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Outline 

• What is POS and POS tagging 
• POS = part of speech 

• Why we need POS tagging 
• Different Approaches to POS 

1. rule-based tagging 
2. statistical tagging 
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What is a Part of Speech ? 
• Words that  behave alike 

• appear in similar contexts 
• perform similar functions in sentences 
• undergo similar transformations 

• Terminology 
• POS (part-of-speech tag)  
• also called   

• grammatical tag 
• grammatical category 
• syntactic word class 
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Substitution Test 

• Two words belong to the same part of speech if 
replacing one with another does not change the 
grammaticality of a sentence 
 

The {sad, big,green, …} dog is barking. 



Origin 
• Perhaps started with Aristotle (384–322 BCE) 
• From Dionysius Thrax of Alexandria (c. 100 BCE)  the 

idea that is still with us 
•  8 main parts of speech 

•  Those 8 are not exactly the ones taught today 
• Thrax: noun, verb, article, adverb, preposition, 

conjunction, participle, pronoun 
• School grammar: noun, verb, adjective, adverb, 

preposition, conjunction, pronoun, interjection 
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How Many POS are there? 
• A basic set:  

• N(oun), V(erb), Adj(ective), Adv(erb), Prep(osition), 
Det(erminer), Aux(ilaries), Part(icle), Conj(unction) 

• A simple division: open/content vs. closed/function 
• Open: N, V, Adj, Adv 

• new members are added frequently 

• Closed: Prep, Det, Aux, Part, Conj, Num 
• new members are added rarely 

• Many subclasses, e.g. 
• eats/V ⇒ eat/VB, eat/VBP, eats/VBZ, ate/VBD, eaten/VBN, 

eating/VBG, ...  
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POS tagging  
• Goal: assign POS tag (noun, verb, …) to text 

 

The/AT girl/NN put/VBD chairs/NNS on/IN the/AT table/NN. 
 

• What set of parts of speech do we use? 
• various standard tagsets to choose from, some 

have a lot more tags than others 
• choice of tagset is based on application 
• accurate tagging possible with even large tagsets 



• Word sense disambiguiaton (semantics) 
• limits the range of meanings: deal  as noun vs. deal  as verb 

• Speech recognition and synthesis 
• how to recognize/pronounce a word: 
• content/noun vs. content/adj  

• Stemming: which morphological affixes word can take 
• adverb - ly = noun: friendly - ly = friend 
• cannot apply to adjectives, example: sly 

• Partial parsing/chunking  
• to find noun phrases/verb phrases 

• Information extraction 
• helps identify useful terms and relationships between them 

Why do POS Tagging? 



Common Tagged Datasets 

• 45 tags in Penn Treebank 
• 62 tags in CLAWS with BNC corpus 
• 79 tags in Church (1991) 
• 87 tags in Brown corpus 
• 147 tags in C7 tagset 
• 258 tags in Tzoukermann and Radev (1995) 

 

 



Penn Treebank 
• First syntactically annotated corpus 
• 1 million words from Wall Street Journal 
• Part of speech tags and syntax trees 
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Important Penn Treebank tags 
IN  preposition or subordinating conjunct. 

JJ  adjective or numeral, ordinal  

JJR adjective, comparative  

NN  noun, common, singular or mass  

NNP noun, proper, singular  

NNS noun, common, plural  

TO  "to" as preposition or infinitive marker 

VB  verb, base form  

VBD verb, past tense 

VBG verb, present participle or gerund  

VBN verb, past participle  

VBP verb, present tense, not 3rd p. singular  

VBZ verb, present tense, 3rd p. singular 
… 

• 45 tags total 
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Verb inflection tags 
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The entire Penn Treebank tagset  

 



Terminology 
• Given text  

 The cat decided to jump on the couch to play with another cat 

• Terminology 
• Word type 

• Distinct words in the text (vocabulary) 
• text above has 10 word types 

• the, cat, decided, to, jump, on, couch, play, with, another 

• Word token 
• any word occurring in the text 
• text above has 13 word tokens 



Distribution of Tags 
• POS follow typical frequency-based behavior 

• most word types have only one part of speech 
• of the rest, most have two 
• only a small number of word types have lots of 

parts of speech 
• but these occur with high frequency 



• but most word types are rare 
• Brown corpus (Francis&Kucera, 1982): 

• 11.5%  word types    are ambiguous (>1 tag) 
• 40%     word tokens are ambiguous (>1 tag) 

 
 

 num. word types  
Unambiguous (1 tag) 35 340   
Ambiguous (>1 tag) 4 100  

2 tags 3760  
3 tags 264  
4 tags 61  
5 tags 12  
6 tags 2  
7 tags 1 “still” 

 

 

Most Word Types not Ambiguous but 



Tagging is a Type of Disambiguation 

1. Book/VB that/DT flight/NN 
• book can also be NN  
• Can I read a book on this flight? 

2. Does/VBZ that/DT flight/NN serve/VB dinner/NN ? 
• that can also be a complementizer 
• My travel agent said that there would be a meal on this 

flight. 



Potential Sources of Disambiguation 
1. Lexical information:  

• look up all possible POS for a word in a dictionary 
• “table”: {noun, verb} but not a {adj, prep,…} 
• “rose”: {noun, adj, verb} but not {prep, ...} 

2. Syntagmatic information:  
• some tag sequences are more probable than others: 
• DET + N occur frequently but DET+V never occurs 
• ART+ADJ+N   is more probable than ART+ADJ+VB 

• Can find the syntagmatic information 
• by talking to the experts 
• or, better,  from training corups 



Syntagmatic Information from Corpus 
• For a is a sequence of tags  t1, t2,.., tk  compute 

 

 P(t1, t2,.., tk) 
 

• tells us how likely this tag sequence is 
• similar to computing probability of a sequence of 

words P(w) 
• make the same approximation as before 

    P(tn|t1, t2,.., tn-1) = P(tn|tn-k…tn-1)  
• for computational efficiency, our assumption is  

P(tn|t1, t2,.., tn-1) = P(tn|tn-1)  
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1. rule-based tagging 
• uses hand-written rules 

2. statistical tagging 
• uses probabilities computed from training 

corpus 
• Charniak 
• Markov Model based 

POS Tagging Techniques 



Rule-based POS Tagging 

• Step 1: assign each word with all possible tags 
• use dictionary  

 

• Step 2: use if-then rules to identify the correct 
tag in context (disambiguation rules)  
 
 



Rule-based POS Tagging: Sample rules  
 

• ART-V rule: 
tag ART (article) cannot be followed by a tag V (verb) 
...the book… 

• the: {ART} 
• book: {N, V} --> {N} 

 

• N-IP rule:  
tag N (noun) cannot be followed by tag IP (interrogative pronoun) 
 ... man who …  

• man: {N} 
• who: {RP, IP} --> {RP} relative pronoun 

 



Rule-based Tagger 
• using only syntagmatic patterns 

• Green & Rubin (1971) 
• accuracy of 77% 

• In addition 
• very time consuming to come up with the rules  
• need an expert in English to come up with the rules 

 
 



Statistical POS Tagger: Charniak 1993 
• Simplest statistical tagger 
• From corpus, calculate most probable tag for each word 
• that is the one maximizing 

count(word has tag t)/count(word) 
• Equivalent to maximizing  

count(word has tag t) 
• Charniak tagger assigns most probable POS tag to a word  
• Given a word to tag,  

1. for each possible tag  t  for this word, compute  
        count(word has tag t)                               

2. choose tag t that maximizes the above  



Statistical POS Tagger: Charniak 1993 
• Accuracy of 90%  

• contrast with 77% accuracy of the rule-based tagger! 
• evidence of power of statistical over rule-based methods 
• MUCH better than rule based, but not very good...  

• 1 mistake every 10 words 

• funny fact: every word will have only one POS assigned to it 
• book will always be assigned the noun tag 

• This tagger is used mostly as baseline for evaluation 
• How do we improve it? 

• take the context of the surrounding words into account 
• some sequence of tags are much more likely than others 

 



Statistical Tagger:  Markov Model  Based 
• Tag sentence of words  w1,n  = w1  w2  …  wn 
• Denote tag sequence  as   t1,n   =   t1    t2    …   tn  

•  ti is a tag for word  wi 

• Find the best tagging  t1,n   out of all possible taggings 
•   How to define what is the best tagging? 
•   Use statistical principle, maximize:  

P(t1,n | w1,n)  



Markov Model Tagger 

• Using Bayes law 

 
 

P(t1,n | w1,n) = ________________ 
P(w1,n) 

P (w1,n| t1,n )P(t1,n ) 

• The best tagging is the one that maximizes 
P(t1,n | w1,n)  

• Hard to estimate directly 

 

• Bottom does not effect maximization,  
• constant over all possible taggings  t1,n 

 
 

• Find tagging that maximizes 

 P (w1,n| t1,n )P(t1,n ) 
 



Markov Model Tagger: First Assumption 
P (w1,n| t1,n )P(t1,n ) 

• We will make two simplifying assumptions 
• First simplifying assumption: 

1. given its tag, probability of word is independent of  tags of 
other words in a sentence: 

 
 

= Π P (wi| ti ) 
n 

i=1 
P (w1,n| t1,n ) 

• P( book|verb ) is independent of what are the tags of 
other words in the sentence  

• Reasonable assumption. For example, if  the next tag is 
adverb, does not change much  about  P( book|verb ) 
 

 



Markov Model  Tagger: First Assumption 

• P(wi | ti) estimated from  tagged corpus: 
 

= Π P (wi| ti ) = P(w1 | t1) P(w2 | t2) … P(wn | tn) 
n 

i=1 
P (w1,n| t1,n ) 

 

• example:  P( book | verb ) is count of how many times book has 
tag verb divided by how many times tag verb occurs in corpus 

• P( book | verb )  >  P( book | noun ) 
• there are many more nouns than verbs 
• say 1,000 verbs and 10,000 nouns 

 

C(ti) 
C( wi has tag ti ) 



Markov Model  Tagger: Second Assumption 

2. Each tag depends only on one previous tag: 

P(t1,n ) =  Π  P(ti|ti-1 ) 
i=1 

n 

• this is  Markov assumption we saw in language modeling 
• estimate as in language modeling:  

= P(t1 |t0) P(t2 |t1) … P(tn |tn-1) 
  

• P(t1| t0) stands for P(t1), estimated  by 

 _______ 
C(ti-1) 

C ( ti-1 ti ) P ( ti |ti-1 ) = 

P (w1,n| t1,n )P(t1,n ) 

 _____ 
N 

C ( t1 ) 
P ( t1 ) = 



Markov Model  Tagger 
• Using these 2 assumptions, find tagging that maximizes 

 
 

    Π  P (wi| ti )P(ti|ti-1 )                    (1) 
n 

i=1 

• Naïve algorithm: given sentence w1,n   go over all 
possible tag assignments  t1,n  and compute (1) 

• Choose final tagging  t1,n which maximizes  (1) 

• efficiency: for each word try only tags given by the dictionary 
• example: for  fly,  possible tags are noun, verb and also 

adjective  (meaning  keen or artful, mainly in England) 



Markov Model  Tagger 

• Naïve algorithm: given sentence w1,n   go over all 
possible tag assignments  t1,n   

• 40 % words have more than 1 tag 
• too many tag assignments to try 
• if 2 tags per word, then 2n possible assignments 
• exhaustive search is exponential 



Markov Model  Tagger 
• Side note: Markov tagger becomes Charniak’s tagger if 

tags are assumed independent, i.e.  
P(ti|ti-1 )= P(ti) 
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Markov Model  Tagger 

……. word 1 word 2 word 3 word n 

    Π  P (wi| ti )P(ti|ti-1 ) 
i=1 

n 

ADJ 

NOUN 

VERB 

PREP 

NOUN 

PREP 

NOUN 

VERB 

DETER 

ADJ 

NOUN 



 Markov Model Tagger: DP 

• Use DP (dynamic programming) to significantly speed up 
• also called Viterbi algorithm 

• If  k tags per word and n words, can find best tagging in O(k2n) 
• To avoid floating point underflows, take logarithms 
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1

|log|log||log
 how likely word wi 

 is for tag ti 

how likely tag ti 
to follow tag  ti-1 



 Markov Model Tagger: DP 

• Turn maximizing: 
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 Markov Model Tagger: DP 
• Find a sequence of tags   t1, t2,..., tn to minimize 
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• In the new notation,  find tags t1, t2,..., tn  to minimize: 

L(wi|ti) L(ti|ti-1) 



 Markov Model Tagger: DP 

…. 

L(VERB|NOUN) 

L(ADJ) 

L(NOUN) 

L(VERB) 

word 1 

ADJ 

NOUN 

VERB 

word 2 

ADJ 

NOUN 

word 3 

PREP 

VERB 

L(w1|ADJ) 

L(w1|NOUN) 

L(w1|VERB) 

L(w2|ADJ) 

L(w2|NOUN) 

L(w3|PREP) 

L(w3|VERB) 
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 Markov Model Tagger: DP 
• Change notation just for the first word:  

   L(w1|t1) = -log[P(w1|t1)] 

L(ADJ) 

L(NOUN) 

word 1 

ADJ 

NOUN 

L(w1|ADJ) 

L(w1|NOUN) 

word 1 

ADJ 

NOUN 

L(w1|ADJ) 

L(w1|NOUN) 
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 - log [P(t1|t0)] 

instead will 
picture 



 Markov Model Tagger: DP 
 • Each node has cost L(wi|ti) 

• Each edge has cost  L(ti|ti-1) 
 

• Cost of a  path:  ( ) ( )∑ ∑
= =

−+
n

i

n

i
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L(VERB|NOUN) 

ADJ 

NOUN 

VERB 

ADJ 

NOUN 

PREP 

VERB 

L(w1|ADJ) 

L(w1|NOUN) 

L(w1|VERB) 

L(w2|ADJ) 

L(w2|NOUN) 

L(w3|PREP) 

L(w3|VERB) 



 Markov Model Tagger: DP Graph 
 

• Find minimum cost path that starts at some node corresponding 
to word 1 and ends at some node corresponding to word n 

ADJ 

NOUN 

VERB 

ADJ 

NOUN 

NOUN 

VERB 

word 1 word 2 word n .  .  . 

NOUN 

PREP 

ADV 

word 3 



Markov Model Tagger: Main Step of DP 
 

• Main Step: for every node  at word  wi,  find smallest cost path 
that leads into it, starting at any node at word w1  

ADJ 

NOUN 

VERB 

ADJ 

NOUN 

PREP 

VERB 

word 1 word 2 word n .  .  . 

for w2, compute best path 
that ends here and here 



 Markov Model Tagger: DP Overview 
 • First compute the best path that ends at any node for w1 

• Then compute the best path that ends at any node for w2 
• ….. 
• Finally compute the best path that ends at any node for wn 
• The best path overall is smallest cost path that end at wn 

ADJ 

NOUN 

VERB 

ADJ 

NOUN 

PREP 

VERB 

word 1 word 2 word n .  .  . 

Compute the best path that ends 
here and here.  Cheapest of these 
two is the final answer 



 Markov Model Tagger: DP Variables 
 • For word wi  tag t node is  (wi,t)  

• C(wi,t) cost of best path that starts at any (w1,t) and ends at (wi,t) 
• P(wi,t)  is parent of node (wi, t) on this path 
• After all C(wi,t) computed, min of C(wn, t) over all t gives best path 

ADJ 

NOUN 

ADJ 

NOUN 

PREP 

VERB 

word 1 word 2 word n .  .  . 

(w2,ADJ) (w1,ADJ) 

(w1,NOUN) (wn,VERB) (w2,NOUN) 

(wn,PREP) 



 Markov Model Tagger: DP Initialization 
 • First compute the best path that ends at any node for w1 
• trivial, since the path has just one node 

• For all tags of the first word t :   
C(w1,t) = L(w1|t)                 P(w1,t) = null 

word 1 

ADJ 

NOUN 

VERB 

L(w1|ADJ) 

L(w1|NOUN) 

L(w1|VERB) 

 



 Markov Model Tagger: DP Iteration 
 

• Computed C(wi,t) and P(wi,t) for all tags t and i < k  

ADJ 

NOUN 

VERB 

ADJ 

NOUN 

NOUN 

VERB 

word 1 word k-1 word n .  .  . 

NOUN 

PREP 

ADV 

word k .  .  . 

all the best paths  
are computed 



 Markov Model Tagger: DP Iteration 
 • Now compute C(wk,t) and P(wk,t) for  k 

• Consider node (wk, ADJ) 
 

• The best path from w1 to (wk, ADJ)  goes through either  
1. (wk-1,ADJ):  then it follows best path from w1 to (wk-1, ADJ) 
2. (wk-1,NOUN):  then it follows best path from w1  to (wk-1, NOUN) 
• because a sub-path of the best path is a best path itself 

 

ADJ 

NOUN 

word 1 word k-1 

ADJ 

PREP 

word k .  .  . 

best path from w1  to (wk-1,ADJ) 

best path from w1  to (wk-1,NOUN) 



 Markov Model Tagger: DP Iteration 
 

• C(wk, ADJ) is the smaller of two quantities: 
 

1. C(wk-1,ADJ) + L(ADJ|ADJ) + L(wk|ADJ) 

• then   P(wk, ADJ) = (wk-1, ADJ) 
2. C(wk-1,NOUN) + L(ADJ|NOUN) + L(wk|ADJ) 

• then  P(wk, ADJ) = (wk-1, NOUN) 
 
 

ADJ 

NOUN 

word 1 word k-1 

ADJ 

PREP 

word k .  .  . 

best path from w1  to (wk-1,ADJ) 

best path from w1  to (wk-1,NOUN) 

L(ADJ|ADJ) 

L(wk|ADJ) 



 Markov Model Tagger: DP Iteration 
 • In general, C(wk, t) is computed as follows: 

 
 

( )
( )

( ){ } )|()'|(',min, 1' 1

twLttLtwCtwC kkwTtk
k

++= −∈ −

search over all 
tags t’  for word k-1 

cost of best path from first 
word to node (word k-1, t’) 

cost of going 
between nodes      

(wk-1, t’) and (wk,t) 

cost of  going through 
node (wk, t) 

• P(wk, t) = (wk-1, t*) where t* is the tag for word wk-1 
minimizing the expression above 
 



 Markov Model Tagger: DP Termination 
 • After computed all  C(wi, t)  best cost path is found as the 
minimum  of C(wn,t)  over all tags t  

• Parents on the path traced back using  P(wi,t) 
 

 

ADJ 

NOUN 

VERB 

ADJ 

NOUN 

PREP 

VERB 

word 1 word 2 word n .  .  . 

ADJ 

NOUN 

VERB 

word n-1 

• Final tagging is: VERB   NOUN   …   ADJ    VERB 

C(wn,VERB) is smallest, 
 P(wn,VERB) = (wn-1, ADJ) 

C(w2,NOUN) is smallest, 
P(w2,NOUN) = (w1, VERB) 



 MMT Example 

 

that 

VERB 

NOUN 

PRON 
CONJ 

flight 

NOUN 
VERB 

book 

ADJ 

L(PRON|ADJ) =1 

L(CONJ|ADJ) =2 

L(PRON|VERB) = 3 

L(CONJ|VERB)=4 

L(CONJ|NOUN)= 1 

L(PRON|NOUN) =2 

L(NOUN|PRON) =1 

L(VERB|PRON) =10 

L(NOUN|CONJ) =4 

L(VERB|CONJ) =2 

L( book|ADJ ) = 10 

L( book |VERB ) = 1 

L( book|NOUN ) =2 

L( that|PRON ) = 2 

L( that|CONJ ) = 4 

L( flight|NOUN ) = 2 

L( flight|VERB ) = 1 



 MMT Example 
 

book 

L( book|ADJ ) = 10 

L( book|VERB ) = 1 

L( book|NOUN ) = 2 

• Iteration 1: 
• C(book,ADJ)     =  10,  P(book,ADJ)     = null  
• C(book,VERB)   =  1,   P(book,VERB)   = null 
• C(book,NOUN) =  2,   P(book,NOUN) = null 

 

ADJ 

VERB 

NOUN 



 MMT Example 
 L(PRON|ADJ) =1 

L(PRON|VERB) = 3 

L(PRON|NOUN) =2 

L( that|PRON ) = 2 
L( that|CONJ ) = 4 

• Iteration 2: 
• C(that, PRON) = 6, P(that,PRON) = (book,VERB)  

 

C(book,ADJ)     =  10,  P(book,ADJ)     = null  
C(book,VERB)   =  1,   P(book,VERB)   = null 
C(book,NOUN) =  2,   P(book,NOUN) = null 

 

C(book,adj)+L(pron|adj)+L(that|pron)=13 

book 

ADJ 

VERB 

NOUN 

that 

PRON 

CONJ 



 MMT Example 
 

L(CONJ|ADJ) =2 

L(CONJ|VERB)=4 

L(CONJ|NOUN)= 1 

L( that|PRON ) = 2 

L( that |CONJ ) = 4 

• Iteration 2: 
• C(that, CONJ)  = 8, P(that, CONJ) = (book,NOUN)  

 

C(book,ADJ)     =  10,  P(book,ADJ)     = null  
C(book,VERB)   =  1,   P(book,VERB)   = null 
C(book,NOUN) =  2,   P(book,NOUN) = null 

 

book 

ADJ 

VERB 

NOUN 

that 

PRON 

CONJ 
C(book,verb)+L(conj|verb)+L(that|conj)=9 



 MMT Example 
 

• Iteration 3: 
• C(flight, NOUN) = 9, P(flight, NOUN) = (that,PRON)  

 

C(book,ADJ)     =  10,  P(book,ADJ)     = null  
C(book,VERB)   =  1,   P(book,VERB)   = null 
C(book,NOUN) =  2,   P(book,NOUN) = null 
C(that, PRON) = 6,      P(that, PRON)   = (book,VERB)  
C(that, CONJ) = 8,       P(that, CONJ)    = (book,NOUN) 

 

flight 

L(NOUN|PRON) =1 
L(NOUN|CONJ) =4 

L( flight|NOUN ) = 2 
L( flight|VERB) = 1 

that 

PRON 

CONJ 

NOUN 

VERB 



 MMT  Example 
 

• Iteration 3: 
• C(flight, VERB) = 11, P(flight, VERB)  = (that,CONJ)  

 
 

L(VERB|PRON) =10 
L(VERB|CONJ) =2 

L( flight|NOUN ) = 2 

L( flight|VERB ) = 1 

C(book,ADJ)     =  10,  P(book,ADJ)     = null  
C(book,VERB)   =  1,   P(book,VERB)   = null 
C(book,NOUN) =  2,   P(book,NOUN) = null 
C(that, PRON) = 6,      P(that, PRON)   = (book,VERB)  
C(that, CONJ) = 8,       P(that, CONJ)    = (book,NOUN) 

 

that 

PRON 

CONJ 

flight 

NOUN 

VERB 



 MMT  Example 

C(book,ADJ)     =  10,  P(book,ADJ)     = null  
C(book,VERB)   =  1,   P(book,VERB)   = null 
C(book,NOUN) =  2,   P(book,NOUN) = null 
 

C(that, PRON) = 6,      P(that, PRON)   = (book,VERB)  
C(that, CONJ) = 8,       P(that, CONJ)    = (book,NOUN) 
 

C(flight, NOUN) = 9,   P(flight, NOUN)  = (that,PRON)  
C(flight, VERB) = 11, P(flight,VERB)     = (that,PRON) 

 
Final Tagging: Book<verb> that <pron> flight<noun> 

that flight book 

ADJ 

VERB 

NOUN 

PRON 

CONJ 

NOUN 

VERB 



MMT: Pseudo Code for DP 

for each t ∈Tags(w1) do 
 C(w1, t) = L(w1| t), P(w1, t) = null 
 for i  2 to n do 

for each t ∈ Tag(wi)  do 
 C(wi, t) = -∝ 
 for each t’ ∈ Tag(wi-1)  do 
  nextCost =  C(wi-1,t’) + L(t|t’) + L(wi|t) 
  if nextCost < cost(wi, t ) do 
   C(wi,t) = nextCost 
   P(wi,t) = t’  

• Tags(wi)  is the set of all possible tags for wi 



Unknown Words 
• Simplest method: assume an unknown word could 

belong to any tag; unknown words are assigned the 
distribution over POS over the whole lexicon 
• P(“karumbula”|verb) = P(“karumbula”|noun) = 

P(“karumbula”|adjective) = …. etc 

• Some tags are more common than others 
• for example a new word can be most likely a verb, a noun etc. 

but not a preposition or an article 

• Use morphological and other cues 
• for example words ending in –ed are likely to be past tense 

forms or past participles 

 



Tagging Accuracy 

• Ranges from 96%-97%  
• Depends on: 

• Amount of training data available 
• The tag set 
• Difference between training corpus and dictionary 

and the corpus of application 
• Unknown words in the corpus of application 

• A change in any of these factors can have a 
dramatic effect on tagging accuracy – often 
much more stronger than the choice of tagging 
method 
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