
Some slides are from S. Seitz, S. Narasimhan, K. Grauman

CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 11

Computer Vision

Stereo

Outline

• Cues for 3D reconstruction

• Stereo Cues

• Stereo Reconstruction

1) camera calibration and rectification

• an easier, mostly solved problem

2) stereo correspondence

• a harder problem

2D Images
• World is 3D

• In 2D images, depth (the third coordinate) is largely lost

• includes human retina

2D Images

• Depth is inherently ambiguous from a single view

P

X ?

Y ?

Z ?

Street Pavement Art
• Viewed from the “right” side

Street Pavement Art
• Viewed from the “wrong” side

Babies and Animals Perceive Depth

The Visual Cliff, by William Vandivert, 1960

• Yet we perceive the world in 3D

3D Shape from Images

• What image cues provide 3D information?

• Cues from a single image

• Cues from multiple images

• Motion cues

• Stereo cues

• Can we use these cues in a computer vision
system?

Single Image 3D Cues: Shading

Merle Norman Cosmetics, Los Angeles

• Pixels covered by shadow are perceived to be further away

Single Image 3D Cues: Linear Perspective

• The further away are parallel lines, the closer they come together

Single Image 3D Cues: Relative Size

• If objects have the same size, those further away appear smaller

Single Image 3D Cues: Texture

• Further away texture appears finer (smaller scale)

Single Image 3D Cues: Known Size

• Ducks are smaller than elephants, duck is closer

Illusions: Linear Perspective + Relative Size

Illusions: Linear Perspective + Relative Size

Illusions: Linear Perspective + Relative Size

Illusions: Ames Room

Cues from Multiple Image: Motion Parallax

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html

• Closer objects appear to move more than further away objects

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html

3D Shape from X

• X = shading, texture, motion, ...

• We will focus on stereo
• depth perception from two stereo images

Why Two Eyes? Cylopes?

Why Two Eyes?
• Charles Wheatstone first explained stereopsis in 1838

left image

(x,y)

3D Scene

right eye left eye

 right image

(x-d,y)

Why Two Eyes?
• Disparity d is the difference in x coordinates of corresponding points

left image

(x,y)

3D Scene

right eye left eye

 right image

(x-d,y)

Stereoscopes

• Wheatstone invented the first stereoscope

Anaglyph Images

• Encodes left and right image
into a single picture
• left eye image is transferred

to the red channel

• right eye image to the
green+blue = cyan channel

• Red filter lets through only
the left image

• Cyan filter lets through only
theright eye image

• Brain fuses into 3D

• Similar technology for 3D
movies

• Works for most of us

What is Needed for Stereopsis?

• Need monocular cues for stereopsis? Need object cues?
Answered by Julesz in 1960

• Image with no monocular cues and no recognizable
objects: random dots

Need Object Recognition for Stereopsis?

• Answered by Julesz in 1960

• Make a copy of it

Need Object Recognition for Stereopsis?

• Answered by Julesz in 1960

• Select a square

Need Object Recognition for Stereopsis?

• Answered by Julesz in 1960

• Copy square the right image, shifting by d to the left

• random dot stereogram

Need Object Recognition for Stereopsis?

• Answered by Julesz in 1960

• Random dot stereogram

• Humans perceive square floating in front of background

3D Shape from Stereo

• Use two cameras instead of two eyes

left image

(x,y)

3D Scene

right camera left camera

 right image

(x-d,y)

Stereo System

3D scene point

optical center
left camera

optical center
right camera

• Unlike eyes, usually stereo cameras are not on the same plane
• better numerical stability

Stereo System: Triangulation

• Depth by triangulation
• given two corresponding points in the left and right image

• cast the rays through the optical camera centers

• ray intersection is the corresponding 3D world point P

• depth of P is based on camera positions and parameters

• Triangulation ideas can be traced to ancient Greece

3D scene point P

optical center
left camera

optical center
right camera

document from 1533

What is needed for Triangulation

1. Distance between cameras, camera focal length
• Solved through camera calibration, essentially a solved problem

• We will not talk about it

• Code available on the web
• OpenCV http://www.intel.com/research/mrl/research/opencv/

• Matlab, J. Bouget http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

• Zhengyou Zhang http://research.microsoft.com/~zhang/Calib/

2. Pairs of corresponding pixels in left and right images
• Called stereo correspondence problem, still much researched

http://www.intel.com/research/mrl/research/opencv/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://research.microsoft.com/~zhang/Calib/

Formula: Depth from Disparity

f
xl xr

baseline B

Cl Cr

P = (X,Y,Z)

Z

• Top down view on geometry (slice through XZ plane)
• from camera calibration, know the distance between camera optical

centers called baseline B, and camera focal length f

left optical
center

right optical
center

X

left image
point

right image
point

f

Z

Formula: Depth from Disparity

• Height to base ratio of triangle Cl P Cr :

f
xl xr

baseline B

Cl Cr

P = (X,Y,Z)

Z

left optical
center

right optical
center

X

left image
point

right image
point

f

Z

Z
B

Formula: Depth from Disparity

f
xl xr

baseline B

Cl Cr

P = (X,Y,Z)

Z

left optical
center

right optical
center

X

left image
point

right image
point

f

Z

• xl is positive, xr is negative

Z - f
B - xl + xr

• Height to base ratio of triangle xl P xr :

Formula: Depth from Disparity

• Cl P Cr and  xl P xr are similar:

f
xl xr

baseline B

Cl Cr

P = (X,Y,Z)

Z

left optical
center

right optical
center

X

left image
point

right image
point

f

Z

Z
B

Z - f
B - xl + xr

=

Formula: Depth from Disparity

• Rewriting:

f
xl xr

baseline B

Cl Cr

P = (X,Y,Z)

Z

left optical
center

right optical
center

X

left image
point

right image
point

f

Z

Z
 B f

xl - xr
=

• xl - xr is the disparity

Stereo Correspondence: Epipolar Lines
• Which pairs of pixels correspond to the same scene element ?

• Epipolar constraint
• Given a left image pixel, the corresponding pixel in the right image must

lie on a line called the epipolar line

• reduces correspondence to 1D search along conjugate epipolar lines

• demo: http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

optical center
left camera

optical center
right camera

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Stereo Rectification
• Epipolar lines can be computed from camera calibration

• Usually they are not horizontal
 • Can rectify stereo pair to make epipolar lines horizontal

Stereo Correspondence

• From now on assume stereo pair is rectified

• How to solve the correspondence problem?

• Corresponding pixels should be similar in intensity

• or color, or something else

left image right image

(x,y) (x-d,y)

Difficulties in Stereo Correspondence

• Image noise

• corresponding pixels have similar, but not exactly the same
intensities

left image patch right image patch

 90

• Matching each pixel individually is unreliable

 98 90

Difficulties in Stereo Correspondence

• regions with (almost) constant intensity

? ? ?

• Matching each pixel individually is unreliable

Window Matching Correspondence

• Use a window (patch) of pixels
• more likely to have enough intensity variation to form a distinguishable

pattern

• also more robust to noise

Window Matching Correspondence

• Use a window (patch) of pixels
• more likely to have enough intensity variation to form a distinguishable

pattern

• also more robust to noise

Window Matching: Basic Algorithm

• for each epipolar line

• for each pixel p on the left line

• compare window around p with same window shifted to
many right window locations on corresponding epipolar line

• pick location corresponding to the best matching window

Which Locations to Try?

• Disparity cannot be negative

• Maximum possible disparity is limited by the camera setup

• assume we know maxDisp

• Disparity can range from 0 to maxDisp

• consider only (x,y), (x-1,y),…(x-maxDisp,y) in the right image

(x,y) (x,y) (x-1,y) (x-maxDisp,y)

Window Matching Cost

• How to define the best matching window?

• Define window cost
• sum of squared differences (SSD)

• or sum of absolute differences (SAD)

• many other possibilities

• Pick window of best (smallest) cost

SSD Window Cost

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

     
     
      124546465564656

4477474747
4446464446

222

222

222





3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

     
     
      124546465564656

4477474747
4446464446

222

222

222





• This shift corresponds to disparity 0

Algorithm with SSD Window Cost

     
     
      642554646565656

7477474747
64444464646

222

222

222





Algorithm with SSD Window Cost

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

• This shift corresponds to disparity 1

Algorithm with SSD Window Cost

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

• This shift corresponds to disparity 2

     
     
      8464656565856

474747474747
444446464846

222

222

222





Algorithm with SSD Window Cost

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

• Best SSD window cost is 8 at disparity 2

• Red pixel is assigned disparity 2

• Repeat this for all image pixels

12454 6425 8

Correspondence with SSD Matching

disparity

SS
D

 c
o

st

• Unique best cost location

Compare to One Pixel “Window”

disparity

SS
D

 c
o

st

• No unique best cost location

SAD Window Cost

1 1 10

1 1 10

1 1 19

• SSD is fragile to outliers

1 1 10

1 1 10

1 1 99

SSD cost = 802 = 6400

1 1 10

1 1 10

1 1 19

31 31 31

31 31 31

31 31 29

SSD cost = 6384

• SAD (Sum of Absolute Differences) is more robust

1 1 10

1 1 10

1 1 19

1 1 10

1 1 10

1 1 99

SAD cost = 80

1 1 10

1 1 10

1 1 19

31 31 31

31 31 31

31 31 29

SAD cost = 232

best

best

Window Matching Efficency
• Suppose

• image has n pixels

• matching window is 11 by 11

• Need 1111 = 121 additions and multiplications to
compute one window cost

• Multiply that by number of locations to check
(maxDisp+1)

• Multiply that by n image pixels

• 121  n (maxDisp+1)

• Tooooo sloooow

• gets worse for larger windows

• Can get cost down to n (maxDisp+1) with integral images

Speedups: Integral Image

• Given image f(x,y), the integral image I(x,y) is the sum of values
in f(x,y) to the left and above (x,y), including (x,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

0 0 0 5 10

0 0 5 15 25

0 5 15 30 50

5 15 30 55 75

10 25 50 75 95

I(x,y)

• Example: I(2,2) = 0 + 0 + 0 + 0 + 0 + 5 + 0 + 5 + 5 = 15

Speedups: Integral Image

• Given image f(x,y), the integral image I(x,y) is the sum of values
in f(x,y) to the left and above (x,y), including (x,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

0 0 0 5 10

0 0 5 15 25

0 5 15 30 50

5 15 30 55 75

10 25 50 75 95

I(x,y)

• Example: I(4,1) = 0 + 0 + 0 + 5 + 5 + 0 + 0 +5 + 5 + 5 = 25

• Suppose computed integral image up to location (x,y)

Efficiently Computing Integral Image

I(x,y) = f(x,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y) I(x,y)

+

• Suppose computed integral image up to location (x,y)

Efficiently Computing Integral Image

I(x,y) = f(x,y) + I(x-1,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y) I(x,y)

+ + +
+ +
+ +
+ +

• Suppose computed integral image up to location (x,y)

Efficiently Computing Integral Image

I(x,y) = f(x,y) + I(x-1,y) + I(x,y-1)

 0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y) I(x,y)

+ + +
+ +
+ +
+ +

+
+
+

+
+
+

+
+
+

• Suppose computed integral image up to location (x,y)

Efficiently Computing Integral Image

I(x,y) = f(x,y) + I(x-1,y) + I(x,y-1) - I(x-1,y-1)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y) I(x,y)

+ + +
+ +
+ +
+ +

+
+
+

+
+
+

+
+
+

_

_

_

_

_

_

Integral Image: Order of Computation

I(x,y)

• Convenient order of computation

1. first row

2. first column

3. the rest in row-wise fashion

 1 2 3 4 5

6

7

8

9

10 11 12 13

14 15 16 17

18 19 20 21

22 23 24 25

Using Integral Image
• After computed integral image, sum over any rectangular

window is computed with four operations

• Top left corner (x1,y1) and bottom right corner (x2,y2)

I(x,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

I(x2,y2)

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+
+

+
+

Using Integral Image
• After computed integral image, sum over any rectangular

window is computed with four operations

• Top left corner (x1,y1) and bottom right corner (x2,y2)

I(x2,y2) - I(x1-1,y2)

I(x,y)

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

-
-
-
-

+
+

+
+ 0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

-
-
-
-

Using Integral Image
• After computed integral image, sum over any rectangular

window is computed with four operations

• Top left corner (x1,y1) and bottom right corner (x2,y2)

I(x2,y2) - I(x1-1,y2) - I(x2,y1-1)

- - - - 0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y) I(x,y)

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

-
-
-
-

+
+

+
+

-
-
-
- -

- - - - -

Using Integral Image
• After computed integral image, sum over any rectangular

window is computed with four operations

• Top left corner (x1,y1) and bottom right corner (x2,y2)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

I(x2,y2) - I(x1-1,y2) - I(x2,y1-1) + I(x1-1,y1-1)

- - - -

I(x,y)

+ +
+ +

+ +
+ +

+ +
+ +

+ +
+ +

-
-
-
-

+
+

+
+

-
-
-
- - + +
+ + - - - - -

Using Integral Image
• After computed integral image, sum over any rectangular

window is computed with four operations

• Top left corner (x1,y1) and bottom right corner (x2,y2)

I(x2,y2) - I(x1-1,y2) - I(x2,y1-1) + I(x1-1,y1-1)

0 0 0 5 10

0 0 5 15 25

0 5 15 30 50

5 15 30 55 75

10 25 50 75 95

I(x,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

• Example: 5 + 5 +10 + 5 + 10 + 0 = 75 -15 - 25 + 0 = 35

Integral Image for Window Matching

• Assume SAD (sum of absolute differences) cost

• Need to find SAD for every pixel and every disparity in a window

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

256 186 4

Integral Image for Window Matching

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

• for each pixel p

• for every disparity d

• compute cost between window around p in the left image
and the same window shifted by d in the right image

• pick d corresponding to the best matching window

Integral Image for Window Matching

• For each disparity d need to compute window cost for all pixels,
eventually

• For example, pick disparity d = 1

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

Integral Image for Window Matching

• Old inefficient algorithm:

• for each pixel p

• for every disparity d

• compute cost between window around p in the left image
and the same window shifted by d in the right image

• pick d corresponding to the best matching window

• New efficient algorithm:

• for each disparity d

• for every pixel p

• compute cost between window around p in the left image
and the same window shifted by d in the right image

• pick d corresponding to the best matching window

use integral image

swap

Integral Image for Window Matching

• Suppose current disparity is d = 1

• Overlay left and right image at disparity 1

• Compute AD (absolute difference) between every overlaid
pair of pixels

• Compute SAD in a window for every pixel

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

left image right image

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

2 1 0 2 2 2

3 3 3 0 2 0

39 0 0 43 0 0

39 0 2 38 5 0

40 0 0 40 2 0

51 0 10 41 0 0

1 0 3 3 1 0

AD image for disparity 1

Integral Image for Window Matching

• current
disparity
is d = 1

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

left image right image

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

0 2 1 0 2 2 2

0 3 3 3 0 2 0

0 39 0 0 43 0 0

0 39 0 2 38 5 0

0 40 0 0 40 2 0

0 51 0 10 41 0 0

0 1 0 3 3 1 0

AD image for disparity 1

Integral Image for Window Matching

• current
disparity
is d = 1

• Pad AD
image
with zeros

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

• current
disparity
is d = 1

Integral Image for Window Matching
left image right image

 AD image for disparity 1

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

0 2 1 0 2 2 2

0 3 3 3 0 2 0

0 39 0 0 43 0 0

0 39 0 2 38 5 0

0 40 0 0 40 2 0

0 51 0 10 41 0 0

0 1 0 3 3 1 0

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

• current
disparity
is d = 1

left image right image

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

Integral Image for Window Matching

 AD image for disparity 1

0 2 1 0 2 2 2

0 3 3 3 0 2 0

0 39 0 0 43 0 0

0 39 0 2 38 5 0

0 40 0 0 40 2 0

0 51 0 10 41 0 0

0 1 0 3 3 1 0

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

• current
disparity
is d = 1

Integral Image for Window Matching
left image right image

 AD image for disparity 1

0 2 1 0 2 2 2

0 3 3 3 0 2 0

0 39 0 0 43 0 0

0 39 0 2 38 5 0

0 40 0 0 40 2 0

0 51 0 10 41 0 0

0 1 0 3 3 1 0

• Current disparity is 1

• For each window pixel, have to
compute window sums in AD image

• Apply integral image to AD image

AD image for disparity 1

Integral Image for Window Matching

0 2 1 0 2 2 2

0 3 3 3 0 2 0

0 39 0 0 43 0 0

0 39 0 2 38 5 0

0 40 0 0 40 2 0

0 51 0 10 41 0 0

0 1 0 3 3 1 0

 for every pixel p do

 bestDisparity[p] = 0

 bestWindCost[p] = HUGE

 for disparity d = 0, 1,…, maxD do

 overlay images at disparity d

 compute AD image for disparity d

 compute Integral image from AD image

for every pixel p do

 currentCost = window cost at pixel p, computed from integral image

 if currentCost < bestWindCost[p]

 bestWindCost[p] = currentCost

 bestDisparity[p] = d

 return bestDisparity

Efficient Algorithm for Window Matching

2 1 0 2 2 2

3 3 3 0 4 0

39 0 0 43 1 0

39 0 2 38 2 0

40 0 0 40 2 0

51 0 10 41 0 0

1 0 3 3 1 0

 AD image for disparity 1

Effect of Window size

left image right image true disparities
bright means larger disparity

3x3 window 7x7 window 15x15 window

Effect of Window size: Low Texture Area

left image 0 5 10 15
0

50

100

150

200

250

3x3

7x7

15x15

disparity
w

in
d

o
w

 c
o

st

• windows of size 3x3 and 7x7 are too small to have a
distinct pattern
• no clearly best disparity

• window of size 15x15 is large enough to have a
distinct pattern

• 7 is clearly the best disparity

• window has to be large enough

0 5 10 15
0

5

10

15

20

Effect of Window size: Near Discontinuities

left image

3x3

7x7

15x15

disparity

w
in

d
o

w
 c

o
st

• central pixel (the one we are matching) is the lamp

• windows of size 3x3 and 7x7 contain mostly the lamp

• window of size 15x15 contains mostly the wall
• we match the wall instead of the lamp!

• window must be small enough to contain mostly the
same object as the central pixel

Effect of Window size
• No single window size is ‘perfect’ for the image

• Smaller window
• works better around object boundaries

• noisy results in low texture areas

• Larger window
• better results in low texture areas

• does not preserve object boundaries well

• Adaptive window algorithms exist [Veksler’2001]

Better Stereo Algorithms

State of the art method

[Boykov, Veksler, Zabih, 2001]
ground truth

• Formulate stereo as energy minimization

• Recall binary object/background segmentation problem

object

background

Better Stereo Algorithms

ground truth

• Stereo is multi-label segmentation problem
• region 0 = label 0 “likes” disparity 0

• region 1 = label 1 “likes” disparity 1

• …

• region maxDisp = label maxDisp “likes” disparity maxDisp

disp 0

disp 1

disp 2

disp 4

Stereo with Graph Cuts

• Energy Function
• Data Term: assign each pixel disparity label it likes

• Smoothness Term: count number of label (disparity)
discontinuities

AD 5
 data term for label 5

AD 8
 data term for label 8

AD 10
 data term for label 10

AD 14
 data term for label 14

• Solved with Graph Cuts: iteratively cuts out
regions corresponding to disparities

• NP-hard with more than 2 labels, but
computes a good approximation

Stereo with Graph Cuts

• Start with everything as label (disparity) 0

Stereo with Graph Cuts

• “Cut out” label (disparity) 1

Stereo with Graph Cuts

• “Cut out” label (disparity) 2

Stereo with Graph Cuts

• “Cut out” label (disparity) 3

Stereo with Graph Cuts

• “Cut out” label (disparity) 4

Stereo with Graph Cuts

• “Cut out” label (disparity) 5

Stereo with Graph Cuts

• “Cut out” label (disparity) 6

Multiple Artificial Eyes

• Two eyes better than one → three eyes better than two → four

eyes better than three → … → the more, the better

Common Folk New that Already

Stereo with Structured Light

• Project “structured” light patterns onto the object

• Simplifies correspondence problem

• Need one camera and one projector

camera

projector

Stereo with Structured Light

• Triangulate between camera and projector

Kinect: Structured Infrared Light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

Laser Scanning

• Optical triangulation
• Project a single stripe of laser light

• Scan it across the surface of the object

• This is a very precise version of structured light scanning

Digital Michelangelo Project

Levoy et al.
http://graphics.stanford.edu/projects/mich/

http://graphics.stanford.edu/projects/mich/

Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Numerous Applications

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

• Autonomous navigation

http://www.frc.ri.cmu.edu/projects/meteorobot/index.html
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Novel View Synthesis

 input image (1 of 2)

 [Szeliski & Kang ‘95]

 depth map 3D rendering

Applications: Video View Interpolation
http://research.microsoft.com/users/larryz/videoviewinterpolation.htm

http://research.microsoft.com/users/larryz/videoviewinterpolation.htm

Stereo Correspondence

• Steps:

• Calibrate cameras

• Rectify images

• Stereo correspondence

• Apply depth/disparity formula

• Stereo correspondence is still heavily researched

• The simple window matching algorithm we studied is
heavily used in practice due to speed and simplicity

• Popular Benchmark
http://www.middlebury.edu/stereo

