CS4442/9542b Artificial Intelligence II prof. Olga Veksler

Lecture 16 Natural Language Processing Part of Speech Tagging

Many slides from: Joshua Goodman, L. Kosseim, D. Klein, D. Jurafsky, M. Hearst, K. McCoy, Y. Halevi, C. Manning, M. Poesio

Outline

- What is POS and POS tagging
 - POS = part of speech
- Why we need POS tagging
- Different Approaches to POS
 - 1. rule-based tagging
 - 2. statistical tagging

What is a Part of Speech ?

- Words that behave alike
 - appear in similar contexts
 - perform similar functions in sentences
 - undergo similar transformations
- Terminology
 - POS (part-of-speech tag)
 - also called
 - grammatical tag
 - grammatical category
 - syntactic word class

Substitution Test

 Two words belong to the same part of speech if replacing one with another does not change the grammaticality of a sentence

The {sad, big,green, ...} dog is barking.

Origin

- Perhaps started with Aristotle (384–322 BCE)
- From Dionysius Thrax of Alexandria (c. 100 BCE) the idea that is still with us
 - 8 main parts of speech
- Those 8 are not exactly the ones taught today
 - Thrax: noun, verb, article, adverb, preposition, conjunction, participle, pronoun
 - School grammar: noun, verb, adjective, adverb, preposition, conjunction, pronoun, interjection

How Many POS are there?

- A basic set:
 - N(oun), V(erb), Adj(ective), Adv(erb), Prep(osition), Det(erminer), Aux(ilaries), Part(icle), Conj(unction)
- A simple division: open/content vs. closed/function
 - Open: N, V, Adj, Adv
 - new members are added frequently
 - Closed: Prep, Det, Aux, Part, Conj, Num
 - new members are added rarely
- Many subclasses, e.g.
 - eats/V ⇒ eat/VB, eat/VBP, eats/VBZ, ate/VBD, eaten/VBN, eating/VBG, ...

POS tagging

• Goal: assign POS tag (noun, verb, ...) to text

The/AT girl/NN put/VBD chairs/NNS on/IN the/AT table/NN.

- What set of parts of speech do we use?
 - various standard tagsets to choose from, some have a lot more tags than others
 - choice of tagset is based on application
 - accurate tagging possible with even large tagsets

Why do POS Tagging?

- Word sense disambiguiaton (semantics)
 - limits the range of meanings: *deal* as noun vs. *deal* as verb
- Speech recognition and synthesis
 - how to recognize/pronounce a word:
 - content/noun vs. content/adj
- Stemming: which morphological affixes word can take
 - adverb *ly* = noun: *friendly ly* = friend
 - cannot apply to adjectives, example: *sly*
- Partial parsing/chunking
 - to find noun phrases/verb phrases
- Information extraction
 - helps identify useful terms and relationships between them

Common Tagged Datasets

- 45 tags in Penn Treebank
- 62 tags in CLAWS with BNC corpus
- 79 tags in Church (1991)
- 87 tags in Brown corpus
- 147 tags in C7 tagset
- 258 tags in Tzoukermann and Radev (1995)

Penn Treebank

- First syntactically annotated corpus
- 1 million words from Wall Street Journal
- Part of speech tags and syntax trees

Important Penn Treebank tags

• 45 tags total

IN	preposition or subordinating conjunct.		
JJ	adjective or numeral, ordinal		
JJR	adjective, comparative		
NN	noun, common, singular or mass		
NNP	noun, proper, singular		
NNS	noun, common, plural		
то	"to" as preposition or infinitive marker		
VB	verb, base form		
VBD	verb, past tense		
VBG	verb, present participle or gerund		
VBN	verb, past participle		
VBP	verb, present tense, not 3rd p. singular		
VBZ	verb, present tense, 3rd p. singular		

Verb inflection tags

VBP	base present	take
VB	infinitive	take
VBD	past	took
VBG	present participle	taking
VBN	past participle	taken
VBZ	present 3sg	takes
MD	modal	can, would

The entire Penn Treebank tagset

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	**	Left quote	(' or '')
POS	Possessive ending	's	"	Right quote	(' or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	$([, (, \{, <)$
PP\$	Possessive pronoun	your; one's)	Right parenthesis	$(],), \}, >)$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:;)
RP	Particle	up, off			

Terminology

Given text

The cat decided to jump on the couch to play with another cat

- Terminology
 - Word type
 - Distinct words in the text (vocabulary)
 - text above has 10 word types
 - the, cat, decided, to, jump, on, couch, play, with, another

Word token

- any word occurring in the text
- text above has 13 word tokens

Distribution of Tags

- POS follow typical frequency-based behavior
 - most word types have only one part of speech
 - of the rest, most have two
 - only a small number of word types have lots of parts of speech
 - but these occur with high frequency

Most Word Types not Ambiguous but

	num. word types	
Unambiguous (1 tag)	35 340	
Ambiguous (>1 tag)	4 100	
2 tags	3760	
3 tags	264	
4 tags	61	
5 tags	12	
6 tags	2	
7 tags	1	"still"

- but most word types are rare
- Brown corpus (Francis&Kucera, 1982):
 - 11.5% word types are ambiguous (>1 tag)
 - 40% word tokens are ambiguous (>1 tag)

Tagging is a Type of Disambiguation

- 1. Book/VB that/DT flight/NN
 - **book** can also be NN
 - Can I read a **book** on this flight?
- 2. Does/VBZ that/DT flight/NN serve/VB dinner/NN ?
 - that can also be a complementizer
 - My travel agent said *that* there would be a meal on this flight.

Potential Sources of Disambiguation

1. Lexical information:

- look up all possible POS for a word in a dictionary
- *"table"*: {noun, verb} but not a {adj, prep,...}
- *"rose"*: {noun, adj, verb} but not {prep, ...}
- 2. Syntagmatic information:
 - some tag sequences are more probable than others:
 - DET + N occur frequently but DET+V never occurs
 - **ART+ADJ+N** is more probable than **ART+ADJ+VB**
 - Can find the syntagmatic information
 - by talking to the experts
 - or, better, from training corups

Syntagmatic Information from Corpus

For a is a sequence of tags $t_1, t_2, ..., t_k$ compute

$P(t_1, t_2, ..., t_k)$

- tells us how likely this tag sequence is
- similar to computing probability of a sequence of words P(w)
- make the same approximation as before

$$P(t_{n} | t_{1}, t_{2}, ..., t_{n-1}) = P(t_{n} | t_{n-k}...t_{n-1})$$

• for computational efficiency, our assumption is

$$P(t_n | t_1, t_2, ..., t_{n-1}) = P(t_n | t_{n-1})$$

POS Tagging Techniques

- 1. rule-based tagging
 - uses hand-written rules
- 2. statistical tagging
 - uses probabilities computed from training corpus
 - Charniak
 - Markov Model based

Rule-based POS Tagging

Step 1: assign each word with all possible tags
use dictionary

• Step 2: use if-then rules to identify the correct tag in context (disambiguation rules)

Rule-based POS Tagging: Sample rules

• ART-V rule:

tag ART (article) cannot be followed by a tag V (verb)

...the book...

- the: {ART}
- book: {N, V} --> {N}
- N-IP rule:

tag N (noun) cannot be followed by tag IP (interrogative pronoun)

... man who ...

- man: {N}
- who: {RP, IP} --> {RP} relative pronoun

Rule-based Tagger

- using only syntagmatic patterns
 - Green & Rubin (1971)
 - accuracy of 77%
- In addition
 - very time consuming to come up with the rules
 - need an expert in English to come up with the rules

Statistical POS Tagger: Charniak 1993

- Simplest statistical tagger
- From corpus, calculate most probable tag for each word
- that is the one maximizing

count(word has tag t)/count(word)

Equivalent to maximizing

count(word has tag t)

- Charniak tagger assigns most probable POS tag to a word
- Given a word to tag,
 - for each possible tag t for this word, compute count(word has tag t)
 - 2. choose tag t that maximizes the above

Statistical POS Tagger: Charniak 1993

- Accuracy of 90%
 - contrast with 77% accuracy of the rule-based tagger!
 - evidence of power of statistical over rule-based methods
 - MUCH better than rule based, but not very good...
 - 1 mistake every 10 words
 - funny fact: every word will have only one POS assigned to it
 - book will always be assigned the noun tag
- This tagger is used mostly as baseline for evaluation
- How do we improve it?
 - take the context of the surrounding words into account
 - some sequence of tags are much more likely than others

Statistical Tagger: Markov Model Based

- Tag sentence of words
- Denote tag sequence as
 - **t**_i is a tag for word **w**_i

 $\mathbf{w}_{1,n} = \mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_n$

$$t_{1,n} = t_1 t_2 \dots t_n$$

- Find the best tagging $\mathbf{t}_{1,n}$ out of all possible taggings
- How to define what is the best tagging?
- Use statistical principle, maximize:

$$\mathbf{P}(\mathbf{t}_{1,n} \mid \mathbf{w}_{1,n})$$

Markov Model Tagger

- The best tagging is the one that maximizes
 P(t_{1,n} | w_{1,n})
- Hard to estimate directly
- Using Bayes law

$$P(t_{1,n} | w_{1,n}) = \frac{P(w_{1,n} | t_{1,n})P(t_{1,n})}{P(w_{1,n})}$$

- Bottom does not effect maximization,
 - constant over all possible taggings t_{1,n}
- Find tagging that maximizes

 $P(w_{1,n} | t_{1,n})P(t_{1,n})$

Markov Model Tagger: First Assumption

$$P(w_{1,n} | t_{1,n}) P(t_{1,n})$$

- We will make two simplifying assumptions
- First simplifying assumption:
 - 1. given its tag, probability of word is independent of tags of other words in a sentence:

$$\mathbf{P}(\mathbf{w}_{1,n} | \mathbf{t}_{1,n}) = \prod_{i=1}^{n} \mathbf{P}(\mathbf{w}_{i} | \mathbf{t}_{i})$$

- P(book|verb) is independent of what are the tags of other words in the sentence
- Reasonable assumption. For example, if the next tag is adverb, does not change much about P(book | verb)

Markov Model Tagger: First Assumption

$$P(w_{1,n} | t_{1,n}) = \prod_{i=1}^{n} P(w_i | t_i) = P(w_1 | t_1) P(w_2 | t_2) \dots P(w_n | t_n)$$

• **P**(**w**_i | **t**_i) estimated from tagged corpus:

```
C( w<sub>i</sub> has tag t<sub>i</sub>)
C(t<sub>i</sub>)
```

- example: P(book | verb) is count of how many times book has tag verb divided by how many times tag verb occurs in corpus
- P(book | verb) > P(book | noun)
 - there are many more nouns than verbs
 - say 1,000 verbs and 10,000 nouns

Markov Model Tagger: Second Assumption

2. Each tag depends only on one previous tag:

$$P(t_{1,n}) = \prod_{i=1}^{n} P(t_i | t_{i-1}) = P(t_1 | t_0) P(t_2 | t_1) \dots P(t_n | t_{n-1})$$

- this is **Markov** assumption we saw in language modeling
- estimate as in language modeling:

$$P(t_{i} | t_{i-1}) = \frac{C(t_{i-1} t_{i})}{C(t_{i-1})}$$

• $P(t_1 | t_0)$ stands for $P(t_1)$, estimated by $P(t_1) = \frac{C(t_1)}{2}$

N

Markov Model Tagger

- Using these 2 assumptions, find tagging that maximizes $\prod_{i=1}^{n} P(w_i | t_i)P(t_i | t_{i-1})$ (1)
- Naïve algorithm: given sentence w_{1,n} go over all possible tag assignments t_{1,n} and compute (1)
- Choose final tagging $t_{1,n}$ which maximizes (1)
 - efficiency: for each word try only tags given by the dictionary
 - example: for fly, possible tags are **noun**, **verb** and also **adjective** (meaning keen or artful, mainly in England)

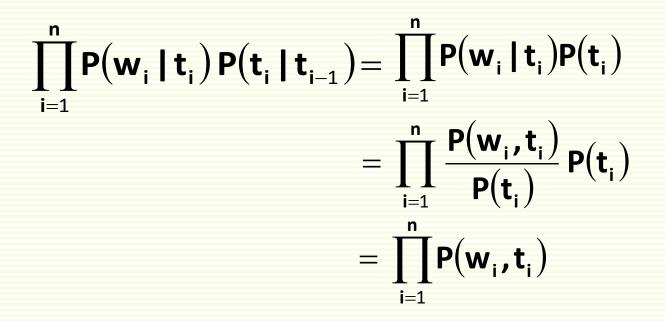
Markov Model Tagger

- Naïve algorithm: given sentence w_{1,n} go over all possible tag assignments t_{1,n}
- 40 % words have more than 1 tag
- too many tag assignments to try
- if 2 tags per word, then 2ⁿ possible assignments
- exhaustive search is exponential

 Side note: Markov tagger becomes Charniak's tagger if tags are assumed independent, i.e.

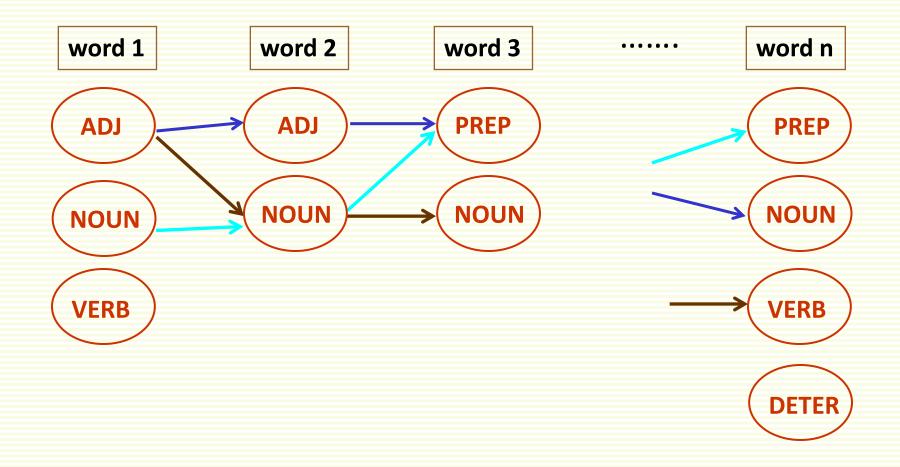
Markov Model Tagger

 $P(t_i | t_{i-1}) = P(t_i)$



Markov Model Tagger

$$\prod_{i=1}^{n} \mathbf{P}(\mathbf{w}_{i} | \mathbf{t}_{i}) \mathbf{P}(\mathbf{t}_{i} | \mathbf{t}_{i-1})$$



Markov Model Tagger: DP

- Use DP (dynamic programming) to significantly speed up
 - also called Viterbi algorithm
- If **k** tags per word and **n** words, can find best tagging in O(**k**²**n**)
- To avoid floating point underflows, take logarithms

$$\log \left[\prod_{i=1}^{n} \mathbf{P}(\mathbf{w}_{i} | \mathbf{t}_{i}) \mathbf{P}(\mathbf{t}_{i} | \mathbf{t}_{i-1})\right] = \sum_{i=1}^{n} \left(\log \mathbf{P}(\mathbf{w}_{i} | \mathbf{t}_{i}) + \log \mathbf{P}(\mathbf{t}_{i} | \mathbf{t}_{i-1})\right)$$

how likely word \mathbf{w}_{i} how likely tag \mathbf{t}_{i}
is for tag \mathbf{t}_{i} to follow tag \mathbf{t}_{i-1}

Markov Model Tagger: DP

• Turn maximizing:

$$\sum_{i=1}^{n} \log P(\mathbf{w}_{i} | \mathbf{t}_{i}) + \sum_{i=1}^{n} \log P(\mathbf{t}_{i} | \mathbf{t}_{i-1})$$

Into equivalent minimizing

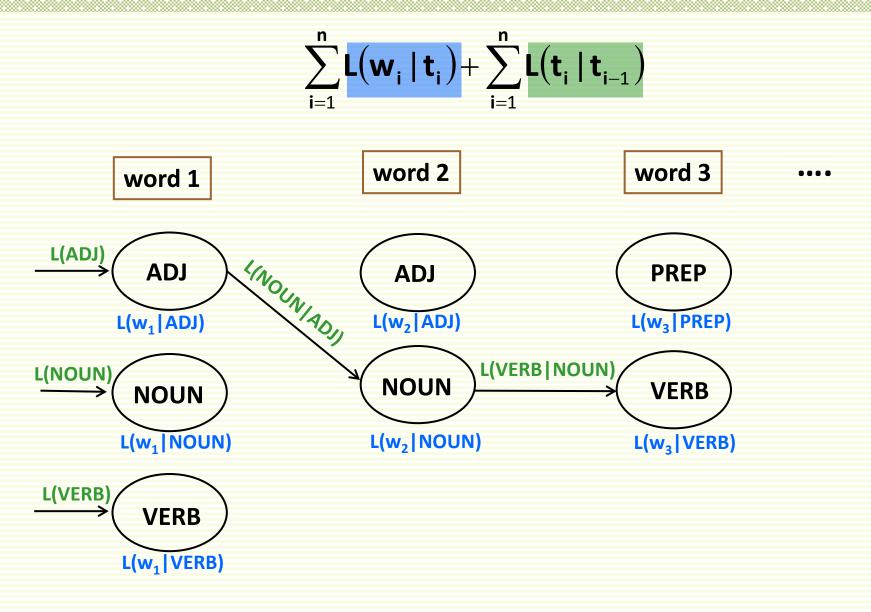
$$-\sum_{i=1}^{n} \log P(\mathbf{w}_{i} | \mathbf{t}_{i}) - \sum_{i=1}^{n} \log P(\mathbf{t}_{i} | \mathbf{t}_{i-1})$$

• Find a sequence of tags $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n$ to minimize

$$\frac{\sum_{i=1}^{n} -\log P(\mathbf{w}_{i} | \mathbf{t}_{i})}{L(\mathbf{w}_{i} | \mathbf{t}_{i})} + \frac{\sum_{i=1}^{n} -\log P(\mathbf{t}_{i} | \mathbf{t}_{i-1})}{L(\mathbf{t}_{i} | \mathbf{t}_{i-1})}$$

• In the new notation, find tags $t_1, t_2, ..., t_n$ to minimize:

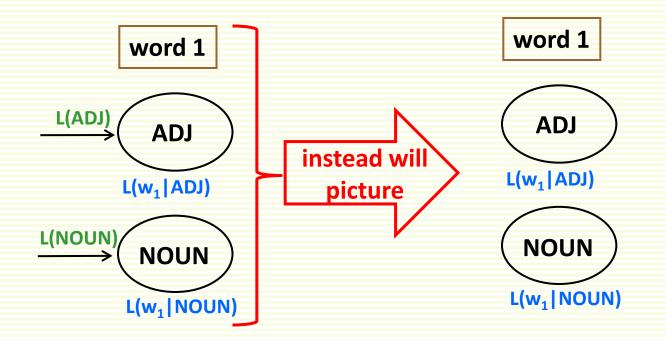
$$\sum_{i=1}^{n} L(\mathbf{w}_{i} | \mathbf{t}_{i}) + \sum_{i=1}^{n} L(\mathbf{t}_{i} | \mathbf{t}_{i-1})$$



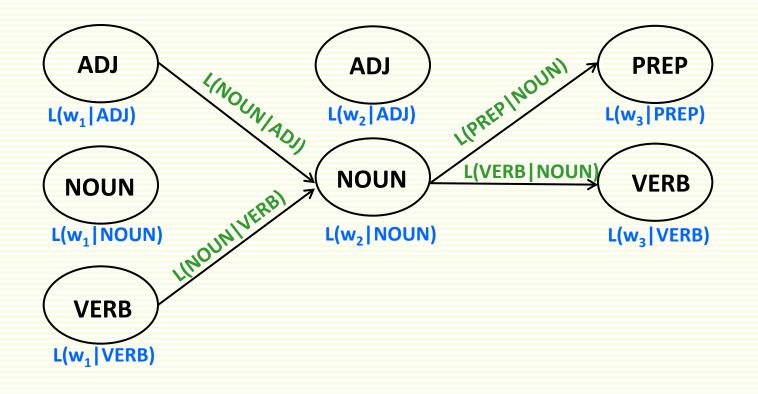
• Change notation just for the first word:

$$L(w_1|t_1) = -\log[P(w_1|t_1)] - \log[P(t_1|t_0)]$$

$$\sum_{i=1}^{n} L(w_{i} | t_{i}) + \sum_{i=1}^{n} L(t_{i} | t_{i-1}) \implies \sum_{i=1}^{n} L(w_{i} | t_{i}) + \sum_{i=2}^{n} L(t_{i} | t_{i-1})$$

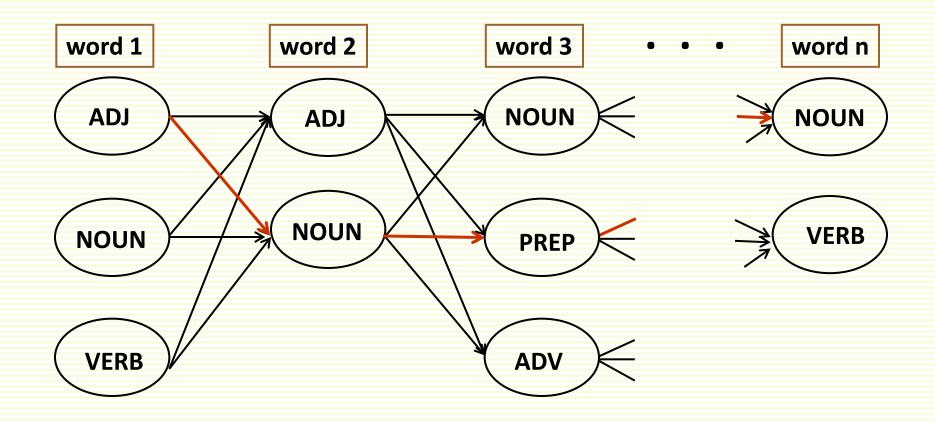


- Each node has cost L(w_i | t_i)
- Each edge has cost L(t_i | t_{i-1})
- Cost of a path: $\sum_{i=1}^{n} L(\mathbf{w}_{i} | \mathbf{t}_{i}) + \sum_{i=2}^{n} L(\mathbf{t}_{i} | \mathbf{t}_{i-1})$



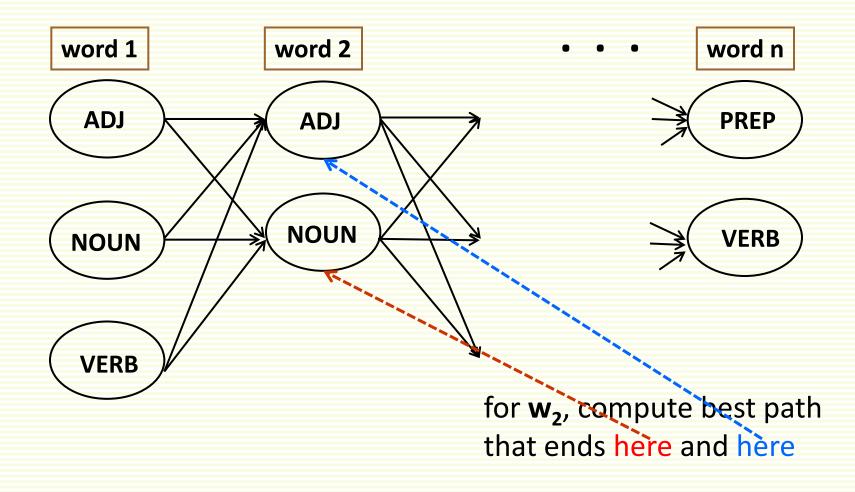
Markov Model Tagger: DP Graph

 Find minimum cost path that starts at some node corresponding to word 1 and ends at some node corresponding to word n



Markov Model Tagger: Main Step of DP

 Main Step: for every node at word w_i, find smallest cost path that leads into it, starting at any node at word w₁

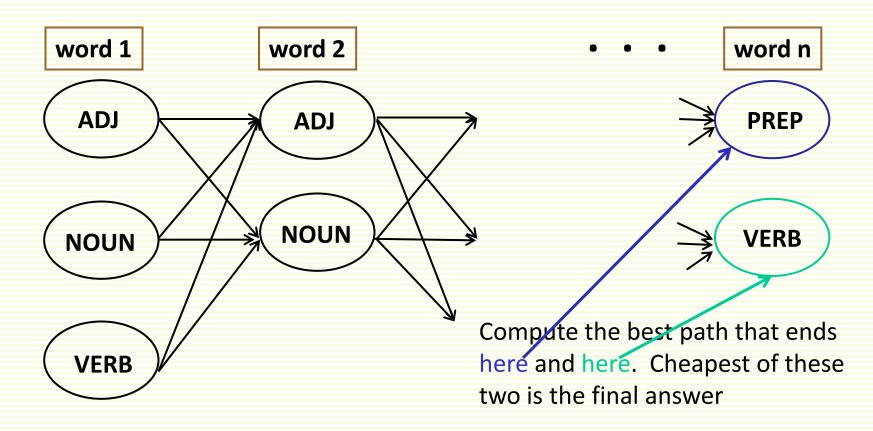


Markov Model Tagger: DP Overview

- First compute the best path that ends at any node for **w**₁
- Then compute the best path that ends at any node for w₂
- Finally compute the best path that ends at any node for w_n

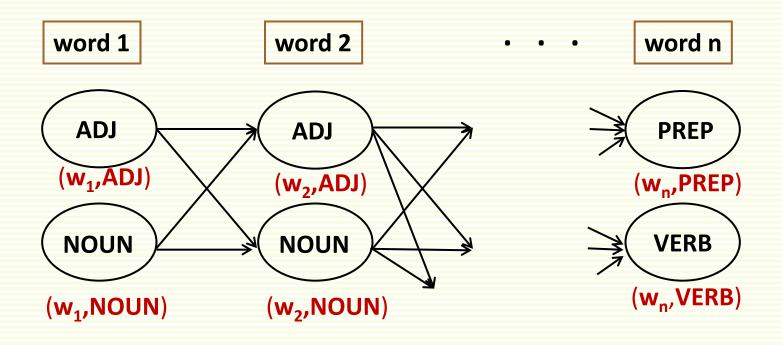
.

• The best path overall is smallest cost path that end at w_n



Markov Model Tagger: DP Variables

• For word **w**_i tag **t** node is (**w**_i,**t**)

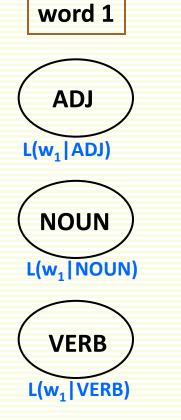


- **C**(**w**_i,**t**) cost of best path that starts at any (**w**₁,**t**) and ends at (**w**_i,**t**)
- **P**(**w**_i,**t**) is parent of node (**w**_i, **t**) on this path
- After all C(w_i,t) computed, min of C(w_n, t) over all t gives best path

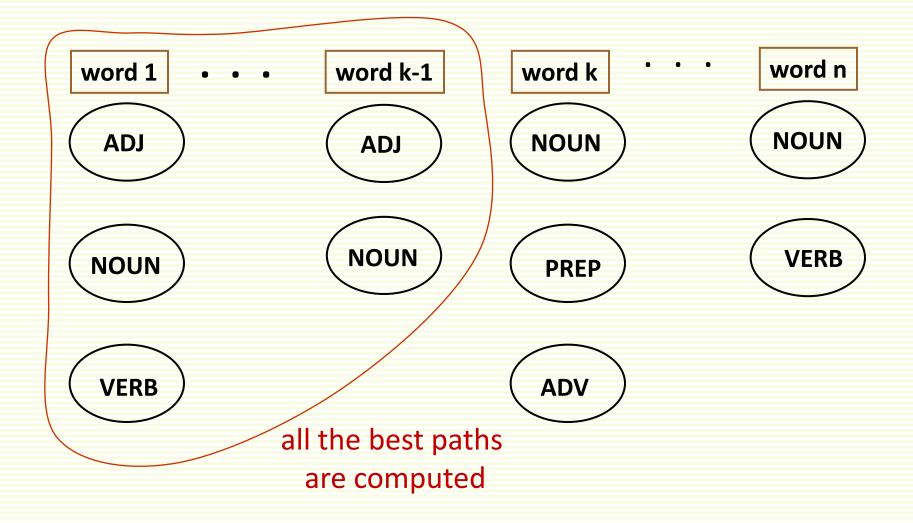
Markov Model Tagger: DP Initialization

- First compute the best path that ends at any node for **w**₁
 - trivial, since the path has just one node
- For all tags of the first word **t** :

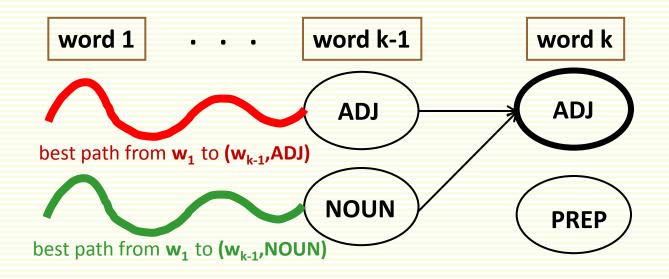
$$C(w_1,t) = L(w_1|t)$$
 $P(w_1,t) = null$



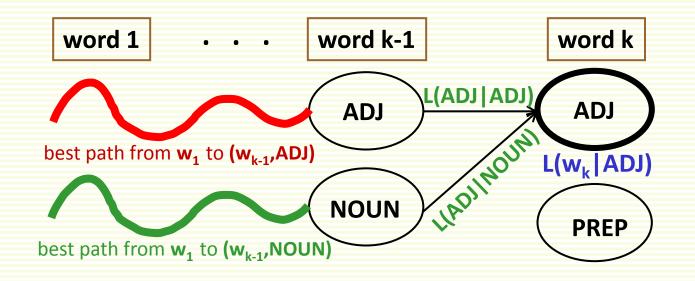
Computed C(w_i,t) and P(w_i,t) for all tags t and i < k



- Now compute C(w_k,t) and P(w_k,t) for k
- Consider node (w_k, ADJ)



- The best path from w_1 to (w_k, ADJ) goes through either
 - 1. (w_{k-1}, ADJ) : then it follows best path from w_1 to (w_{k-1}, ADJ)
 - 2. $(w_{k-1}, NOUN)$: then it follows best path from w_1 to $(w_{k-1}, NOUN)$
 - because a sub-path of the best path is a best path itself



- **C**(**w**_k, **ADJ**) is the smaller of two quantities:
 - 1. $C(w_{k-1}, ADJ) + L(ADJ | ADJ) + L(w_k | ADJ)$
 - then $P(w_k, ADJ) = (w_{k-1}, ADJ)$
 - 2. $C(w_{k-1}, NOUN) + L(ADJ | NOUN) + L(w_k | ADJ)$
 - then $P(w_k, ADJ) = (w_{k-1}, NOUN)$

In general, C(w_k, t) is computed as follows:

cost of best path from first word to node (word k-1, t')

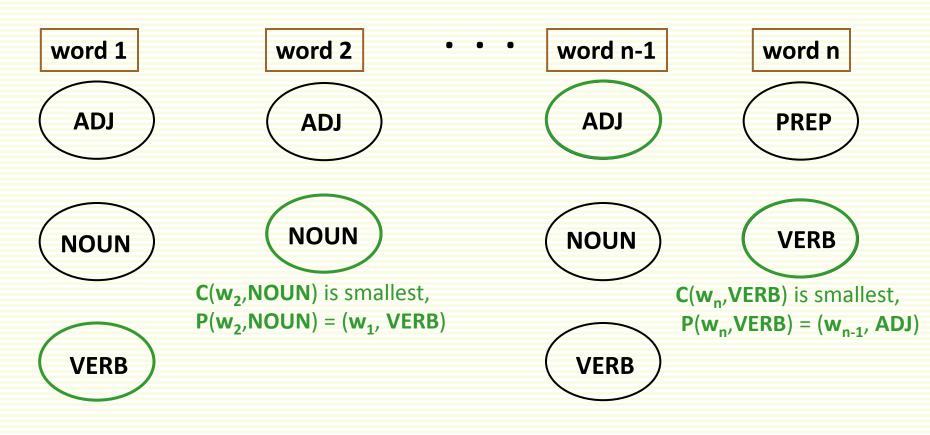
cost of going through node (w_k, t)

$$\mathbf{C}(\mathbf{w}_{k},\mathbf{t}) = \min_{\mathbf{t}'\in\mathsf{T}(\mathbf{w}_{k-1})} \{\mathbf{C}(\mathbf{w}_{k-1},\mathbf{t}') + \mathbf{L}(\mathbf{t} | \mathbf{t}')\} + \mathbf{L}(\mathbf{w}_{k} | \mathbf{t})\}$$

search over all tags t' for word k-1 cost of going between nodes (w_{k-1}, t') and (w_k,t)

 P(w_k, t) = (w_{k-1}, t*) where t* is the tag for word w_{k-1} minimizing the expression above

- After computed all C(w_i, t) best cost path is found as the minimum of C(w_n,t) over all tags t
- Parents on the path traced back using P(w_i,t)

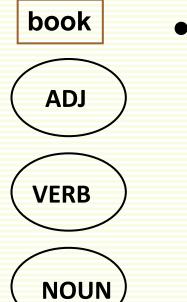


• Final tagging is: VERB NOUN ... ADJ VERB

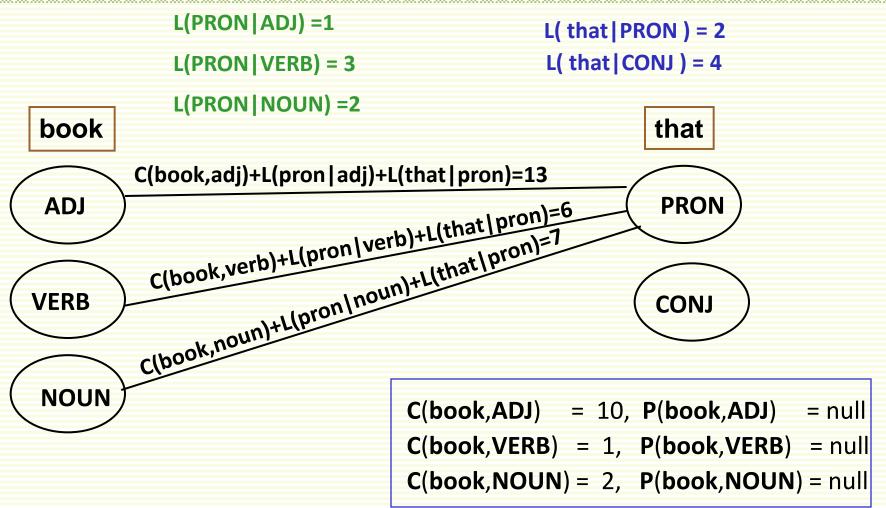
L(book ADJ) = 10	L(that PRON) = 2	L(flight NOUN) = 2
L(book VERB) = 1	L(that CONJ) = 4	L(flight VERB) = 1
L(book NOUN) =2		

book		that		flight
ADJ	L(PRON VERB) = 3	PRON	L(NOUN PRON) = 1	NOUN
VERB	L(CONJ VERB)=4	CONJ	L(VERB PRON) = 10	VERB
NOUN	L(PRON NOUN) =2		L(NOUN CONJ) =4 L(VERB CONJ) =2	
	L(CONJ NOUN)= 1			
	L(PRON ADJ) =1			
	L(CONJ ADJ) =2			

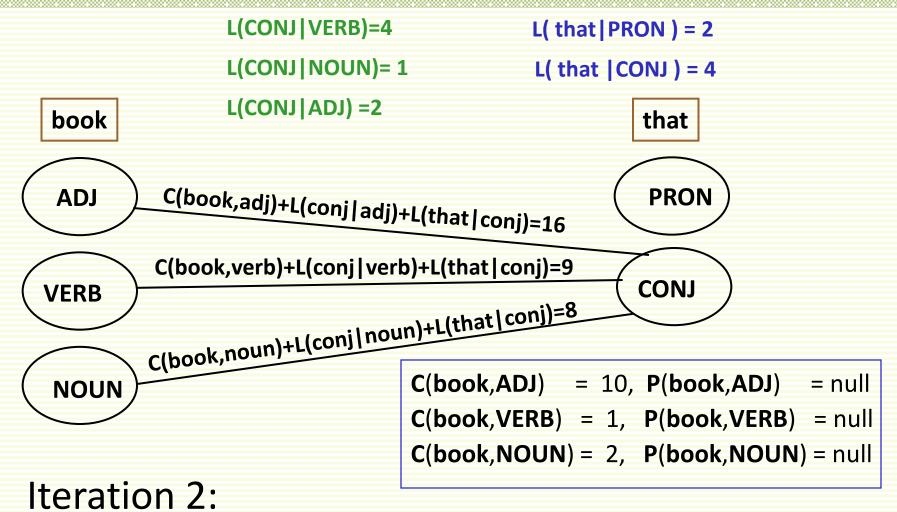
- L(book | ADJ) = 10
- L(book | VERB) = 1
- L(book | NOUN) = 2



- Iteration 1:
 - C(book,ADJ) = 10, P(book,ADJ) = null
 - C(book,VERB) = 1, P(book,VERB) = null
 - C(book,NOUN) = 2, P(book,NOUN) = null

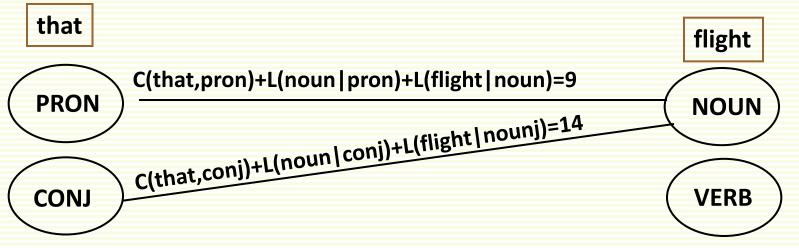


- Iteration 2:
 - C(that, PRON) = 6, P(that, PRON) = (book, VERB)



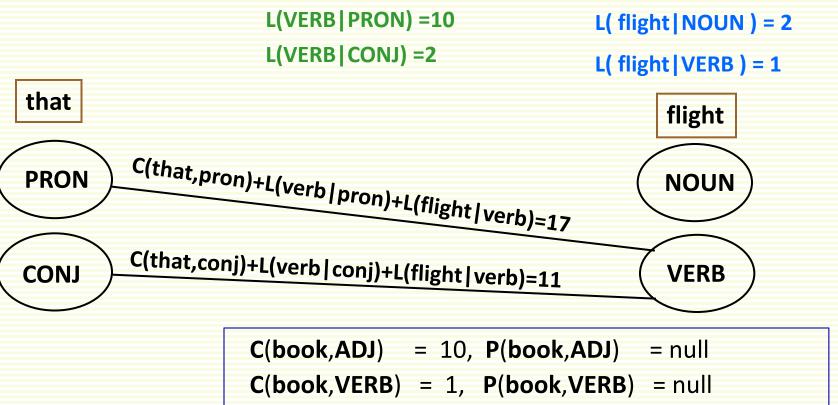
• C(that, CONJ) = 8, P(that, CONJ) = (book, NOUN)

L(NOUN | PRON) =1L(flight | NOUN) = 2L(NOUN | CONJ) =4L(flight | VERB) = 1



C(book, ADJ) = 10,	P(book,ADJ) = null
C(book, VERB) = 1,	P(book,VERB) = null
C(book, NOUN) = 2,	P(book,NOUN) = null
C(that , PRON) = 6,	P(that, PRON) = (book, VERB)
C(that, CONJ) = 8,	P(that, CONJ) = (book, NOUN)

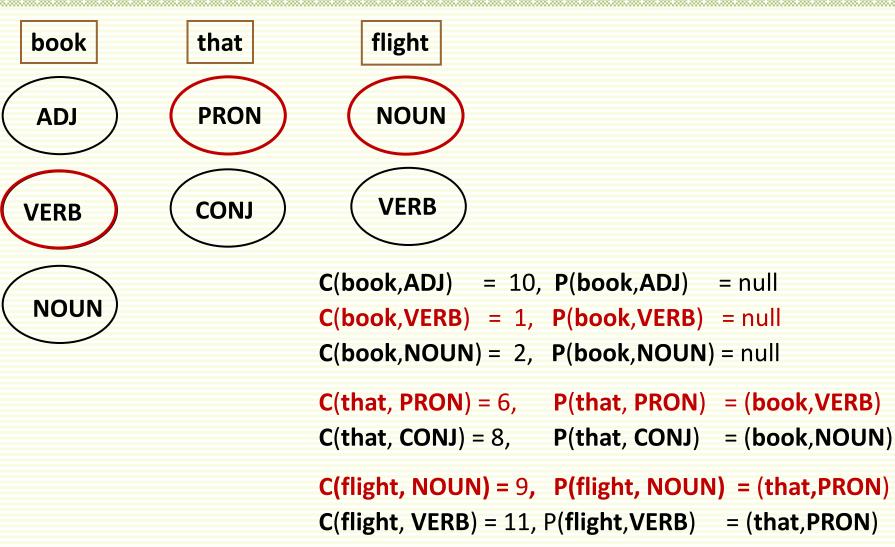
- Iteration 3:
 - C(flight, NOUN) = 9, P(flight, NOUN) = (that, PRON)



C(book,NOUN) = 2, P(book,NOUN) = null

C(that, PRON) = 6, P(that, PRON) = (book, VERB)C(that, CONJ) = 8, P(that, CONJ) = (book, NOUN)

- Iteration 3:
 - C(flight, VERB) = 11, P(flight, VERB) = (that, CONJ)



Final Tagging: Book<verb> that <pron> flight<noun>

MMT: Pseudo Code for DP

• Tags(w_i) is the set of all possible tags for w_i

for each $t \in Tags(w_1)$ do $C(w_1, t) = L(w_1 | t), P(w_1, t) = null$ for i ← 2 to *n* do for each $t \in Tag(w_i)$ do $C(w_i, t) = -\infty$ for each t' \in Tag(w_{i-1}) do nextCost = $C(w_{i-1}, t') + L(t|t') + L(w_i|t)$ if nextCost < cost(w_i, t) do $C(w_i, t) = nextCost$ $P(w_i,t) = t'$

Unknown Words

- Simplest method: assume an unknown word could belong to any tag; unknown words are assigned the distribution over POS over the whole lexicon
 - P("karumbula" | verb) = P("karumbula" | noun) = P("karumbula" | adjective) = etc
- Some tags are more common than others
 - for example a new word can be most likely a verb, a noun etc. but not a preposition or an article
- Use morphological and other cues
 - for example words ending in *-ed* are likely to be past tense forms or past participles

Tagging Accuracy

- Ranges from 96%-97%
- Depends on:
 - Amount of training data available
 - The tag set
 - Difference between training corpus and dictionary and the corpus of application
 - Unknown words in the corpus of application
- A change in any of these factors can have a dramatic effect on tagging accuracy – often much more stronger than the choice of tagging method