CS4442/9542b Artificial Intelligence II Prof. Olga Veksler

Lecture 2

Introduction to ML Basic Linear Algebra Matlab

Some slides on Linear Algebra are from Patrick Nichols

Outline

- Introduction to Machine Learning
- Basic Linear Algebra
- Matlab Intro

Intro: What is Machine Learning?

- How to write a computer program that automatically improves its performance through experience
- Machine learning is useful when it is too difficult to come up with a program to perform a desired task
- Make computer to learn by showing examples (most frequently with correct answers)
 - "supervised" learning or learning with a teacher
- In practice: computer program (or function) which has a tunable parameters, tune parameters until the desirable behavior on the examples

Different Types of Learning

• Learning from examples

- Supervised Learning: given training examples of inputs and corresponding outputs, produce the correct outputs for new inputs
 - study in this course
- Unsupervised Learning: given only inputs as training, find structure in the world: e.g. discover clusters
- Other types, such as reinforcement learning are not covered in this course

Supervised Machine Learning

- Training samples (or examples) x¹, x²,..., xⁿ
- Each example xⁱ is typically multi-dimensional
 - xⁱ₁, xⁱ₂,..., xⁱ_d are called *features*, xⁱ is often called a *feature vector*
 - Example: **x**¹ = [3,7, 35], **x**² = [5, 9, 47], ...
 - how many and which features do we take?
- Know desired output for each example y¹, y²,...yⁿ
 - This learning is supervised ("teacher" gives desired outputs)
 - **y**ⁱ are often one-dimensional
 - Example: **y**¹ = 1 ("face"), **y**² = 0 ("not a face")

Two Types of Supervised Machine Learning

- Classification
 - yⁱ takes value in finite set, called a *label* or a *class*
 - Example: **y**ⁱ ∈{"sunny", "cloudy", "raining"}
- Regression
 - yⁱ continuous, called an *output value*
 - Example: \mathbf{y}^{i} = temperature \in [-60,60]

Toy Application: fish sorting

Classifier design

- Notice salmon tends to be shorter than sea bass
- Use *fish length* as the discriminating feature
- Count number of bass and salmon of each length

	2	4	8	10	12	14
bass	0	1	3	8	10	5
salmon	2	5	10	5	1	0

Single Feature (length) Classifier

• Find the best length *L* threshold

- For example, at *L* = 5, misclassified:
 - 1 sea bass
 - 16 salmon

• Classification error (total error) $\frac{17}{50} = 34\%$

Single Feature (length) Classifier

After searching through all possible thresholds *L*, the best *L*= 9, and still 20% of fish is misclassified

Next Step

- Lesson learned
 - Length is a poor feature alone!
- What to do?
 - Try another feature
 - Salmon tends to be lighter
 - Try average fish lightness

Single Feature (lightness) Classifier

 Now fish are classified best at lightness threshold of 3.5 with classification error of 8%

Can do better by feature combining

- Use both length and lightness features
- Feature vector [length,lightness]

Classification error 4%

Even Better Decision Boundary

Decision boundary (wiggly) with 0% classification error

Test Classifier on New Data

- The goal is for classifier to perform well on new data
- Test "wiggly" classifier on new data: 25% error

What Went Wrong: Overfitting

- Have only a limited amount of data for training
- Should ensure decision boundary does not adapt too closely to the particulars of training data, but grasps the "big picture"
- Complex boundaries **overfit** data, i.e. too tuned to training data

Overfitting: Extreme Example

- Say we have 2 classes: face and non-face images
- Memorize (i.e. store) all the "face" images
- For a new image, see if it is one of the stored faces
 - if yes, output "face" as the classification result
 - If no, output "non-face"
 - also called "rote learning"
- problem: new "face" images are different from stored "face" examples
 - zero error on stored data, 50% error on test (new) data
- Rote learning is memorization without generalization

Generalization

- The ability to produce correct outputs on previously unseen examples is called **generalization**
- The big question of learning theory: how to get good generalization with a limited number of examples
- Intuitive idea: favor simpler classifiers
 - William of Occam (1284-1347): "entities are not to be multiplied without necessity"
- Simpler decision boundary may not fit ideally to the training data but tends to generalize better to new data

Underfitting

- Also can underfit data, i.e. decision boundary too simple
- There is no way to fit a linear decision boundary so that the training examples are well separated

Underfitting \rightarrow Overfitting

underfitting

"just right"

overfitting

Sketch of Supervised Machine Learning

- Chose a function **f**(**x**,**w**)
 - w are tunable weights
 - **x** is the input sample
 - **f**(**x**,**w**) should output the correct class of sample **x**
 - use labeled samples to tune weights w so that f(x,w) give the correct label for sample x
- Which function **f**(**x**,**w**) do we choose?
 - different choices will lead to decision boundaries of different complexities
 - has to be expressive enough to model our problem well, i.e. to avoid *underfitting*
 - yet not to complicated to avoid overfitting
- **f**(**x**,**w**) sometimes called *learning machine*

Training and Testing

- There are 2 phases, training and testing
 - Divide all labeled samples x¹,x²,...xⁿ into 2 sets, training set and test set
 - Training phase is for "teaching" our machine (finding optimal weights w)
 - Testing phase is for estimating how well our machine works on unseen examples

Training Phase

- Find weights w s.t. f(xⁱ,w) = yⁱ "as much as possible" for training samples xⁱ
 - "as much as possible" needs to be defined
 - How to search for such w?
 - usually through optimization, can be quite time consuming

Testing Phase

- The goal is good performance on unseen examples
- Evaluate performance of the trained classifier **f**(**x**,**w**) on the test samples (unseen labeled samples)
- Testing the machine on unseen labeled examples lets us approximate how well it will perform in practice
- If testing results are poor, may have to go back to the training phase and redesign f(x,w)

Generalization and Overfitting

- *Generalization* is the ability to produce correct output on previously unseen examples
 - i.e. low error on unseen examples
 - good generalization is the main goal of ML
- Low training error does not necessarily imply that we will have low test error
 - easy to produce f(x,w) which is perfect on training samples (rote "learning")
- Overfitting
 - occurs when low training error, high test error

Classification System Design Overview

Collect and label data by hand

salmonsea basssalmonsalmonsea basssea bassImage: Image: Image:

- Split data into training and test sets
- Extract possibly discriminating features
 - length, lightness, width, number of fins, etc.
- Classifier design
 - Choose model for classifier
 - Train classifier on training data
- Test classifier on test data

we look at these two steps in this course

Basic Linear Algebra

- Basic Concepts in Linear Algebra
 - vectors and matrices
 - products and norms
 - vector spaces and linear transformations
- Introduction to Matlab

Why Linear Algebra?

- For each example (e.g. a fish image), we extract a set of features (e.g. length, width, color)
- This set of features is represented as a *feature vector*
 - [length, width, color]
- All collected examples will be represented as collection of (feature) vectors

 Also, we will use linear models since they are simple and computationally tractable

What is a Matrix?

 A matrix is a set of elements, organized into rows and columns

Basic Matrix Operations

addition, subtraction, multiplication by a scalar

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$
 add elements

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a - e & b - f \\ c - g & d - h \end{bmatrix}$$
 subtract elements

$$\alpha \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha \cdot a & \alpha \cdot b \\ \alpha \cdot c & \alpha \cdot d \end{bmatrix}$$
 multiply every entr

Matrix Transpose

• n by m matrix A and its m by n transpose A

• Vector: N x 1 matrix

$$v = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• dot product and magnitude defined on vectors only

More on Vectors

 $|x_1|$

 $\begin{vmatrix} x_2 \end{vmatrix}$

 $|X_n|$

• n-dimensional row vector $x = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$

• Transpose of row vector is column vector $x^{T} =$

Vector product (or inner or dot product)

$$\langle x, y \rangle = x \cdot y = x^T y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{i=1\dots n} x_i y_i$$

More on Vectors

- Euclidian norm or length $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1...n} x_i^2}$
- If $||\mathbf{x}|| = 1$ we say \mathbf{x} is *normalized* or *unit* length
- angle q between vectors x and y: $\cos \theta = \frac{x^{-y}}{\|x\|\|y\|}$
- inner product captures direction relationship

More on Vectors

- Vectors x and y are orthonormal if they are orthogonal and ||x|| = ||y|| =1
- Euclidian distance between vectors x and y

$$||x - y|| = \sqrt{\sum_{i=1...n} (x_i - y_i)^2}$$

Linear Dependence and Independence

• Vectors $x_1, x_2, ..., x_n$ are linearly dependent if there exist constants $\alpha_1, \alpha_2, ..., \alpha_n$ s.t.

•
$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$$

• $\alpha_i \neq 0$ for at least one *i*

Vectors $x_1, x_2, ..., x_n$ are linearly independent if $\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n = 0 \implies \alpha_1 = \alpha_2 = ... = \alpha_n = 0$

Vector Spaces and Basis

- The set of all n-dimensional vectors is called a vector space V
 - A set of vectors {u₁, u₂,..., u_n } are called a basis for vector space if any *v* in *V* can be written as

$$\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n$$

- u₁, u₂, ..., u_n are independent implies they form a basis, and vice versa
- $u_1, u_2, ..., u_n$ give an orthonormal basis if **1.** $||u_i|| = 1 \quad \forall i$

2.
$$u_i \perp u_j \quad \forall i \neq j$$

Orthonormal Basis

• x, y,..., z form an orthonormal basis

$$x = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \qquad x \cdot y = 0$$
$$y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T \qquad x \cdot z = 0$$
$$z = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \qquad y \cdot z = 0$$

Matrix Product

- # of columns of A = # of rows of B
- even if defined, in general AB ≠ BA

Matrices

- Rank of a matrix is the number of linearly independent rows (or equivalently columns)
- A square matrix is non-singular if its rank equal to the number of rows. If its rank is less than number of rows it is singular.

• Identity matrix
$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

• Matrix **A** is **symmetric** if $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$

Matrices

- Inverse of a square matrix **A** is matrix \mathbf{A}^{-1} s.t. $\mathbf{A}^{\mathbf{A}} = \mathbf{I}$
- If A is singular or not square, inverse does not exist
- Pseudo-inverse A[†] is defined whenever A^TA is not singular (it is square)
 - $A^{\dagger} = (A^{\mathsf{T}}A)^{\mathsf{T}}A^{\mathsf{T}}$
 - $\overrightarrow{A}A = (\overrightarrow{A} \overrightarrow{A})^{1}\overrightarrow{A}\overrightarrow{A} = I$

- Starting matlab
 - xterm -fn 12X24
 - matlab
 - matlab -nodisplay
- Basic Navigation
 - quit
 - more
 - help general
- Scalars, variables, basic arithmetic
 - Clear
 - + * / ^
 - help arith
- Relational operators
 - ==,&,|,~,xor
 - help relop
- Lists, vectors, matrices
 - A=[2 3;4 5]
 - A'
- Matrix and vector operations
 - find(A>3), colon operator
 - * / ^ .* ./ .^
 - eye(n),norm(A),det(A),eig(A)
 - max,min,std
 - help matfun

- Elementary functions
 - help elfun
- Data types
 - double
 - Char
- Programming in Matlab
 - .m files
 - scripts
 - function y=square(x)
 - help lang
- Flow control
 - if i== 1else end, if else if end
 - for i=1:0.5:2 ... end
 - while i == 1 ... end
 - Return
 - help lang
- Graphics
 - help graphics
 - help graph3d
- File I/O
 - load,save
 - fopen, fclose, fprintf, fscanf