CS4442/9542b
 Artificial Intelligence II
 prof. Olga Veksler

Lecture 4

Machine Learning
Linear Classifier

Outline

- Optimization with gradient descent
- Linear Classifier
- Two classes
- Multiple classes
- Perceptron Criterion Function
- Batch perceptron rule
- Single sample perceptron rule
- Minimum Squared Error (MSE) rule
- Pseudoinverse

Optimization

- How to minimize a function of a single variable

$$
J(x)=(x-5)^{2}
$$

- From calculus, take derivative, set it to 0

$$
\frac{d}{d x} J(x)=0
$$

- Solve the resulting equation
- maybe easy or hard to solve
- Example above is easy:

$$
\frac{d}{d x} J(x)=2(x-5)=0 \Rightarrow x=5
$$

Optimization

- How to minimize a function of many variables

$$
\mathbf{J}(\mathbf{x})=\mathbf{J}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{d}}\right)
$$

- From calculus, take partial derivatives, set them to 0

gradient

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} J(x) \\
\vdots \\
\frac{\partial}{\partial x_{d}} f(x)
\end{array}\right]=\nabla \mathrm{J}(x)=0
$$

- Solve the resulting system of \mathbf{d} equations
- It may not be possible to solve the system of equations above analytically

Optimization: Gradient Direction

- Gradient $\nabla_{J}(\mathbf{x})$ points in the direction of steepest increase of function $\mathrm{J}(\mathbf{x})$
- $-\nabla \mathbf{J}(\mathbf{x})$ points in the direction of steepest decrease

Gradient Direction in 1D

- Gradient is just derivative in 1D
- Example: $J(\mathbf{x})=(\mathbf{x}-5)^{2}$ and derivative is $\frac{d}{d x} \mathbf{J}(\mathbf{x})=\mathbf{2}(\mathbf{x}-\mathbf{5})$

- Let $\mathbf{x}=3$
- $-\frac{d}{d x} J(3)=4$
- derivative says increase \mathbf{x}
- Let $\mathbf{x}=8$
- $-\frac{d}{d x} J(3)=-6$
- derivative says decrease \mathbf{x}

Gradient Direction in 2D

- $J\left(x_{1}, x_{2}\right)=\left(\mathbf{x}_{1}-5\right)^{2}+\left(\mathbf{x}_{2}-10\right)^{2}$
- $\frac{\partial}{\partial x_{1}} \mathbf{J}(x)=\mathbf{2}\left(x_{1}-5\right)$
- $\frac{\partial}{\partial \mathbf{x}_{2}} \mathbf{J}(\mathbf{x})=\mathbf{2}\left(\mathbf{x}_{2}-\mathbf{1 0}\right)$
- Let $\mathbf{a}=[10,5]$
- $-\frac{\partial}{\partial \mathbf{x}_{1}} \mathbf{J}(a)=-10$
- $-\frac{\partial}{\partial \mathbf{x}_{2}} J(a)=10$

Gradient Descent: Step Size

- $\mathbf{J}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\mathbf{x}_{1}-5\right)^{2}+\left(\mathbf{x}_{2}-10\right)^{2}$
- Which step size to take?
- Controlled by parameter α
- called learning rate
- From previous example:
- $a=\left[\begin{array}{ll}10 & 5\end{array}\right]$

- $\quad-\nabla \mathrm{J}(\mathrm{a})=\left[\begin{array}{ll}-10 & 10\end{array}\right]$
- Let $\alpha=0.2$
- $\quad \mathbf{a}-\alpha \nabla \mathrm{J}(\mathbf{a})=\left[\begin{array}{ll}10 & 5\end{array}\right]+0.2\left[\begin{array}{ll}-10 & 10\end{array}\right]=\left[\begin{array}{ll}8 & 7\end{array}\right]$
- $J(10,5)=50 ; J(8,7)=18$

Gradient Descent Algorithm

$$
\begin{aligned}
& \mathbf{k}=1 \\
& \mathbf{x}^{(1)}=\text { any initial guess } \\
& \text { choose } \alpha, \varepsilon \\
& \text { while } \alpha\left\|\nabla \mathrm{J}\left(\mathbf{x}^{(k)}\right)\right\|>\varepsilon \\
& \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha \nabla \mathrm{J}\left(\mathbf{x}^{(k)}\right) \\
& \quad \mathbf{k}=\mathbf{k}+1
\end{aligned}
$$

Gradient Descent: Local Minimum

- Not guaranteed to find global minimum
- gets stuck in local minimum

- Still gradient descent is very popular because it is simple and applicable to any differentiable function

How to Set Learning Rate α ?

- If α too small, too many iterations to converge

- If α too large, may overshoot the local minimum and possibly never even converge

- It helps to compute $\mathbf{J}(\mathbf{x})$ as a function of iteration number, to make sure we are properly minimizing it

Variable Learning Rate

- If desired, can change learning rate α at each iteration
$k=1$
$\mathbf{x}^{(1)}=$ any initial guess
choose $\boldsymbol{\alpha}, \boldsymbol{\varepsilon}$
while $\alpha\left\|\nabla \mathrm{J}\left(\mathbf{x}^{(\mathrm{k})}\right)\right\|>\varepsilon$
$\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha \nabla \mathbf{J}\left(\mathbf{x}^{(k)}\right)$
$\mathbf{k}=\mathbf{k}+1$

$$
\begin{aligned}
& \mathbf{k}=1 \\
& \mathbf{x}^{(1)}=\text { any initial guess } \\
& \text { choose } \boldsymbol{\varepsilon} \\
& \text { while } \alpha\left\|\nabla \mathbf{J}\left(\mathbf{x}^{(k)}\right)\right\|>\boldsymbol{\varepsilon} \\
& \quad \text { choose } \alpha^{(k)} \\
& \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha^{(k)} \nabla \mathbf{J}\left(\mathbf{x}^{(k)}\right) \\
& \quad \mathbf{k}=\mathbf{k}+1
\end{aligned}
$$

Variable Learning Rate

- Usually don't keep track of all intermediate solutions

$$
\begin{aligned}
& \mathbf{k}=1 \\
& \mathbf{x}^{(1)}=\text { any initial guess } \\
& \text { choose } \alpha, \boldsymbol{\varepsilon} \\
& \text { while } \alpha\left\|\nabla \mathrm{J}\left(\mathbf{x}^{(k)}\right)\right\|>\varepsilon \\
& \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha \nabla \mathrm{J}\left(\mathbf{x}^{(k)}\right) \\
& \quad \mathbf{k}=\mathbf{k}+1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}=\text { any initial guess } \\
& \text { choose } \alpha, \varepsilon \\
& \text { while } \alpha\|\nabla \mathrm{J}(\mathrm{x})\|>\varepsilon \\
& \qquad \mathrm{x}=\mathrm{x}-\alpha \nabla \mathrm{J}(\mathrm{x})
\end{aligned}
$$

Advanced Optimization Methods

- There are more advanced gradient-based optimization methods
- Such as conjugate gradient
- automatically pick a good learning rate α
- usually converge faster
- however more complex to understand and implement
- in Matlab, use fminunc for various advanced optimization methods

Supervised Machine Learning (Recap)

- Chose a learning machine $\mathbf{f}(\mathbf{x}, \mathbf{w})$
- \mathbf{w} are tunable weights, \mathbf{x} is the input example
- $\mathbf{f}(\mathbf{x}, \mathbf{w})$ should output the correct class of sample \mathbf{x}
- use labeled samples to tune weights \mathbf{w} so that $\mathbf{f}(\mathbf{x}, \mathbf{w})$ give the correct class (correct \mathbf{y}) for example \mathbf{x}
- How to choose a learning machine $\mathbf{f}(\mathbf{x}, \mathbf{w})$?
- many choices possible
- previous lecture: kNN classifier
- this lecture: linear classifier

Linear Classifier: 2 Classes

- First consider the two-class case
- We choose the following encoding:
- $\mathbf{y}=1$ for the first class
- $\mathbf{y}=-1$ for the second class

- Linear classifier
- linear function: $-\infty \leq \mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}} \leq \infty$
- we need $\mathbf{f}(\mathbf{x}, \mathbf{w})$ to be either +1 or -1
- let $\mathbf{g}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}}$
- let $\mathbf{f}(\mathbf{x}, \mathbf{w})=\operatorname{sign}(\mathbf{g}(\mathbf{x}, \mathbf{w}))$
- 1 if $\mathbf{g}(\mathbf{x}, \mathbf{w})$ is positive
- - 1 if $\mathbf{g}(\mathbf{x}, \mathbf{w})$ is negative
- $\mathbf{g}(\mathbf{x}, \mathbf{w})$ is called the discriminant function

Linear Classifier: Decision Boundary

- $f(\mathbf{x}, \mathbf{w})=\operatorname{sign}(\mathbf{g}(\mathbf{x}, \mathbf{w}))=\operatorname{sign}\left(\mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}}\right)$
- Decision boundary is linear
- Find the best linear boundary to separate two classes
- Search for best $\mathbf{w}=\left[\mathbf{w}_{0}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathrm{d}}\right]$ to minimize training error

More on Linear Discriminant Function (LDF)

- LDF: $\mathbf{g}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}}$
- Written using vector notation $\mathbf{g}(\mathbf{x})=\mathbf{w}^{\mathbf{t}} \mathbf{x}+\mathbf{w}_{0}$
weight vector bias or threshold

More on Linear Discriminant Function (LDF)

- Decision boundary: $\mathbf{g}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}}=0$
- This is a hyperplane, by definition
- a point in 1D
- a line in 2D
- a plane in 3D
- a hyperplane in higher dimensions

Multiple Classes

- We have m classes
- Define \mathbf{m} linear discriminant functions

$$
g_{i}(\mathbf{x})=\mathbf{w}_{i}^{t} \mathbf{x}+\mathbf{w}_{i 0} \text { for } \mathbf{i}=1,2, \ldots \mathbf{m}
$$

- Assign \mathbf{x} to class \mathbf{i} if

$$
\mathbf{g}_{\mathbf{i}}(\mathbf{x})>\mathrm{g}_{\mathbf{j}}(\mathbf{x}) \text { for all } \mathbf{j} \neq \mathbf{i}
$$

- Let $\mathbf{R}_{\mathbf{i}}$ be the decision region for class \mathbf{i}
- That is all examples in $\mathbf{R}_{\mathbf{i}}$ get assigned class \mathbf{i}

Multiple Classes

- Can be shown that decision regions are convex
- In particular, they must be spatially contiguous

Failure Cases for Linear Classifier

- Thus applicability of linear classifiers is limited to mostly unimodal distributions, such as Gaussian
- Not unimodal data
- Need non-contiguous decision regions
- Linear classifier will fail

Fitting Parameters w

- Linear discriminant function $\mathbf{g}(\mathbf{x})=\mathbf{w}^{\mathbf{t}} \mathbf{x}+\mathbf{w}_{\mathbf{0}}$
- Can rewrite it $\mathbf{g}(\mathbf{x})=\underset{\begin{array}{c}\text { new weight } \\ \text { vector } a\end{array}}{\left[\begin{array}{ll}\mathbf{w}_{0} & \mathbf{w}^{t}\end{array}\right]}\left[\begin{array}{l}1 \\ \text { new } \\ \text { feature } \\ \text { vector } z\end{array}\right]=\mathbf{a}^{\mathrm{t} \mathbf{z}}=\mathbf{g}(\mathbf{z})$
- \mathbf{z} is called augmented feature vector
- new problem equivalent to the old $g(z)=a^{t} \mathbf{z}$

Augmented Feature Vector

- Feature augmenting is done to simplify notation
- From now on we assume that we have augmented feature vectors
- given samples $\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}$ convert them to augmented samples $\mathbf{z}^{1}, \ldots, \mathbf{z}^{\mathrm{n}}$ by adding a new dimension of value 1
- $g(z)=a^{t} z$

Training Error

- For the rest of the lecture, assume we have 2 classes
- Samples $\mathbf{z}^{1}, \ldots, \mathbf{z}^{\mathrm{n}}$ some in class 1 , some in class 2
- Use these samples to determine weights a in the discriminant function $\mathbf{g}(\mathbf{z})=\mathbf{a}^{\boldsymbol{t} \mathbf{z}}$
- Want to minimize number of misclassified samples
- Recall that $\left\{\begin{array}{l}g\left(z^{i}\right)>0 \\ g\left(z^{i}\right)<0\end{array} \Rightarrow\right.$ class 1
- Thus training error is 0 if $\begin{cases}\mathbf{g}\left(z^{i}\right)>0 & \forall z^{i} \text { class } 1 \\ \mathbf{g}\left(z^{i}\right)<0 & \forall z^{i} \text { class 2 }\end{cases}$

Simplifying Notation Further

- Thus training error is 0 if $\begin{cases}a^{t} z^{i}>0 & \forall z^{i} \text { class } 1 \\ a^{t} z^{i}<0 & \forall z^{i} \text { class 2 }\end{cases}$
- Equivalently, training error is 0 if $\left\{\begin{array}{l}a^{t} z^{i}>0 \forall z^{i} \text { class } 1 \\ a^{a^{(}\left(-z^{\prime}\right)>0 \quad \forall z^{i} \text { class } 2}\end{array}\right.$
- Problem "normalization":

1. replace all examples z^{i} from class 2 by $-z^{i}$
2. seek weights a s.t. $a^{t} z^{i}>0$ for $\forall z^{i}$

- If exists, such a is called a separating or solution vector
- Original samples $\mathbf{x}^{1}, \ldots \mathbf{x}^{n}$ can also be linearly separated

Effect of Normalization

before normalization

seek a hyperplane that separates samples from different categories

after normalization

seek hyperplane that puts normalized samples on the same (positive) side

Solution Region

- Find weight vector a s.t. for all samples $\mathbf{z}^{1}, \ldots, \mathbf{z}^{\text {n }}$

$$
a^{t} z^{i}=\sum_{k=0}^{d} a_{k} z_{d}^{i}>0
$$

- If there is one such \mathbf{a}, then there are infinitely many a

Solution Region

- Solution region: the set of all possible solutions for a

Criterion Function: First Attempt

- Find weight vector a s.t. $\forall \mathbf{z}^{1}, \ldots, \mathbf{z}^{\mathrm{n}}, \mathbf{a}^{\mathrm{t}} \mathbf{z}^{\mathrm{i}}>0$
- Design a criterion function $\mathrm{J}(\mathrm{a})$, which is minimum when a is a solution vector
- Let $\mathbf{Z}(\mathbf{a})$ be the set of examples misclassified by a

$$
\mathbf{Z}(\mathbf{a})=\left\{\mathbf{z}^{\mathrm{i}} \mid \mathbf{a}^{\mathrm{t}} \mathbf{z}^{\mathrm{i}}<0\right\}
$$

- Natural choice: number of misclassified examples

$$
J(a)=|Z(a)|
$$

- Unfortunately, can't be minimized with gradient descent
- piecewise constant, gradient zero or does not exist

Perceptron Criterion Function

- Better choice: Perceptron criterion function

$$
J_{p}(a)=\sum_{z \in Z(a)}\left(-a^{t} z\right)
$$

- If \mathbf{z} is misclassified, $\mathrm{a}^{\mathrm{t}} \mathbf{z}<0$
- Thus $\mathrm{J}(\mathrm{a}) \geq 0$
- $J_{p}(a)$ is proportional to the sum of distances of misclassified
 examples to decision boundary
- $J_{p}(a)$ is piecewise linear and suitable for gradient descent

Optimizing with Gradient Descent

$$
J_{p}(a)=\sum_{z \in Z(a)}\left(-a^{t} z\right)
$$

- Gradient of $\mathbf{J}_{p}(\mathbf{a})$ is $\nabla \mathbf{J}_{\mathbf{p}}(\mathbf{a})=\sum_{\mathbf{z} \in \mathbf{Z}(\mathbf{a})}(-\mathbf{z})$
- cannot solve $\nabla J_{\mathrm{p}}(\mathrm{a})=0$ analytically because of $\mathbf{Z}(\mathrm{a})$
- Recall update rule for gradient descent

$$
\mathbf{x}^{(\mathrm{k}+1)}=\mathbf{x}^{(\mathrm{k}+1)}-\alpha \nabla \mathrm{J}\left(\mathbf{x}^{(\mathrm{k})}\right)
$$

- Gradient decent update rule for $J_{p}(a)$ is:

$$
a^{(k+1)}=a^{(k)}+\alpha \sum_{z \in \mathbf{Z}(a)} \mathbf{z}
$$

- called batch rule because it is based on all examples
- true gradient descent

Perceptron Single Sample Rule

- Gradient decent single sample rule for $J_{p}(a)$ is

$$
a^{(k+1)}=a^{(k)}+\alpha \cdot z_{M}
$$

- z_{m} is one sample misclassified by $\mathbf{a}^{(\mathrm{k})}$
- must have a consistent way to visit samples
- Geometric Interpretation:
- \mathbf{z}_{M} misclassified by $\mathrm{a}^{(\mathrm{k})}$

$$
\left(a^{(k)}\right)^{t} z_{M} \leq 0
$$

- \mathbf{z}_{M} is on the wrong side of decision boundary
- adding $\alpha \cdot z_{M}$ to a moves decision boundary in the right direction

Perceptron Single Sample Rule

if $\boldsymbol{\alpha}$ is too small, \mathbf{z}_{M} is still misclassified

if α is too large, previously correctly classified sample z^{i} is now misclassified

Perceptron Single Sample Rule Example

	features				grade
name	$\begin{gathered} \text { good } \\ \text { attendance? } \end{gathered}$	tall?	$\substack{\text { sleess in } \\ \text { class? }}$	$\begin{aligned} & \text { chews } \\ & \text { gum? } \end{aligned}$	
Jane	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	yes (1)	no (-1)	no (-1)	yes (1)	A

- class 1: students who get grade A
- class 2: students who get grade F

Augment Feature Vector

	features					grade
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1$)$	no (-1$)$	A
Steve	1	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	1	no (-1)	no (-1)	no (-1$)$	yes (1)	F
Peter	1	yes (1)	no (-1$)$	no (-1$)$	yes (1)	A

- convert samples $\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}$ to augmented samples $\mathbf{z}^{1}, \ldots, \mathbf{z}^{\mathrm{n}}$ by adding a new dimension of value 1

"Normalization"

	features					grade
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	-1	yes (-1)	yes (-1)	yes (-1)	yes (-1)	F
Mary	-1	no (1)	no (1)	no (1)	yes (-1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	A

- Replace all examples from class 2 by their negative

$$
z^{i} \rightarrow-z^{i}
$$

- Seek weight vector a s.t. $\mathbf{a}^{\mathrm{t}} \mathbf{z}^{\mathrm{i}}>0$ for all $\mathbf{z}^{\mathbf{i}}$

Apply Single Sample Rule

	features					grade
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	-1	yes (-1)	yes (-1)	yes (-1)	yes (-1)	F
Mary	-1	no (1)	no (1)	no (1)	yes (-1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	A

- Gradient descent single sample rule: $a^{(k+1)}=a^{(k)}+\alpha \cdot z_{M}$
- Set fixed learning rate to $\alpha=1: \quad a^{(k+1)}=a^{(k)}+z_{M}$
- Sample is misclassified if $a^{t} z^{i}=\sum_{k=0} a_{k} z_{k}^{i}<0$

Apply Single Sample Rule

- initial weights $\mathrm{a}^{(1)}=[0.25,0.25,0.25,0.25]$
- visit all samples sequentially

name	$\mathbf{a}^{t} \mathbf{Z}$	misclassified?
Jane	$0.25^{*} 1+0.25^{*} 1+0.25^{*} 1+0.25^{*}(-1)+0.25^{*}(-1)>0$	no
Steve	$0.25^{*}(-1)+0.25^{*}(-1)+0.25^{*}(-1)+0.25^{*}(-1)+0.25^{*}(-1)<0$	yes

- new weights

$$
\begin{aligned}
a^{(2)}=a^{(1)}+z_{m} & =\left[\begin{array}{lllll}
0.25 & 0.25 & 0.25 & 0.25 & 0.25
\end{array}\right]+ \\
& +\left[\begin{array}{lllll}
-1 & -1 & -1 & -1 & -1
\end{array}\right]= \\
& =\left[\begin{array}{llll}
-0.75 & -0.75 & -0.75 & -0.75
\end{array}-0.75\right]
\end{aligned}
$$

Apply Single Sample Rule

$$
\mathbf{a}^{(2)}=\left[\begin{array}{lllll}
-0.75 & -0.75 & -0.75 & -0.75 & -0.75
\end{array}\right]
$$

name	$\mathbf{a}^{t} \mathbf{z}$	misclassified?
Mary	$-0.75 *(-1)-0.75 * 1-0.75 * 1-0.75 * 1-0.75 *(-1)<0$	yes

- new weights

$$
\begin{aligned}
\mathbf{a}^{(3)}=\mathbf{a}^{(2)}+\mathbf{z}_{\mathrm{m}}= & {\left[\begin{array}{llllll}
-0.75 & -0.75 & -0.75 & -0.75 & -0.75
\end{array}\right]+} \\
& +\left[\begin{array}{lllll}
-1 & 1 & 1 & 1 & -1
\end{array}\right]= \\
= & {\left[\begin{array}{lllll}
-1.75 & 0.25 & 0.25 & 0.25 & -1.75
\end{array}\right] }
\end{aligned}
$$

Apply Single Sample Rule

$$
a^{(3)}=\left[\begin{array}{lllll}
-1.75 & 0.25 & 0.25 & 0.25 & -1.75
\end{array}\right]
$$

name	$\mathbf{a}^{t} \mathbf{Z}$	misclassified?
Peter	$-1.75 * 1+0.25^{*} 1+0.25^{*}(-1)+0.25^{*}(-1)-1.75 * 1<0$	yes

- new weights

$$
\begin{aligned}
a^{(4)}=a^{(3)}+\mathbf{z}_{\mathrm{m}} & =\left[\begin{array}{llrrrr}
-1.75 & 0.25 & 0.25 & 0.25 & -1.75
\end{array}\right]+ \\
& +\left[\begin{array}{llrrr}
1 & 1 & -1 & -1 & 1
\end{array}\right]= \\
& =\left[\begin{array}{lllll}
-0.75 & 1.25 & -0.75 & -0.75 & -0.75
\end{array}\right]
\end{aligned}
$$

Single Sample Rule: Convergence

$$
\mathbf{a}^{(4)}=\left[\begin{array}{lllll}
-0.75 & 1.25 & -0.75 & -0.75 & -0.75
\end{array}\right]
$$

name	$a^{t} \mathbf{z}$	misclassified?
Jane	$-0.75 * 1+1.25^{*} 1-0.75 * 1-0.75 *(-1)-0.75 *(-1)+0$	no
Steve	$-0.75 *(-1)+1.25 *(-1)-0.75 *(-1)-0.75 *(-1)-0.75 *(-1)>0$	no
Mary	$-0.75 *(-1)+1.25^{*} 1-0.75 * 1-0.75 * 1-0.75 *(-1)>0$	no
Peter	$-0.75 * 1+1.25 * 1-0.75 *(-1)-0.75 *(-1)-0.75 * 1>0$	no

- Thus the discriminant function is

$$
g(z)=-0.75 z_{0}+1.25 z_{1}-0.75 z_{2}-0.75 z_{3}-0.75 z_{4}
$$

- Converting back to the original features \mathbf{x}

$$
\mathbf{g}(\mathbf{x})=1.25 \mathrm{x}_{1}-0.75 \mathbf{x}_{2}-0.75 \mathbf{x}_{3}-0.75 \mathbf{x}_{4}-0.75
$$

Final Classifier

- Trained LDF: $\mathbf{g}(\mathbf{x})=1.25 \mathrm{x}_{1}-0.75 \mathbf{x}_{2}-0.75 \mathbf{x}_{3}-0.75 \mathbf{x}_{4}-0.75$
- Leads to classifier:

- This is just one possible solution vector
- With $\mathbf{a}^{(1)}=[0,0.5,0.5,0,0]$, solution is $[-1,1.5,-0.5,-1,-1]$

$$
1.5 x_{1}-0.5 x_{2}-x_{3}-x_{4}>1 \Rightarrow \text { grade } \mathbf{A}
$$

- In this solution, being tall is the least important feature

Non-Linearly Separable Case

- Suppose we have examples:
- class 1: $[2,1],[4,3],[3,5]$
- class 2: [1,3] , [5,6]
- not linearly separable
- Still would like to get approximate separation

- Good line choice is shown in green
- Let us run gradient descent
- Add extra feature and "normalize"

$$
z^{1}=\left\{\left.\begin{array}{l}
1 \\
2 \\
\\
1
\end{array} \right\rvert\,\right.
$$

$\mathbf{z}^{5}=\left\{\left.\begin{array}{|}-1 \\ -5 \\ -6\end{array} \right\rvert\,\right.$

Non-Linearly Separable Case

- single sample perceptron rule
- Initial weights $\mathbf{a}^{(1)}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
- This is line $\mathbf{x}_{1}+\mathbf{x}_{2}+1=0$
- Use fixed learning rate $\alpha=1$
- Rule is: $\mathbf{a}^{(k+1)}=\mathbf{a}^{(k)}+\mathbf{z}_{\mathbf{M}}$

- $a^{t} z^{1}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{t}>0$
- $a^{t} z^{2}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{lll}1 & 4 & 3\end{array}\right]^{t}>0$
- $a^{t} z^{3}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]^{t}>0$

Non-Linearly Separable Case

- $\mathbf{a}^{(1)}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
- rule is: $\mathbf{a}^{(k+1)}=\mathbf{a}^{(k)}+\mathbf{z}_{\mathbf{M}}$
- $a^{t} z^{4}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right]^{t}=-5<0$

- Update: $\mathbf{a}^{(2)}=\mathbf{a}^{(1)}+\mathbf{z}_{\mathrm{M}}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]+\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right]=\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]$
- $a^{t} z^{5}=\left[\begin{array}{lll}0 & 0 & -2\end{array}\right] \cdot\left[\begin{array}{lll}-1 & -5 & -6\end{array}\right]^{t}=12>0$
- $a^{t} \mathbf{z}^{1}=\left[\begin{array}{lll}0 & 0 & -2\end{array}\right] \cdot\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{t}<0$
- Update: $\mathbf{a}^{(3)}=\mathbf{a}^{(2)}+\mathbf{z}_{\mathrm{M}}=\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]+\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]$

Non-Linearly Separable Case

- $\mathbf{a}^{(3)}=\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]$
- rule is: $\mathbf{a}^{(k+1)}=a^{(k)}+\mathbf{z}_{M}$

- $a^{t} z^{2}=\left[\begin{array}{lll}1 & 4 & 3\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2\end{array}-1\right]^{t}=6>0$
- $a^{t} z^{3}=\left[\begin{array}{lll}1 & 3 & 5\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2\end{array}-1\right]^{t}=2>0$
- $a^{t} z^{4}=\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2\end{array}\right]^{t}=0$
- Update: $\mathbf{a}^{(4)}=\mathbf{a}^{(3)}+\mathbf{z}_{\mathrm{M}}=\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]+\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right]=\left[\begin{array}{lll}0 & 1 & -4\end{array}\right]$

Non-Linearly Separable Case

- We can continue this forever
- there is no solution vector a satisfying for all $a^{t} \mathbf{z}_{i}>0$ for all \mathbf{i}
- Need to stop at a good point
- Solutions at iterations 900 through 915
- Some are good some are not
- How do we stop at a good solution?

Convergence of Perceptron Rules

1. Classes are linearly separable:

- with fixed learning rate, both single sample and batch rules converge to a correct solution a
- can be any a in the solution space

2. Classes are not linearly separable:

- with fixed learning rate, both single sample and batch do not converge
- can ensure convergence with appropriate variable learning rate
- $\alpha \rightarrow 0$ as $k \rightarrow \infty$
- example, inverse linear: $\alpha=\mathbf{c} / \mathbf{k}$, where \mathbf{c} is any constant
- also converges in the linearly separable case
- no guarantee that we stop at a good point, but there are good reasons to choose inverse linear learning rate
- Practical Issue: both single sample and batch algorithms converge faster if features are roughly on the same scale
- see kNN lecture on feature normalization

Batch vs. Single Sample Rules

Batch

- True gradient descent, full gradient computed
- Smoother gradient because all samples are used
- Takes longer to converge

Single Sample

- Only partial gradient is computed
- Noisier gradient, therefore may concentrates more than necessary on any isolated training examples (those could be noise)
- Converges faster
- Easier to analyze

Minimum Squared Error Optimization

- Idea: convert to easier and better understood problem

- MSE procedure
- choose positive constants $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathrm{n}}$
- try to find weight vector a s.t. $\mathbf{a}^{\mathrm{t}} \mathbf{z}^{\mathbf{i}}=\mathbf{b}_{\boldsymbol{i}}$ for all samples \mathbf{z}^{i}
- if succeed, then \mathbf{a} is a solution because $\mathbf{b}_{\mathbf{i}}$'s are positive
- consider all the samples (not just the misclassified ones)

MSE: Margins

- By setting $a^{t} z^{i}=b_{i}$, we expect z^{i} to be at a relative distance b_{i} from the separating hyperplane
- Thus $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathrm{n}}$ are expected relative distances of examples from the separating hyperplane
- Should make $\mathbf{b}_{\boldsymbol{i}}$ small if sample \mathbf{i} is expected to be near separating hyperplane, and make \mathbf{b}_{i} larger otherwise
- In the absence of any such information, there are good reasons to set

$$
\mathbf{b}_{1}=\mathbf{b}_{2}=\ldots=\mathbf{b}_{\mathrm{n}}=1
$$

MSE: Matrix Notation

- Solve system of \mathbf{n} equations $\left\{\begin{array}{c}a^{t} z^{1}=b_{1} \\ \vdots \\ a^{t} z^{n}=b_{n}\end{array}\right.$
- Using matrix notation:

- Solve a linear system $\mathbf{Z a}=\mathbf{b}$

MSE: Exact Solution is Rare

- Solve a linear system $\mathbf{Z a}=\mathbf{b}$
- Z is an n by ($\mathbf{d}+\mathbf{1}$) matrix
- Exact solution can be found only if \mathbf{Z} is nonsingular and square, in which case inverse \mathbf{Z}^{-1} exists
- $\mathbf{a}=Z^{-1} \mathbf{b}$
- $($ number of samples $)=($ number of features +1$)$
- if happens, guaranteed to find separating hyperplane
- but almost never happens in practice

MSE:Approximate Solution

- Typically Z is overdetermined
- more rows (examples) than columns (features)

- No exact solution for $\mathbf{Z a}=\mathbf{b}$ in this case
- Find an approximate solution \mathbf{a}, that is $\mathbf{Z a} \approx \mathbf{b}$
- approximate solution a does not necessarily give a separating hyperplane in the separable case
- but hyperplane corresponding to an approximate a may still be a good solution

MSE Criterion Function

- MSE approach: find a which minimizes the length of the error vector $\mathbf{e}=\mathbf{Z a} \mathbf{- b}$

- Minimize the minimum squared error criterion function:

$$
J_{s}(a)=\|z a-b\|^{2}=\sum_{i=1}^{n}\left(a^{t} z^{i}-b_{i}\right)^{2}
$$

- Can be optimized exactly

MSE: Optimizing J $\mathrm{J}_{\mathrm{S}}(\mathrm{a})$

$$
J_{s}(a)=\|z a-b\|^{2}=\sum_{i=1}^{n}\left(a^{t} z^{i}-b_{i}\right)^{2}
$$

- Compute the gradient: $\nabla \mathrm{J}_{\mathrm{s}}(\mathrm{a})=2 \mathrm{Z}^{\mathrm{t}}(\mathrm{Za}-\mathrm{b})$
- Set it to zero: $\mathbf{2 Z}^{\mathrm{t}}(\mathbf{Z a}-\mathbf{b})=0$
- If $Z^{\text {TZ }}$ is non-singular, its inverse exists and can find a unique solution for $a=\left(Z^{\mathrm{t}} Z\right)^{-1} \mathbf{Z}^{\mathrm{t}} \mathbf{b}$
- In Matlab
- $\mathbf{a}=\mathbf{Z} \backslash \mathbf{b}$
- or use pinv command (pseudo-inverse)
- $\mathbf{a}=\operatorname{pinv}(\mathbf{Z})^{*} \mathbf{b}$;

MSE: Example

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (04)
- Add extra feature and "normalize"

$$
z^{1}=\left\{\begin{array}{l}
{[1\rceil} \\
6 \\
9 \\
9
\end{array} \left\lvert\, z^{2}=\left\{\begin{array}{l}
17 \\
5 \\
7
\end{array} \left\lvert\, z^{3}=\left\{\begin{array}{l}
-1\rceil \\
-5 \\
-9
\end{array} \left\lvert\, z^{4}=\left\{\begin{array}{r}
-1\rceil \\
0 \\
-4
\end{array}\right]\right.\right.\right.\right.\right.\right.
$$

- $\mathbf{Z}=\left[\begin{array}{rrr}1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -4\end{array}\right]$

MSE: Example

- Choose $\left.b=\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 \\ 1 \\ 1\end{array}\right]$
- Use $\mathbf{a}=\mathbf{Z} \backslash \mathbf{b}$ to solve in Matlab

$$
\left.a=\left\lvert\, \begin{array}{r}
2.7 \\
1.0 \\
-0.9
\end{array}\right.\right]
$$

 Za >0

MSE: Another Example

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 10)
- One example is far compared to others from separating hyperplane

$$
z^{1}=\left[\begin{array}{l}
17 \\
\mid 6 \\
9 \\
9
\end{array}\right] \quad z^{2}=\left[\begin{array}{l}
1 \\
5 \\
5 \\
7
\end{array} \left\lvert\, \quad z^{3}=\left[\begin{array} { l }
{ - 1 7 } \\
{ - 5 } \\
{ - 9 }
\end{array} \left|\quad z^{4}=\left|\begin{array}{r}
-1\rceil \\
0 \\
-10
\end{array}\right|\right.\right.\right.\right.
$$

$$
\left.\cdot \mathbf{Z}=\left\lvert\, \begin{array}{rrr}
1 & 6 & 9 \\
1 & 5 & 7 \\
-1 & -5 & -9 \\
-1 & 0 & -10
\end{array}\right.\right]
$$

MSE: Another Example Cont.

- Choose $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$
- Solve $\mathbf{a}=\mathbf{Z} \backslash \mathbf{b}=\left[\begin{array}{r}3.2 \\ 0.2 \\ -0.4\end{array}\right]$
- $\left.\left.\mathbf{Z a}=\left[\begin{array}{rrr}0.27 & {[17} \\ 0.9 & \mid \\ -0.04 \\ 1.16\end{array}\right] \quad \right\rvert\, \begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$

- Does not give a separating hyperplane since $\mathbf{a}^{t} \mathbf{z}^{3}<0$
- MSE wants all examples to be at the same distance from the separating hyperplane
- Examples that are "too right", i.e. too far from the boundary cause problems

- No problems with convergence though, both in separable and non-separable cases

MSE: Another Example Cont.

- If we know that $4^{\text {th }}$ point is far from separating hyperplane
- in practice can look at points which are furthest from the decision boundary

- ${ }^{1} 7$
- Set $\mathbf{b}_{\mathbf{i}}$ larger for such points: $\mathbf{b}=1$
- Solve $\mathbf{a}=\mathbf{Z} \backslash \mathbf{b}=\left[\begin{array}{r}-1.17 \\ 1.7 \\ -0.9\end{array}\right]$

- $\mathbf{Z a}=\left[\begin{array}{c}0.9 \\ 1.0 \\ 0.8 \\ 10.0\end{array}\right] \neq\left[\begin{array}{l}1 \\ 10\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 10\end{array}\right]>0$, therefore gives a separating hyperplane

More General Discriminant Functions

- Linear discriminant functions give simple decision boundary
- try simpler models first
- Linear Discriminant functions are optimal for certain type of data
- Gaussian distributions with equal covariance (don't worry if you don't know what a Gaussian is)
- May not be optimal for other data distributions, but they are very simple to use
- Discriminant functions can be more general than linear
- For example, polynomial discriminant functions
- Decision boundaries more complex than linear
- Later will look more at non-linear discriminant functions

Summary

- Linear classifier works well when examples are linearly separable, or almost separable

- Two Training Approaches:
- Perceptron Rules
- find a separating hyperplane in the linearly separable case
- uses gradient descent for optimization
- do not converge in the non-separable case
- can force convergence by using a decreasing learning rate, but are not guaranteed a reasonable stopping point
- MSE Rules
- converges in separable and not separable case
- can be optimized with pseudo-inverse
- but may not find separating hyperplane even if classes are linearly separable

