h} \neq \mathbf{s}_{z}]$$

$$3 \cdot [\mathbf{s}_{p} \neq \mathbf{s}_{v}] + 2 \cdot [\mathbf{s}_{q} \neq \mathbf{s}_{u}] + 6 \cdot [\mathbf{s}_{r} \neq \mathbf{s}_{w}]$$

$$4 \cdot [\mathbf{s}_{v} \neq \mathbf{s}_{v}] + 2 \cdot [\mathbf{s}_{u} \neq \mathbf{s}_{h}] + 1 \cdot [\mathbf{s}_{w} \neq \mathbf{s}_{z}]$$

$$3+2+0$$

$$= 57 + 0+7+0
0+2+0
0+2+1$$

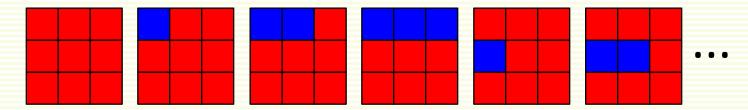
$$= 57+15=72$$

FG Segmentation: Optimization

We are all set to find the best segmentation s*

$$s^*$$
=arg min $E(s)$

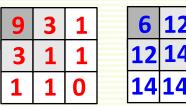
- How to do this efficiently?
- Even for a 9 pixel image, there are 2⁹ possible segmentations!



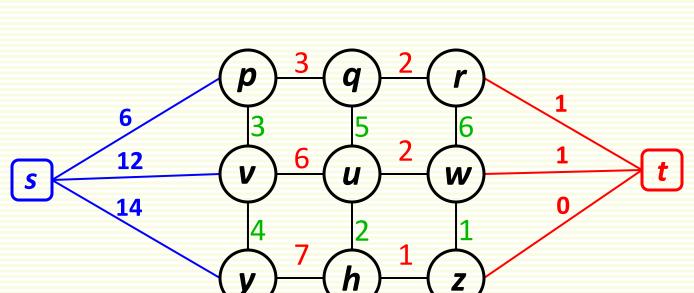
• $O(2^n)$ for an n pixel image

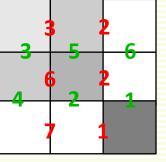
FG Segmentation: Optimization Graph

- Build weighted graph
 - one node per pixel
 - connect to neighbor pixel nodes with weight wpq
 - two special nodes (terminals) source s, sink t
 - s connects to each pixel node p with weight $D_p(0)$
 - t connects to each pixel node p with weight $D_p(1)$
 - graph below omits most of these edges for clarity



foreground D background D



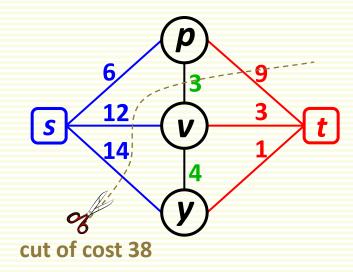


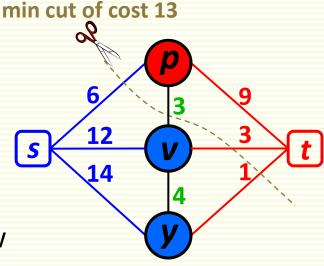
contrast sensitive weights

p	q	r		
V	u	W		
У	h	Z		
pixel names				

FG Segmentation: Optimization with Graph Cut

- Cut is subset of edges C s.t. removing C
 from graph makes s and t disconnected
 - cost of cut C is sum of its edge weights
- Minimum Graph Cut Problem
 - find a cut C of minimum cost
- Minimum cut C gives the smallest cost segmentation [Boykov&Veksler, 1998]
 - nodes that stay connected to source in the `cut' graph become foreground
 - nodes that stay connected to sink in the `cut' graph become background
 - In the example, p gets background label,
 v and y get foreground label
- Efficient algorithms for min-cut/max-flow





FG Segmentation: Segmentation Result

input

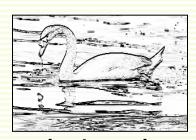
segmentation

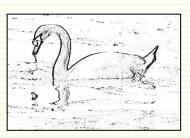
- Data terms
 - blue means low weight, red high weight

foreground

background

- Contrast sensitive edge weights
 - dark means low weight, bright high weight

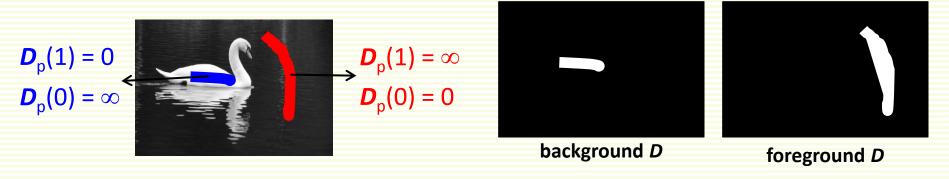




vertical

FG Segmentation: Interactive

- What if we do not know object/background color?
- Can ask user for help
- Interactive Segmentation [Boykov&Jolly, 2001]

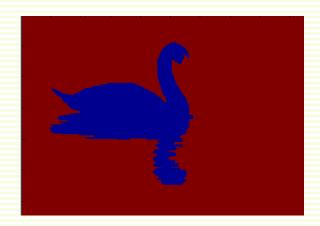


- User scribbles foreground and background seeds
 - these are hard constrained to be foreground and background, respectively
 - for any pixel p that user marks as a foreground, set $D_p(1) = 0$, $D_p(0) = \infty$
 - for any pixel p that user marks as a background, set $D_p(1) = \infty$, $D_p(0) = 0$
 - for unmarked pixels, set $\mathbf{D}_{p}(1) = \mathbf{D}_{p}(0) = 0$
- Smoothness term is as before
 - Contrast sensitive works best for interactive segmentation

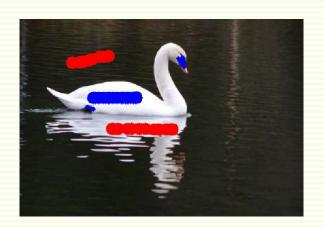
FG Segmentation: Interactive Results

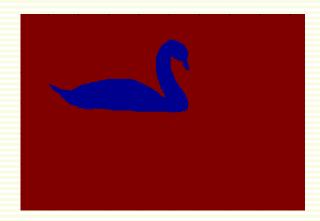
• Initial seeds:





• Add more seeds for correction:

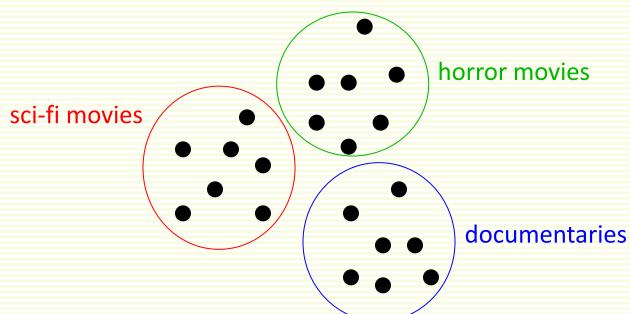


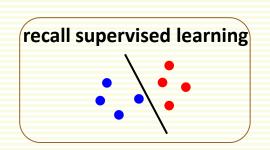


FG Segmentation: More Interactive Results

General Grouping or Clustering

- General Clustering (Grouping)
- Have samples (also called feature vectors, examples, etc.) x₁,...,x_n
- Cluster similar samples into groups
- This is also called unsupervised learning
 - samples have no labels
 - think of clusters as 'discovering' labels





How does this Relate to Image Segmentation?

- Represent image pixels as feature vectors x₁,...,x_n
 - For example, each pixel can be represented as
 - intensity, gives one dimensional feature vectors
 - color, gives three-dimensional feature vectors
 - color + coordinates, gives five-dimensional feature vectors
- Cluster them into **k** clusters, i.e. **k** segments

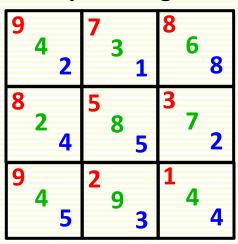
input image			
9 4 2	7 3 1	8 6 8	
8 2 4	5 8 5	3 7 2	
9 4 5	9 3	1 4 4	

in much importan

feature vectors for

How does this Relate to Image Segmentation?

input image



feature vectors for clustering based on color and image coordinates

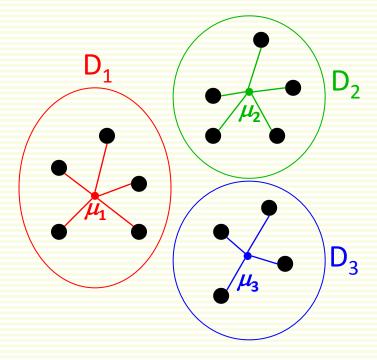
```
[9 4 2 0 0] [7 3 1 0 1] [8 6 8 0 2]
[8 2 4 1 0] [5 8 5 1 1] [3 7 2 1 2]
```

[9 4 5 2 0] [2 9 3 2 1] [1 4 4 2 2]

K-means Clustering: Objective Function

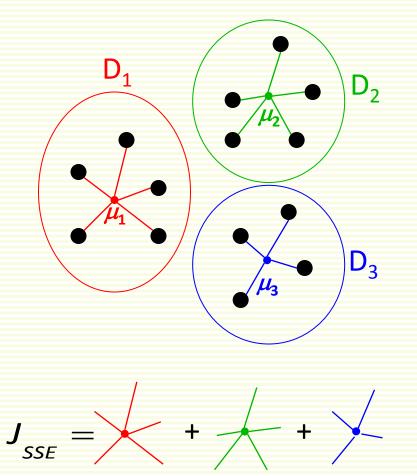
- Probably the most popular clustering algorithm
 - assumes know the number of clusters should be k
- Optimizes (approximately) the following objective function

$$J_{SSE} = \sum_{i=1}^{k} \sum_{x \in D_{i}} ||x - \mu_{i}||^{2}$$

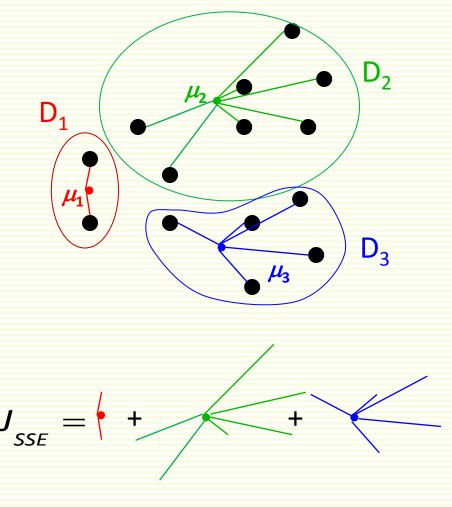


$$J_{SSE} = + + +$$

K-means Clustering: Objective Function



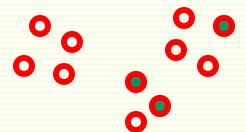
Good (tight) clustering smaller value of J_{SSE}



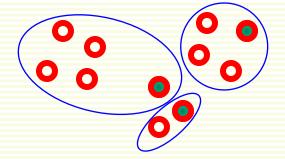
Bad (loose) clustering larger value of J_{SSE}

- Initialization step
 - 1. pick *k* cluster centers randomly

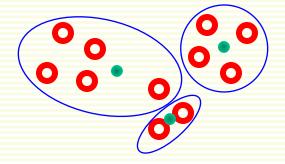
- Initialization step
 - 1. pick *k* cluster centers randomly



- Initialization step
 - 1. pick **k** cluster centers randomly
 - 2. assign each sample to closest center

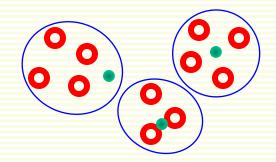


- Initialization step
 - 1. pick **k** cluster centers randomly
 - 2. assign each sample to closest center



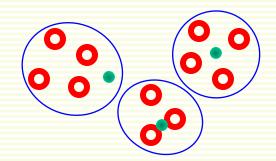
- Iteration step
 - 1. compute means in each cluster

- Initialization step
 - 1. pick **k** cluster centers randomly
 - 2. assign each sample to closest center



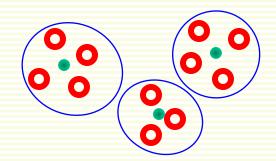
- Iteration step
 - 1. compute means in each cluster
 - re-assign each sample to the closest mean

- Initialization step
 - 1. pick **k** cluster centers randomly
 - 2. assign each sample to closest center



- Iteration step
 - 1. compute means in each cluster
 - 2. re-assign each sample to the closest mean
- Iterate until clusters stop changing

- Initialization step
 - 1. pick **k** cluster centers randomly
 - 2. assign each sample to closest center



- Iteration step
 - 1. compute means in each cluster
 - 2. re-assign each sample to the closest mean
- Iterate until clusters stop changing
- Can prove that this procedure decreases the value of the objective function J_{SEE}

K-means: Approximate Optimization

- K-means is fast and works quite well in practice
- But can get stuck in a local minimum of objective J_{SEE}
 - not surprising, since the problem is NP-hard

initialization

0 0

0

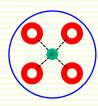
0 0

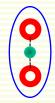
0

converged to local min

0 0 0

global minimum





• with k = 2

9 4 2	7 3 1	8 6 8
8 2 4	5 8 5	³ 7 2
9 4 5	9 3	1 4 4

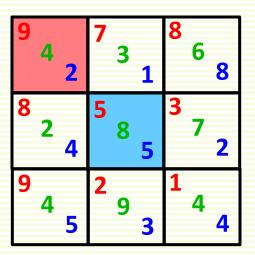
feature vectors

- with k = 2
- Initialize
 - pick [9 4 2] [5 8 5] as
 cluster centers

9 4 2	7 3 1	8 8
8 2 4	5 8 5	³ 7 2
9 4 5	9 3	1 4 4

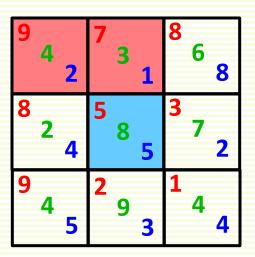
feature vectors

- with k = 2
- Initialize
 - pick [9 4 2] [5 8 5] as
 cluster centers
 - assign each feature vector to closest center



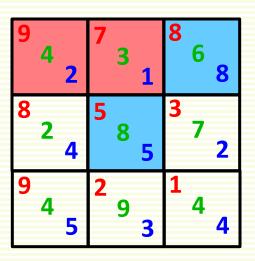
```
dist( [9 4 2] - [9 4 2] ) = 0 \Rightarrow [9 4 2] goes to pink cluster
```

- with k = 2
- Initialize
 - pick [9 4 2] [5 8 5] as
 cluster centers
 - assign each feature vector to closest center



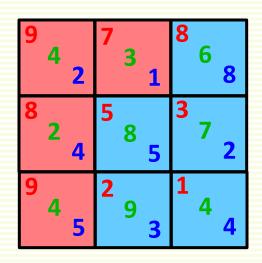
```
dist( [9 4 2] - [9 4 2] ) = 0 \Rightarrow [9 4 2] goes to pink cluster
dist( [7 3 1] - [9 4 2] ) = (7-9)^2 + (3-4)^2 + (1-2)^2 = 6 [7 3 1] goes
dist( [7 3 1] - [5 8 5] ) = (7-5)^2 + (3-8)^2 + (1-5)^2 = 45 to pink cluster
```

- with k = 2
- Initialize
 - pick [9 4 2] [5 8 5] as
 cluster centers
 - assign each feature vector to closest center



- with k = 2
- Initialize
 - pick [9 4 2] [5 8 5] as
 cluster centers
 - assign each feature vector to closest center
 - repeat for the rest of feature vectors

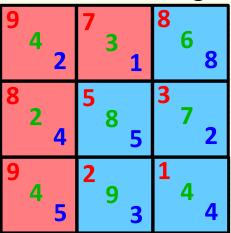
```
[8 2 4] [5 8 5] [3 7 2]
[9 4 5] [2 9 3] [1 4 4]
```



initial clustering

- Iterate
 - compute cluster means

initial clustering



$$\mu_1 = \frac{[9\ 4\ 2] + [7\ 3\ 1] + [8\ 2\ 4] + [9\ 4\ 5]}{4} = [8.25\ 3.25\ 3]$$

$$\mu_2 = \frac{[8\ 6\ 8] + [5\ 8\ 5] + [3\ 7\ 2] + [2\ 9\ 3] + [1\ 4\ 4]}{5} = [3.8\ 6.8\ 4.4]$$

Iterate

compute cluster means

$$\mu_1$$
 = [8.25 3.25 3]
 μ_2 = [3.8 6.8 4.4]

reassign samples to the closest mean

initial clustering 3

dist([9 4 2] - [8.25 3.25 3]) =
$$(8.25-9)^2 + (3.25-4)^2 + (3-2)^2 \approx 2$$
 [9 4 2] goes dist([9 4 2] - [3.8 6.8 4.4]) = $(3.8-9)^2 + (6.8-4)^2 + (4.4-2)^2 \approx 41$ to pink cluster

Iterate

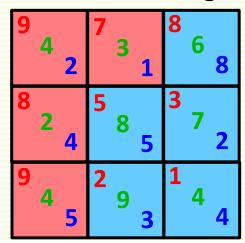
compute cluster means

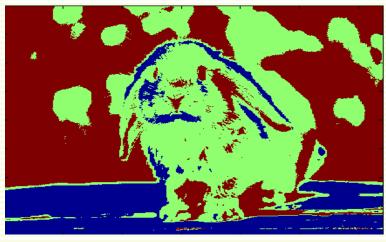
$$\mu_1 = [8.25 \ 3.25 \ 3]$$
 $\mu_2 = [3.8 \ 6.8 \ 4.4]$

- reassign samples to the closest mean
 - repeat for

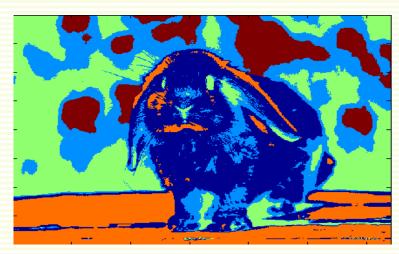
Converged!

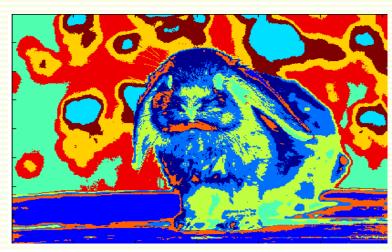
initial clustering





k = 3

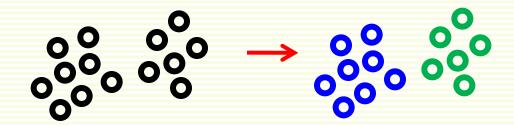




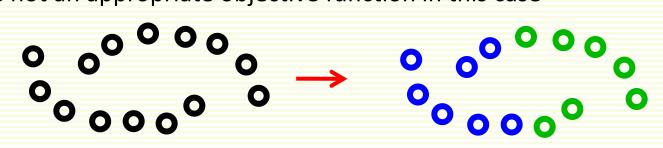
k = 10

K-means Properties

Works best when clusters are spherical (blob like)



- Fails for elongated clusters
 - **J**_{SEE} is not an appropriate objective function in this case



Sensitive to outliers

K-means Summary

- Advantages
 - Principled (objective function) approach to clustering
 - Simple to implement
 - Fast
- Disadvantages
 - Only a local minimum is found
 - May fail for non-blob like clusters
 - Sensitive to initialization
 - Sensitive to choice of k
 - Sensitive to outliers

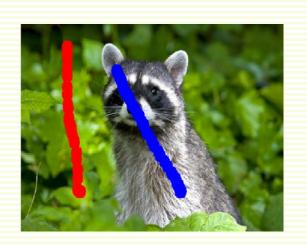
Back to FG Segmentation: Improving Data Term

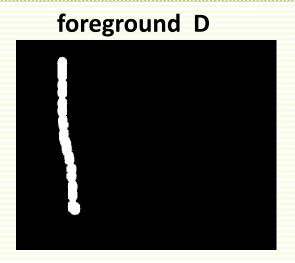
user strokes

initial result

- Can improve segmentation with more user strokes
- But can we get a better initial result?
- We are not using color information in the image effectively

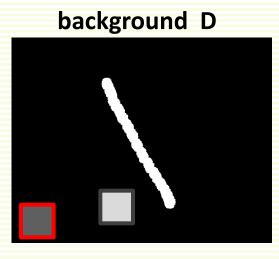
FG Segmentation: Improving Data Term

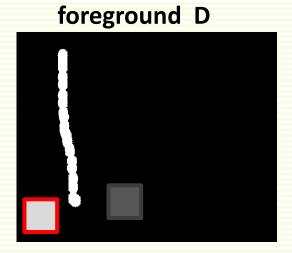




- Data terms are 0 for most pixels
 - no preference to either foreground or background
- However
 - background strokes are mostly green
 - foreground strokes are mostly grey
- Can we push green non-seed pixels to prefer background?
- Can we push grey non-seed pixels to prefer **foreground**?

FG Segmentation: Improving Data Term





Currently have:

$$D_{p}(0)=0$$

$$D_{\rm p}(1) = 0$$

$$D_{q}(0) = 0$$

$$D_{_{\rm CI}}(1) = 0$$

Want to have:

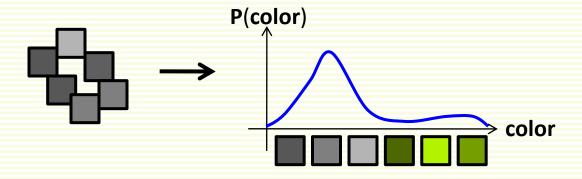
$$D_p(0) = small$$

$$D_p(1) = large$$

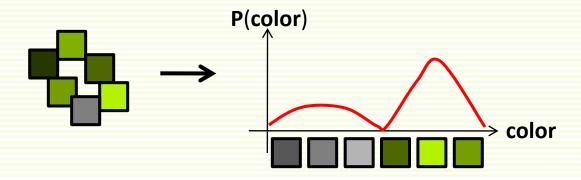
$$D_{\alpha}(0) = large$$

$$D_{\alpha}(1) = \text{small}$$

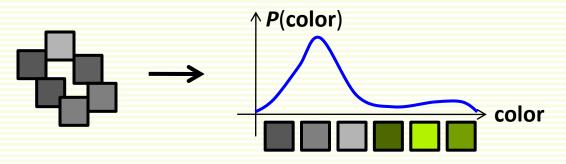
Build color distribution from foreground seeds

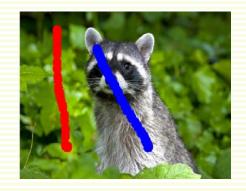


Build color distribution from background seeds

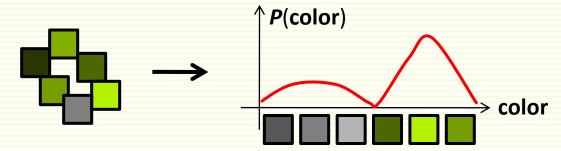


• Build color *distribution* from foreground seeds





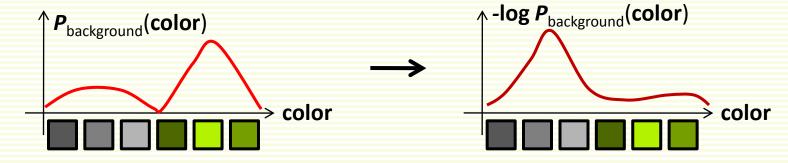
Build color distribution from background seeds



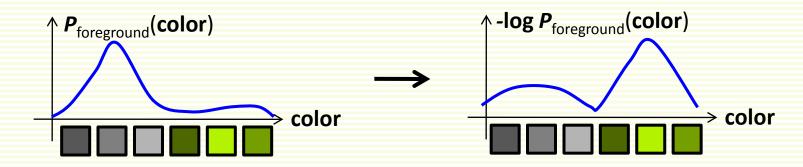
Normalized histogram for distribution

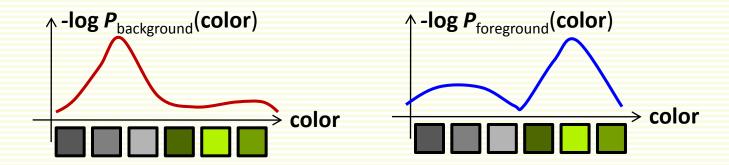
$$P_{\text{foreground}}(\text{color}) = \frac{\text{number of foreground seeds of color}}{\text{total number of foreground seeds}}$$

- For green pixels p, $P_{\text{background}}(p)$ is high, $P_{\text{background}}(p)$ low
- We want just the opposite for the data term
- Convert to "opposite" using -log()



Do the same for the foreground

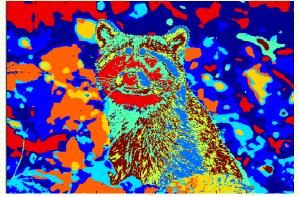




- $D_p(foreground) = log P_{foreground}(color of p)$
- $D_p(background) = log P_{background}(color of p)$
- Problem:
- The number of colors is too high: 256³
 - too large to build a normalized histogram
- Cluster colors using kmeans clustering, and treat each cluster as the "new" color

FG Segmentation: Cluster Colors

- Need to reduce number of colors
- Group similar colors together and treat the group as the same color
- 10 color clusters with kmeans
 - cluster 1 = color 1
 - cluster 2 = color 2
 - ...
 - cluster 10 = color 10
- Now we only have 10 colors
- Build foreground/background color models over 10 "new" colors



clusters visualized with random colors

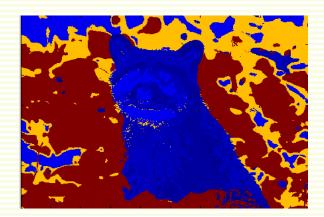
pixels painted with average color of pixels in its cluster

FG Segmentation: Segmentation Result

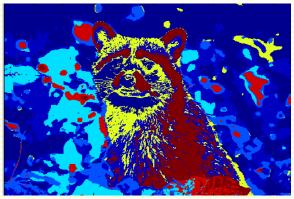
user input

reduced colors

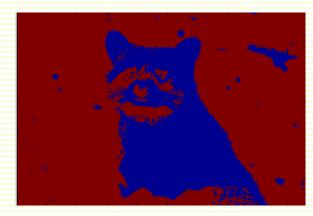
segmentation



foreground D



background D



blue pixels prefer foreground red pixels prefer background