
CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 16
Natural Language Processing

Part of Speech Tagging

Many slides from: Joshua Goodman, L. Kosseim, D. Klein, D.
Jurafsky, M. Hearst, K. McCoy, Y. Halevi, C. Manning, M. Poesio

2

Outline

• What is POS and POS tagging
• POS = part of speech

• Why we need POS tagging
• Different Approaches to POS

1. rule-based tagging
2. statistical tagging

3

What is a Part of Speech ?
• Words that behave alike

• appear in similar contexts
• perform similar functions in sentences
• undergo similar transformations

• Terminology
• POS (part-of-speech tag)
• also called

• grammatical tag
• grammatical category
• syntactic word class

4

Substitution Test

• Two words belong to the same part of speech if
replacing one with another does not change the
grammaticality of a sentence

The {sad, big,green, …} dog is barking.

Origin
• Perhaps started with Aristotle (384–322 BCE)
• From Dionysius Thrax of Alexandria (c. 100 BCE) the

idea that is still with us
• 8 main parts of speech

• Those 8 are not exactly the ones taught today
• Thrax: noun, verb, article, adverb, preposition,

conjunction, participle, pronoun
• School grammar: noun, verb, adjective, adverb,

preposition, conjunction, pronoun, interjection

6

How Many POS are there?
• A basic set:

• N(oun), V(erb), Adj(ective), Adv(erb), Prep(osition),
Det(erminer), Aux(ilaries), Part(icle), Conj(unction)

• A simple division: open/content vs. closed/function
• Open: N, V, Adj, Adv

• new members are added frequently

• Closed: Prep, Det, Aux, Part, Conj, Num
• new members are added rarely

• Many subclasses, e.g.
• eats/V ⇒ eat/VB, eat/VBP, eats/VBZ, ate/VBD, eaten/VBN,

eating/VBG, ...

7

POS tagging
• Goal: assign POS tag (noun, verb, …) to text

The/AT girl/NN put/VBD chairs/NNS on/IN the/AT table/NN.

• What set of parts of speech do we use?
• various standard tagsets to choose from, some

have a lot more tags than others
• choice of tagset is based on application
• accurate tagging possible with even large tagsets

• Word sense disambiguiaton (semantics)
• limits the range of meanings: deal as noun vs. deal as verb

• Speech recognition and synthesis
• how to recognize/pronounce a word:
• content/noun vs. content/adj

• Stemming: which morphological affixes word can take
• adverb - ly = noun: friendly - ly = friend
• cannot apply to adjectives, example: sly

• Partial parsing/chunking
• to find noun phrases/verb phrases

• Information extraction
• helps identify useful terms and relationships between them

Why do POS Tagging?

Common Tagged Datasets

• 45 tags in Penn Treebank
• 62 tags in CLAWS with BNC corpus
• 79 tags in Church (1991)
• 87 tags in Brown corpus
• 147 tags in C7 tagset
• 258 tags in Tzoukermann and Radev (1995)

Penn Treebank
• First syntactically annotated corpus
• 1 million words from Wall Street Journal
• Part of speech tags and syntax trees

11

Important Penn Treebank tags
IN preposition or subordinating conjunct.

JJ adjective or numeral, ordinal

JJR adjective, comparative

NN noun, common, singular or mass

NNP noun, proper, singular

NNS noun, common, plural

TO "to" as preposition or infinitive marker

VB verb, base form

VBD verb, past tense

VBG verb, present participle or gerund

VBN verb, past participle

VBP verb, present tense, not 3rd p. singular

VBZ verb, present tense, 3rd p. singular
…

• 45 tags total

12

Verb inflection tags

13

The entire Penn Treebank tagset

Terminology
• Given text

 The cat decided to jump on the couch to play with another cat

• Terminology
• Word type

• Distinct words in the text (vocabulary)
• text above has 10 word types

• the, cat, decided, to, jump, on, couch, play, with, another

• Word token
• any word occurring in the text
• text above has 13 word tokens

Distribution of Tags
• POS follow typical frequency-based behavior

• most word types have only one part of speech
• of the rest, most have two
• only a small number of word types have lots of

parts of speech
• but these occur with high frequency

• but most word types are rare
• Brown corpus (Francis&Kucera, 1982):

• 11.5% word types are ambiguous (>1 tag)
• 40% word tokens are ambiguous (>1 tag)

 num. word types
Unambiguous (1 tag) 35 340
Ambiguous (>1 tag) 4 100

2 tags 3760
3 tags 264
4 tags 61
5 tags 12
6 tags 2
7 tags 1 “still”

Most Word Types not Ambiguous but

Tagging is a Type of Disambiguation

1. Book/VB that/DT flight/NN
• book can also be NN
• Can I read a book on this flight?

2. Does/VBZ that/DT flight/NN serve/VB dinner/NN ?
• that can also be a complementizer
• My travel agent said that there would be a meal on this

flight.

Potential Sources of Disambiguation
1. Lexical information:

• look up all possible POS for a word in a dictionary
• “table”: {noun, verb} but not a {adj, prep,…}
• “rose”: {noun, adj, verb} but not {prep, ...}

2. Syntagmatic information:
• some tag sequences are more probable than others:
• DET + N occur frequently but DET+V never occurs
• ART+ADJ+N is more probable than ART+ADJ+VB

• Can find the syntagmatic information
• by talking to the experts
• or, better, from training corups

Syntagmatic Information from Corpus
• For a is a sequence of tags t1, t2,.., tk compute

 P(t1, t2,.., tk)

• tells us how likely this tag sequence is
• similar to computing probability of a sequence of

words P(w)
• make the same approximation as before

 P(tn|t1, t2,.., tn-1) = P(tn|tn-k…tn-1)
• for computational efficiency, our assumption is

P(tn|t1, t2,.., tn-1) = P(tn|tn-1)

20

1. rule-based tagging
• uses hand-written rules

2. statistical tagging
• uses probabilities computed from training

corpus
• Charniak
• Markov Model based

POS Tagging Techniques

Rule-based POS Tagging

• Step 1: assign each word with all possible tags
• use dictionary

• Step 2: use if-then rules to identify the correct
tag in context (disambiguation rules)

Rule-based POS Tagging: Sample rules

• ART-V rule:
tag ART (article) cannot be followed by a tag V (verb)
...the book…

• the: {ART}
• book: {N, V} --> {N}

• N-IP rule:
tag N (noun) cannot be followed by tag IP (interrogative pronoun)
 ... man who …

• man: {N}
• who: {RP, IP} --> {RP} relative pronoun

Rule-based Tagger
• using only syntagmatic patterns

• Green & Rubin (1971)
• accuracy of 77%

• In addition
• very time consuming to come up with the rules
• need an expert in English to come up with the rules

Statistical POS Tagger: Charniak 1993
• Simplest statistical tagger
• From corpus, calculate most probable tag for each word
• that is the one maximizing

count(word has tag t)/count(word)
• Equivalent to maximizing

count(word has tag t)
• Charniak tagger assigns most probable POS tag to a word
• Given a word to tag,

1. for each possible tag t for this word, compute
 count(word has tag t)

2. choose tag t that maximizes the above

Statistical POS Tagger: Charniak 1993
• Accuracy of 90%

• contrast with 77% accuracy of the rule-based tagger!
• evidence of power of statistical over rule-based methods
• MUCH better than rule based, but not very good...

• 1 mistake every 10 words

• funny fact: every word will have only one POS assigned to it
• book will always be assigned the noun tag

• This tagger is used mostly as baseline for evaluation
• How do we improve it?

• take the context of the surrounding words into account
• some sequence of tags are much more likely than others

Statistical Tagger: Markov Model Based
• Tag sentence of words w1,n = w1 w2 … wn
• Denote tag sequence as t1,n = t1 t2 … tn

• ti is a tag for word wi

• Find the best tagging t1,n out of all possible taggings
• How to define what is the best tagging?
• Use statistical principle, maximize:

P(t1,n | w1,n)

Markov Model Tagger

• Using Bayes law

P(t1,n | w1,n) = ________________
P(w1,n)

P (w1,n| t1,n)P(t1,n)

• The best tagging is the one that maximizes
P(t1,n | w1,n)

• Hard to estimate directly

• Bottom does not effect maximization,
• constant over all possible taggings t1,n

• Find tagging that maximizes

 P (w1,n| t1,n)P(t1,n)

Markov Model Tagger: First Assumption
P (w1,n| t1,n)P(t1,n)

• We will make two simplifying assumptions
• First simplifying assumption:

1. given its tag, probability of word is independent of tags of
other words in a sentence:

= Π P (wi| ti)
n

i=1
P (w1,n| t1,n)

• P(book|verb) is independent of what are the tags of
other words in the sentence

• Reasonable assumption. For example, if the next tag is
adverb, does not change much about P(book|verb)

Markov Model Tagger: First Assumption

• P(wi | ti) estimated from tagged corpus:

= Π P (wi| ti) = P(w1 | t1) P(w2 | t2) … P(wn | tn)
n

i=1
P (w1,n| t1,n)

• example: P(book | verb) is count of how many times book has
tag verb divided by how many times tag verb occurs in corpus

• P(book | verb) > P(book | noun)
• there are many more nouns than verbs
• say 1,000 verbs and 10,000 nouns

C(ti)
C(wi has tag ti)

Markov Model Tagger: Second Assumption

2. Each tag depends only on one previous tag:

P(t1,n) = Π P(ti|ti-1)
i=1

n

• this is Markov assumption we saw in language modeling
• estimate as in language modeling:

= P(t1 |t0) P(t2 |t1) … P(tn |tn-1)

• P(t1| t0) stands for P(t1), estimated by

C(ti-1)

C (ti-1 ti) P (ti |ti-1) =

P (w1,n| t1,n)P(t1,n)

N

C (t1)
P (t1) =

Markov Model Tagger
• Using these 2 assumptions, find tagging that maximizes

 Π P (wi| ti)P(ti|ti-1) (1)
n

i=1

• Naïve algorithm: given sentence w1,n go over all
possible tag assignments t1,n and compute (1)

• Choose final tagging t1,n which maximizes (1)

• efficiency: for each word try only tags given by the dictionary
• example: for fly, possible tags are noun, verb and also

adjective (meaning keen or artful, mainly in England)

Markov Model Tagger

• Naïve algorithm: given sentence w1,n go over all
possible tag assignments t1,n

• 40 % words have more than 1 tag
• too many tag assignments to try
• if 2 tags per word, then 2n possible assignments
• exhaustive search is exponential

Markov Model Tagger
• Side note: Markov tagger becomes Charniak’s tagger if

tags are assumed independent, i.e.
P(ti|ti-1)= P(ti)

() ()∏
n

i
iiii t|tPt|wP

1
1

=
− = () ()∏

n

i
iii tPt|wP

1=

()
() ()∏

n

i
i

i

ii tP
tP

t,wP

1=

=

()∏
n

i
ii t,wP

1=

=

Markov Model Tagger

……. word 1 word 2 word 3 word n

 Π P (wi| ti)P(ti|ti-1)
i=1

n

ADJ

NOUN

VERB

PREP

NOUN

PREP

NOUN

VERB

DETER

ADJ

NOUN

 Markov Model Tagger: DP

• Use DP (dynamic programming) to significantly speed up
• also called Viterbi algorithm

• If k tags per word and n words, can find best tagging in O(k2n)
• To avoid floating point underflows, take logarithms

() () () ()()∑∏
=

−−
=

+=

 n

i
iiiiii

n

i
ii ttPtwPttPtwP

1
11

1

|log|log||log
 how likely word wi

 is for tag ti

how likely tag ti
to follow tag ti-1

 Markov Model Tagger: DP

• Turn maximizing:

() ()∑ ∑
= =

−+
n

i

n

i
iiii ttPtwP

1 1
1|log|log

• Into equivalent minimizing

() ()∑ ∑
= =

−−−
n

i

n

i
iiii ttPtwP

1 1
1|log|log

 Markov Model Tagger: DP
• Find a sequence of tags t1, t2,..., tn to minimize

() ()∑ ∑
= =

−−+−
n

i

n

i
iiii ttPtwP

1 1
1|log|log

() ()∑∑
=

−
=

+
n

i
ii

n

i
ii ttLtwL

1
1

1

||

• In the new notation, find tags t1, t2,..., tn to minimize:

L(wi|ti) L(ti|ti-1)

 Markov Model Tagger: DP

….

L(VERB|NOUN)

L(ADJ)

L(NOUN)

L(VERB)

word 1

ADJ

NOUN

VERB

word 2

ADJ

NOUN

word 3

PREP

VERB

L(w1|ADJ)

L(w1|NOUN)

L(w1|VERB)

L(w2|ADJ)

L(w2|NOUN)

L(w3|PREP)

L(w3|VERB)

() ()∑∑
=

−
=

+
n

i
ii

n

i
ii ttLtwL

1
1

1

||

 Markov Model Tagger: DP
• Change notation just for the first word:

 L(w1|t1) = -log[P(w1|t1)]

L(ADJ)

L(NOUN)

word 1

ADJ

NOUN

L(w1|ADJ)

L(w1|NOUN)

word 1

ADJ

NOUN

L(w1|ADJ)

L(w1|NOUN)

() ()∑∑
=

−
=

+
n

i
ii

n

i
ii ttLtwL

1
1

1

|| () ()∑∑
=

−
=

+⇒
n

i
ii

n

i
ii ttLtwL

2
1

1

||

 - log [P(t1|t0)]

instead will
picture

 Markov Model Tagger: DP
 • Each node has cost L(wi|ti)

• Each edge has cost L(ti|ti-1)

• Cost of a path: () ()∑ ∑
= =

−+
n

i

n

i
iiii ttLtwL

1 2
1||

L(VERB|NOUN)

ADJ

NOUN

VERB

ADJ

NOUN

PREP

VERB

L(w1|ADJ)

L(w1|NOUN)

L(w1|VERB)

L(w2|ADJ)

L(w2|NOUN)

L(w3|PREP)

L(w3|VERB)

 Markov Model Tagger: DP Graph

• Find minimum cost path that starts at some node corresponding
to word 1 and ends at some node corresponding to word n

ADJ

NOUN

VERB

ADJ

NOUN

NOUN

VERB

word 1 word 2 word n . . .

NOUN

PREP

ADV

word 3

Markov Model Tagger: Main Step of DP

• Main Step: for every node at word wi, find smallest cost path
that leads into it, starting at any node at word w1

ADJ

NOUN

VERB

ADJ

NOUN

PREP

VERB

word 1 word 2 word n . . .

for w2, compute best path
that ends here and here

 Markov Model Tagger: DP Overview
 • First compute the best path that ends at any node for w1

• Then compute the best path that ends at any node for w2
• …..
• Finally compute the best path that ends at any node for wn
• The best path overall is smallest cost path that end at wn

ADJ

NOUN

VERB

ADJ

NOUN

PREP

VERB

word 1 word 2 word n . . .

Compute the best path that ends
here and here. Cheapest of these
two is the final answer

 Markov Model Tagger: DP Variables
 • For word wi tag t node is (wi,t)

• C(wi,t) cost of best path that starts at any (w1,t) and ends at (wi,t)
• P(wi,t) is parent of node (wi, t) on this path
• After all C(wi,t) computed, min of C(wn, t) over all t gives best path

ADJ

NOUN

ADJ

NOUN

PREP

VERB

word 1 word 2 word n . . .

(w2,ADJ) (w1,ADJ)

(w1,NOUN) (wn,VERB) (w2,NOUN)

(wn,PREP)

 Markov Model Tagger: DP Initialization
 • First compute the best path that ends at any node for w1
• trivial, since the path has just one node

• For all tags of the first word t :
C(w1,t) = L(w1|t) P(w1,t) = null

word 1

ADJ

NOUN

VERB

L(w1|ADJ)

L(w1|NOUN)

L(w1|VERB)

 Markov Model Tagger: DP Iteration

• Computed C(wi,t) and P(wi,t) for all tags t and i < k

ADJ

NOUN

VERB

ADJ

NOUN

NOUN

VERB

word 1 word k-1 word n . . .

NOUN

PREP

ADV

word k . . .

all the best paths
are computed

 Markov Model Tagger: DP Iteration
 • Now compute C(wk,t) and P(wk,t) for k

• Consider node (wk, ADJ)

• The best path from w1 to (wk, ADJ) goes through either
1. (wk-1,ADJ): then it follows best path from w1 to (wk-1, ADJ)
2. (wk-1,NOUN): then it follows best path from w1 to (wk-1, NOUN)
• because a sub-path of the best path is a best path itself

ADJ

NOUN

word 1 word k-1

ADJ

PREP

word k . . .

best path from w1 to (wk-1,ADJ)

best path from w1 to (wk-1,NOUN)

 Markov Model Tagger: DP Iteration

• C(wk, ADJ) is the smaller of two quantities:

1. C(wk-1,ADJ) + L(ADJ|ADJ) + L(wk|ADJ)

• then P(wk, ADJ) = (wk-1, ADJ)
2. C(wk-1,NOUN) + L(ADJ|NOUN) + L(wk|ADJ)

• then P(wk, ADJ) = (wk-1, NOUN)

ADJ

NOUN

word 1 word k-1

ADJ

PREP

word k . . .

best path from w1 to (wk-1,ADJ)

best path from w1 to (wk-1,NOUN)

L(ADJ|ADJ)

L(wk|ADJ)

 Markov Model Tagger: DP Iteration
 • In general, C(wk, t) is computed as follows:

()
()

(){ })|()'|(',min, 1' 1

twLttLtwCtwC kkwTtk
k

++= −∈ −

search over all
tags t’ for word k-1

cost of best path from first
word to node (word k-1, t’)

cost of going
between nodes

(wk-1, t’) and (wk,t)

cost of going through
node (wk, t)

• P(wk, t) = (wk-1, t*) where t* is the tag for word wk-1
minimizing the expression above

 Markov Model Tagger: DP Termination
 • After computed all C(wi, t) best cost path is found as the
minimum of C(wn,t) over all tags t

• Parents on the path traced back using P(wi,t)

ADJ

NOUN

VERB

ADJ

NOUN

PREP

VERB

word 1 word 2 word n . . .

ADJ

NOUN

VERB

word n-1

• Final tagging is: VERB NOUN … ADJ VERB

C(wn,VERB) is smallest,
 P(wn,VERB) = (wn-1, ADJ)

C(w2,NOUN) is smallest,
P(w2,NOUN) = (w1, VERB)

 MMT Example

that

VERB

NOUN

PRON
CONJ

flight

NOUN
VERB

book

ADJ

L(PRON|ADJ) =1

L(CONJ|ADJ) =2

L(PRON|VERB) = 3

L(CONJ|VERB)=4

L(CONJ|NOUN)= 1

L(PRON|NOUN) =2

L(NOUN|PRON) =1

L(VERB|PRON) =10

L(NOUN|CONJ) =4

L(VERB|CONJ) =2

L(book|ADJ) = 10

L(book |VERB) = 1

L(book|NOUN) =2

L(that|PRON) = 2

L(that|CONJ) = 4

L(flight|NOUN) = 2

L(flight|VERB) = 1

 MMT Example

book

L(book|ADJ) = 10

L(book|VERB) = 1

L(book|NOUN) = 2

• Iteration 1:
• C(book,ADJ) = 10, P(book,ADJ) = null
• C(book,VERB) = 1, P(book,VERB) = null
• C(book,NOUN) = 2, P(book,NOUN) = null

ADJ

VERB

NOUN

 MMT Example
 L(PRON|ADJ) =1

L(PRON|VERB) = 3

L(PRON|NOUN) =2

L(that|PRON) = 2
L(that|CONJ) = 4

• Iteration 2:
• C(that, PRON) = 6, P(that,PRON) = (book,VERB)

C(book,ADJ) = 10, P(book,ADJ) = null
C(book,VERB) = 1, P(book,VERB) = null
C(book,NOUN) = 2, P(book,NOUN) = null

C(book,adj)+L(pron|adj)+L(that|pron)=13

book

ADJ

VERB

NOUN

that

PRON

CONJ

 MMT Example

L(CONJ|ADJ) =2

L(CONJ|VERB)=4

L(CONJ|NOUN)= 1

L(that|PRON) = 2

L(that |CONJ) = 4

• Iteration 2:
• C(that, CONJ) = 8, P(that, CONJ) = (book,NOUN)

C(book,ADJ) = 10, P(book,ADJ) = null
C(book,VERB) = 1, P(book,VERB) = null
C(book,NOUN) = 2, P(book,NOUN) = null

book

ADJ

VERB

NOUN

that

PRON

CONJ
C(book,verb)+L(conj|verb)+L(that|conj)=9

 MMT Example

• Iteration 3:
• C(flight, NOUN) = 9, P(flight, NOUN) = (that,PRON)

C(book,ADJ) = 10, P(book,ADJ) = null
C(book,VERB) = 1, P(book,VERB) = null
C(book,NOUN) = 2, P(book,NOUN) = null
C(that, PRON) = 6, P(that, PRON) = (book,VERB)
C(that, CONJ) = 8, P(that, CONJ) = (book,NOUN)

flight

L(NOUN|PRON) =1
L(NOUN|CONJ) =4

L(flight|NOUN) = 2
L(flight|VERB) = 1

that

PRON

CONJ

NOUN

VERB

 MMT Example

• Iteration 3:
• C(flight, VERB) = 11, P(flight, VERB) = (that,CONJ)

L(VERB|PRON) =10
L(VERB|CONJ) =2

L(flight|NOUN) = 2

L(flight|VERB) = 1

C(book,ADJ) = 10, P(book,ADJ) = null
C(book,VERB) = 1, P(book,VERB) = null
C(book,NOUN) = 2, P(book,NOUN) = null
C(that, PRON) = 6, P(that, PRON) = (book,VERB)
C(that, CONJ) = 8, P(that, CONJ) = (book,NOUN)

that

PRON

CONJ

flight

NOUN

VERB

 MMT Example

C(book,ADJ) = 10, P(book,ADJ) = null
C(book,VERB) = 1, P(book,VERB) = null
C(book,NOUN) = 2, P(book,NOUN) = null

C(that, PRON) = 6, P(that, PRON) = (book,VERB)
C(that, CONJ) = 8, P(that, CONJ) = (book,NOUN)

C(flight, NOUN) = 9, P(flight, NOUN) = (that,PRON)
C(flight, VERB) = 11, P(flight,VERB) = (that,PRON)

Final Tagging: Book<verb> that <pron> flight<noun>

that flight book

ADJ

VERB

NOUN

PRON

CONJ

NOUN

VERB

MMT: Pseudo Code for DP

for each t ∈Tags(w1) do
 C(w1, t) = L(w1| t), P(w1, t) = null
 for i 2 to n do

for each t ∈ Tag(wi) do
 C(wi, t) = -∝
 for each t’ ∈ Tag(wi-1) do
 nextCost = C(wi-1,t’) + L(t|t’) + L(wi|t)
 if nextCost < cost(wi, t) do
 C(wi,t) = nextCost
 P(wi,t) = t’

• Tags(wi) is the set of all possible tags for wi

Unknown Words
• Simplest method: assume an unknown word could

belong to any tag; unknown words are assigned the
distribution over POS over the whole lexicon
• P(“karumbula”|verb) = P(“karumbula”|noun) =

P(“karumbula”|adjective) = …. etc

• Some tags are more common than others
• for example a new word can be most likely a verb, a noun etc.

but not a preposition or an article

• Use morphological and other cues
• for example words ending in –ed are likely to be past tense

forms or past participles

Tagging Accuracy

• Ranges from 96%-97%
• Depends on:

• Amount of training data available
• The tag set
• Difference between training corpus and dictionary

and the corpus of application
• Unknown words in the corpus of application

• A change in any of these factors can have a
dramatic effect on tagging accuracy – often
much more stronger than the choice of tagging
method

	Slide Number 1
	Outline
	What is a Part of Speech ?
	Substitution Test
	Origin
	How Many POS are there?
	POS tagging	
	Slide Number 8
	Common Tagged Datasets
	Penn Treebank
	Important Penn Treebank tags
	Verb inflection tags
	�The entire Penn Treebank tagset �
	Terminology
	Distribution of Tags
	Slide Number 16
	Tagging is a Type of Disambiguation
	Potential Sources of Disambiguation
	Syntagmatic Information from Corpus
	Slide Number 20
	Rule-based POS Tagging
	Rule-based POS Tagging: Sample rules
	Rule-based Tagger
	Statistical POS Tagger: Charniak 1993
	Statistical POS Tagger: Charniak 1993
	Statistical Tagger: Markov Model Based
	Markov Model Tagger
	Markov Model Tagger: First Assumption
	Markov Model Tagger: First Assumption
	Markov Model Tagger: Second Assumption
	Markov Model Tagger
	Markov Model Tagger
	Markov Model Tagger
	Markov Model Tagger
	 Markov Model Tagger: DP
	 Markov Model Tagger: DP
	 Markov Model Tagger: DP
	 Markov Model Tagger: DP
	 Markov Model Tagger: DP
	 Markov Model Tagger: DP
	 Markov Model Tagger: DP Graph
	Markov Model Tagger: Main Step of DP
	 Markov Model Tagger: DP Overview
	 Markov Model Tagger: DP Variables
	 Markov Model Tagger: DP Initialization
	 Markov Model Tagger: DP Iteration
	 Markov Model Tagger: DP Iteration
	 Markov Model Tagger: DP Iteration
	 Markov Model Tagger: DP Iteration
	 Markov Model Tagger: DP Termination
	 MMT Example
	 MMT Example
	 MMT Example
	 MMT Example
	 MMT Example
	 MMT Example
	 MMT Example
	MMT: Pseudo Code for DP
	Unknown Words
	Tagging Accuracy

