
CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 6
Machine Learning

Neural Networks

Many presentation Ideas are due to Andrew NG

Outline

• Motivation
• Non linear discriminant functions

• Introduction to Neural Networks
• Inspiration from Biology
• History

• Perceptron
• Multilayer Perceptron
• Practical Tips for Implementation

Need for Non-Linear Discriminant

• Previous lecture studied linear discriminant
• Works for linearly (or almost) separable cases
• Many problems are far from linearly separable

• underfitting with linear model

x1

x2

g(x) = w0+w1x1+w2x2

x1

x2

Need for Non-Linear Discriminant

x1

x2

() ()
()
∑
∈

−=
aZz

t
p zaaJ

• Can use other discriminant functions,
like quadratics

 g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2

• Methodology is almost the same as
in the linear case:
• f(x) = sign(w0+w1x1+w2x2+w12x1x2 +w11x1

2 + w22x2
2)

• z = [1 x1 x2 x1 x2 x1
2 x2

2]
• a = [w0 w1 w2 w12 w11

 w22]
• “normalization”: multiply negative class samples by -1
• gradient descent to minimize Perceptron objective

function

Need for Non-Linear Discriminant

x1

x2 • May need highly non-linear decision
boundaries

• This would require too many high order
polynomial terms to fit

 g(x) = w0+w1x1+w2x2+
 + w12x1x2 + w11x1

2 +w22x2
2 +

 + w111x1
3+ w112x1

2x2 +w122x1x2
2 + w222x2

3 +
 + even more terms of degree 4
 + super many terms of degree k
 • For n features, there O(nk) polynomial terms of degree k

• Many real world problems are modeled with hundreds and
even thousands features
• 10010 is too large of function to deal with

Neural Networks

x1

x2 • Neural Networks correspond to some
discriminant function gNN(x)

• Can carve out arbitrarily complex
decision boundaries without requiring so
many terms as polynomial functions

• Neural Nets were inspired by research in
how human brain works

• But also proved to be quite successful in
practice

• Are used nowadays successfully for a
wide variety of applications
• took some time to get them to work

Brain vs. Computer

• usually one very fast processor
• high reliability
• designed to solve logic and

arithmetic problems
• absolute precision
• can solve a gazillion arithmetic

and logic problems in an hour

• huge number of parallel but
relatively slow and unreliable
processors

• not perfectly precise, not
perfectly reliable

• evolved (in a large part) for
pattern recognition

• learns to solve various PR
problems

seek inspiration for classification from human brain

One Learning Algorithm Hypothesis
• Brain does many different things
• Seems like it runs many different

“programs”
• Seems we have to write tons of

different programs to mimic brain

• Hypothesis: there is a single underlying learning algorithm
shared by different parts of the brain

• Evidence from neuro-rewiring experiments

[Roe et al, 1992]

• Auditory cortex learns to see
• animals will eventually learn to perform a variety of object

recognition tasks

• There are other similar rewiring experiments

• Route signal from eyes to the auditory cortex

• Cut the wire from ear to auditory cortex

Seeing with Tongue
• Scientists use the amazing ability of the

brain to learn to retrain brain tissue
• Seeing with tongue

• BrainPort Technology
• Camera connected to a tongue array sensor
• Pictures are “painted” on the tongue

• Bright pixels correspond to high voltage
• Gray pixels correspond to medium voltage
• Black pixels correspond to no voltage

• Learning takes from 2-10 hours
• Some users describe experience resembling a

low resolution version of vision they once had
• able to recognize high contrast object, their location,

movement tongue array
sensor

One Learning Algorithm Hypothesis

• Experimental evidence that we can plug any sensor to any part
of the brain, and brain can learn how to deal with it

• Since the same physical piece of brain tissue can process sight,
sound, etc.

• Maybe there is one learning algorithm can process sight,
sound, etc.

• Maybe we need to figure out and implement an algorithm that
approximates what the brain does

• Neural Networks were developed as a simulation of networks
of neurons in human brain

Neuron: Basic Brain Processor
• Neurons (or nerve cells) are special cells that

process and transmit information by
electrical signaling
• in brain and also spinal cord

• Human brain has around 1011 neurons
• A neuron connects to other neurons to form

a network
• Each neuron cell communicates to anywhere

from 1000 to 10,000 other neurons

Neuron: Main Components

12

dendrites

nucleus

cell
body

axon

axon
terminals

• cell body
• computational unit

• dendrites
• “input wires”, receive inputs from other neurons
• a neuron may have thousands of dendrites, usually short

• axon
• “output wire”, sends signal to other neurons
• single long structure (up to 1 meter)
• splits in possibly thousands branches at the end, “axon terminals”

Neurons in Action (Simplified Picture)

• Cell body collects and processes
signals from other neurons
through dendrites

• If there the strength of incoming
signals is large enough, the cell
body sends an electricity pulse (a
spike) to its axon

• This is the process by which all human
thought, sensing, action, etc. happens

• Its axon, in turn, connects to
dendrites of other neurons,
transmitting spikes to other neurons

Artificial Neural Network (ANN) History: Birth
• 1943, famous paper by W. McCulloch (neurophysiologist) and W.

Pitts (mathematician)
• Using only math and algorithms, constructed a model of how neural

network may work
• Showed it is possible to construct any computable function with their

network
• Was it possible to make a model of thoughts of a human being?
• Can be considered to be the birth of AI

• 1949, D. Hebb, introduced the first (purely pshychological)
theory of learning
• Brain learns at tasks through life, thereby it goes through tremendous

changes
• If two neurons fire together, they strengthen each other’s responses and

are likely to fire together in the future

ANN History: First Successes
• 1958, F. Rosenblatt,

• perceptron, oldest neural network still in use today
• that’s what we studied in lecture on linear classifiers

• Algorithm to train the perceptron network
• Built in hardware
• Proved convergence in linearly separable case

• 1959, B. Widrow and M. Hoff
• Madaline
• First ANN applied to real problem

• eliminates echoes in phone lines

ANN History: Stagnation
• Early success lead to a lot of claims which were not

fulfilled
• 1969, M. Minsky and S. Pappert

• Book “Perceptrons”
• Proved that perceptrons can learn only linearly separable

classes
• In particular cannot learn very simple XOR function
• Conjectured that multilayer neural networks also limited by

linearly separable functions

• No funding and almost no research (at least in North
America) in 1970’s as the result of 2 things above

ANN History: Revival
• Revival of ANN in 1980’s
• 1982 joint US-Japanese conference on ANN

• US worries that it will stay behind

• Many examples of mulitlayer NN appear
• 1986, re-discovery of backpropagation algorithm by Werbos,

Rumelhart, Hinton and Ronald Williams
• Allows a network to learn not linearly separable classes
• several successes, in particular on digit recognition, autonomous driving

• 2008-now: deep neural networks
• better training procedures, much larger datasets for training, GPU
• more successes, several benchmark competitions won

Perceptron: 1 Layer Neural Network (NN)

• Linear classifier f(x) = sign(wtx+w0) is a single neuron “net”

x1

x2

sign(wtx+w0)

1

w1

w2

w0

layer 2
output layer

layer 1
input layer

bias unit

• Input layer units emits features, except bias emits “1”
• Output layer unit applies h(t) = sign(t)
• h(t) is also called an activation function

Multilayer Perceptron (MLP)

x1

x2

1

layer 3
output layer

layer 1
Input layer

layer 2
hidden layer

• First hidden unit outputs h(w0+w1x1 +w2x2)

w
w

 h(wh(·)+wh(∙))

• Network implements classifier f(x) = h(wh(∙)+wh(∙))
• More complex boundaries than Perceptron

• Second hidden unit outputs h(w0+w1x1 +w2x2)

MLP Small Example

x1

x2

1

• Implements classifier

 f(x) = sign(4h(⋅)+2h(⋅) + 7)
 = sign(4 sign(3x1+5x2)+2 sign(6+3x2) + 7)

• Computing f(x) is called feed forward operation
• graphically, function is computed from left to right

• Edge weights are learned through training

7
6

3
5

3

4

2

MLP: Multiple Classes

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• 3 classes, 2 features, 1 hidden layer
• 3 input units, one for each feature
• 3 output units, one for each class
• 2 hidden units
• 1 bias unit, can draw in layer 1, or each layer has one

layer 3
output layer

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Classification:

layer 3
output layer

h(·)

h(·)

h(·)

• If f1(x) is largest, decide class 1
• If f2(x) is largest, decide class 2
• If f3(x) is largest, decide class 3

 = f1(x)

• f (x) is multi-dimensional

 = f2(x)

 = f3(x) 














= f(x)

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Input layer: d features, d input units
• Output layer: m classes, m output units
• Hidden layer: how many units?

• more units correspond to more complex classifiers

layer 3
output layer

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Can have many hidden layers
• Feed forward structure

• ith layer connects to (i+1)th layer
• except bias unit can connect to any layer
• or, alternatively each layer can have its own bias unit

layer 4
output layer

layer 3
hidden layer

MLP: Overview
• MLP corresponds to rather complex classifier f(x,w)

• complexity depends on the number of hidden layers/units
• f(x,w) is a composition of many functions

• easier to visualize as a network
• notation gets ugly

• To train MLP, just as before
• formulate an objective or loss function L(w)
• optimize it with gradient descent

• lots of notation due to gradient complexity
• lots of tricks to get gradient descent work reasonably well

Expressive Power of MLP
• Every continuous function from input to output can be

implemented with enough hidden units, 1 hidden layer,
and proper nonlinear activation functions
• easy to show that with linear activation function, multilayer

neural network is equivalent to perceptron

 • This is more of theoretical than practical interest
• proof is not constructive (does not tell how construct MLP)
• even if constructive, would be of no use, we do not know the

desired function, our goal is to learn it through the samples
• but this result gives confidence that we are on the right track

• MLP is general (expressive) enough to construct any required decision
boundaries, unlike the Perceptron

Decision Boundaries

• Perceptron (single
layer neural net)

• Arbitrarily complex
decision regions

• Even not contiguous

Nonlinear Decision Boundary: Example

x1

x2

1 -1

-1

1

 – x1 + x2 – 1 > 0 ⇒ class 1

x1

x2

1 -3

1

-1

 x1 - x2 – 3 > 0 ⇒class 1

x1

x2

-1

1
x1

x2

-3

3

Nonlinear Decision Boundary: Example

x1

x2

1 -1
-1
1

-3
 1
-1

• Combine two Perceptrons into a 3 layer NN

1.5

1

1

x1

x2

-1

1 x1

x2

-3

3 + x1

x2

-3

3

1

-1

Multi-Layer Neural Networks: Activation Function

• h() = sign() does not work for gradient
descent

• Can use sigmoid function

• Rectified Linear (RuLu) popular recently

• Due to historical reasons, training and testing stages
have special names
• Backpropagation (or training)
 Minimize objective function with gradient descent

• Feedforward (or testing)

NN: Modes of Operation

NN: Vector Notation
• Want more compact (vector) notation
• Compact notation for Perceptron

x1

x2

sign(w·x+w0)

1

w1

w2

w0

x =
x2

x1 w =
w2

w1

NN: Vector Notation
• Change notation a bit

x1

x2

sign(w·x+b)

1

w1

w2

b

NN: Vector Notation
• Do not draw bias unit

 x1

x2

sign(w·x+b)
w1

w2

• Compact picture
• h(t) = sign(t)

x
h(w·x +b) h

layer 1

NN: Vector Notation

x2

h1

h1

h

h

h

h

1
3
5
2

x1

• For now, look just at the first layer (2 perceptrons)

NN: Vector Notation, First Layer

x
h(w1·x +b1) h1=h(w1·x +b1)

x
h(w2·x +b2) h2=h(w2·x +b2)

w1 =
5

1

w2 =
2

3

x2

h

h

1
3
5
2

x1

• Red Perceptron has weights w1 and bias b1

• Green Perceptron has weights w2 and bias b2

NN: Vector Notation , First Layer

1 5

3 2

w1 =
5

1
w2 =

2

3

x
h(w1·x +b1) h1=h(w1·x +b1)

x
h(w2·x +b2) h2=h(w2·x +b2)

w1·x

w2·x

W1

x2

x1

=

 · x

NN: Vector Notation , First Layer

1 5

3 2

w1 =
5

1
w2 =

2

3

x
h(w1·x +b1) h1=h(w1·x +b1)

x
h(w2·x +b2) h2=h(w2·x +b2)

w1·x +b1

w2·x+b2

W1

x2

x1

=

 · x + b1

b2

b1

+

NN: Vector Notation , First Layer

1 5

3 2

w1 =
5

1 w2 =
2

3

x
h(w1·x +b1) h1=h(w1·x +b1)

x
h(w2·x +b2) h2=h(w2·x +b2)

h1

h2

h(W1

x2

x1

=

 · x + b1)

b2

b1

+ h

• h(v) for vector v means apply h to each component of v

NN: Vector Notation , First Layer

x
h(w1·x +b1) h1=h(w1·x +b1)

x
h(w2·x +b2) h2=h(w2·x +b2)

• h(v) for vector v means apply h to each component of v

more compact

x
h(W1x +b1) h1

W1 = 1 5
3 2

h1 =h(W1x +b1)=

h2

h1

b1 =
b2

b1

NN: Vector Notation, Next Layer

x2

x
h(W1x +b1)

h

h
h

h

h

h

h1
h(W2h1 +b2)

h2

1
3
5
2

x1

• W2 is a matrix of weights between hidden layer 1 and 2
• W2(r,c) is weight from unit c to unit r

• b2 is a vector of bias weights for second hidden layer
• b2

r is bias of unit r in second layer
• h2 is a vector of second layer outputs

• h2
r is output of unit r in second layer

NN: Vector Notation, all Layers

• Complete depiction
 x

h(W1x +b1)
h1

h(W2h1 +b2)
h2

h(W3h2 +b3)

o

• o is the vector from the output layer
• o = h(W3h2 +b3)

 = h(W3h(W2h1 +b2)+b3)
 = h(W3h(W2h(W1x +b1)+b2)+b3)

x2

h

h
h

h

h

h

1
3
5
2

x1

NN: Output Representation
• Output of NN is a vector
• So label yi of sample xi should also be a vector
• Let xi be sample of class k

 yi= row k





















0

1

0





• Want output unit ok = 1
• Want other output units zero

 



















0

1

0




row k f(xi) = o =

• Want to minimize difference between yi and f(xi)
• All network weights W = {W1, W2,…, Wl, b1, b2,…, bl}
• Minimum Squared Error (MSE) loss
• Loss on one example xi

Training NN: Loss Function

() () ()()∑
=

−=−=
m

j

i
j

i
j

iiii yxfyxfWyxL
1

22

2
1

2
1;,

row k























0

1

0



























3.0

9.0

5.0





f(xi) = o = yi =

• f depends on W, but too cumbersome to write f(x,W) everywhere
• Cross entropy loss works better than squared difference loss

Training NN: Loss Function

() ()∑
=

−=
n

i

ii yxfWYXL
1

2

2
1;,• Loss on all examples:

• Gradient descent

initialize w to random
choose ε, α
while α||∇L(X,Y;W)|| > ε
 w = w - α∇L(X,Y;W)

• Let X = x1 ,…, xn
 Y = y1 ,…, yn

• Need to find derivative of L(X,Y;W) wrt every network weight wi

Training NN: Computing Gradient

• Perform weight update for all network weights

• Gradient descent tells us to add the following quantity to wi

iii www ∆+=

i
i w

Lw
∂
∂

α−=∆

iw
L

∂
∂

• where α is the learning rate

Training NN: Computing Gradient
• How many weights do we have in our network?

x
h(W1x +b1)

h1
h(W2h1 +b2)

h2
h(W3h2 +b3)

o

b1 []
• Weights are in matrices W1, W2,…, Wl

• And are in vectors b1, b2,…, bl

[]W2 W1 [] W3 []
b3 []b2 []

• Consider matrix

Training NN: Computing Gradient

















=
11

1

1
1

1
11

1

dkd

k

ww

ww
W







• Need to compute derivative wrt every 1
jsw

• Organize derivatives in matrix





















∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

11
1

1
1

1
11

1

dkd

k

w
L

w
L

w
L

w
L

W
L







Training NN: Computing Gradient

()
x
h

h
L

w
whL

∂
∂

∂
∂

=
∂

∂)(

• Chain rule for derivatives of composed functions

• NN is a composition of compositions … of compositions of
functions h(h(h ()))

• Have to apply the chain rule a lot

• First take derivatives wrt oj

Training NN: Computing Gradient

() yxf
o
L

−=
∂
∂

() jj
j

yxf
o
L

−=
∂
∂

• Vector of derivatives wrt o

() ()() ()∑∑ −=−=
j jj jj yoyxfWyxL 22

2
1

2
1;,





















∂
∂

∂
∂

=
∂
∂

mo
L

o
L

o
L


1

()

() 





















−

−

=

mm yxf

yxf



11

• Consider derivative for one sample x, with true label y
• dropped super-indexes for clarity

• Compute derivatives backwards, starting in last layer

Training NN: Computing Gradient

x
h(W1x +b1)

h1
h(W2h1 +b2)

h2
h(W3h2 +b3)

o

33 W
o

o
L

W
L

∂
∂

∂
∂

=
∂
∂

22 h
o

o
L

h
L

∂
∂

∂
∂

=
∂
∂

33 b
o

o
L

b
L

∂
∂

∂
∂

=
∂
∂

() ()∑ −=
j jj oywyxL 2

2
1;,

• Let vector a3 = W3h2 +b3

Training NN: Computing Gradient

()()()()Thyxfahdiag
W
o

o
L

W
L 23

33)(' −=
∂
∂

∂
∂

=
∂
∂

x
h(W1x +b1)

h1
h(W2h1 +b2)

h2
h(W3h2 +b3)

o

()()() ()()yxfWahdiag
h
o

o
L

h
L T

−=
∂
∂

∂
∂

=
∂
∂ 33

22 '

()() ()()yxfahdiag
b
o

o
L

b
L

−=
∂
∂

∂
∂

=
∂
∂ 3

33 '

a3 =
a3

2

a3
1

Training NN: Computing Gradient

• Sketch of derivation for



















∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

33

33

3

2221

1211

w
L

w
L

w
L

w
L

W
L









= 3

22
3
21

3
12

3
113

ww
ww

W

3W
L

∂
∂

Training NN: Computing Gradient










+
+

= 3
22

2
2

3
21

2
1

3
12

2
2

3
11

2
123

whwh
whwh

hW









= 3

22
3
21

3
12

3
113

ww
ww

W 







= 2

2

2
12

h
h

h










++
++

=+ 3
2

3
22

2
2

3
21

2
1

3
1

3
12

2
2

3
11

2
1323

bwhwh
bwhwh

bhW









= 2

2

2
12

b
b

b

() ()
()







++
++

=+= 3
2

3
22

2
2

3
21

2
1

3
1

3
12

2
2

3
11

2
1323

bwhwhh
bwhwhh

bhWho

• Recall

• Thus

Training NN: Computing Gradient

• Using chain rule



















∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

33

33

3

2221

1211

w
L

w
L

w
L

w
L

W
L



















∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
3
2

2
3
2

2

3
1

1
3
1

1

2221

1211

w
o

o
L

w
o

o
L

w
o

o
L

w
o

o
L

() 








++
++

=+=







= 3

2
3
22

2
2

3
21

2
1

3
1

3
12

2
2

3
11

2
1323

2

1

bwhwh
bwhwh

bhWh
o
o

o

3W
o

∂
∂

Training NN: Computing Gradient

() ()
()

()
()






=









++
++

=+= 3
1

3
1

3
2

3
22

2
2

3
21

2
1

3
1

3
12

2
2

3
11

2
1323

ah
ah

bwhwhh
bwhwhh

bhWho

• Need 3W
o

∂
∂



















∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

3
22

3
21

3
12

3
11

3

w
o

w
o

w
o

w
o

W
o () ()

() () 







= 2

2
3
2

2
1

3
2

2
2

3
1

2
1

3
1

''
''

hahhah
hahhah

Training NN: Computing Gradient
• Continue



















∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

3
2

2
3
2

2

3
1

1
3
1

1
3

2221

1211

w
o

o
L

w
o

o
L

w
o

o
L

w
o

o
L

W
L

• Plug into
 () ()

() ()


















∂
∂

∂
∂

∂
∂

∂
∂

=
2
2

3
2

2

2
1

3
2

2

2
2

3
1

1

2
1

3
1

1

''

''

hah
o
Lhah

o
L

hah
o
Lhah

o
L



















∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

3
22

3
21

3
12

3
11

3

w
o

w
o

w
o

w
o

W
o () ()

() () 







= 2

2
3
2

2
1

3
2

2
2

3
1

2
1

3
1

ha'hha'h
ha'hha'h

Training NN: Computing Gradient
• Rewrite
 () ()

() ()


















∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

2
2

3
2

2

2
1

3
2

2

2
2

3
1

1

2
1

3
1

1
3

''

''

hah
o
Lhah

o
L

hah
o
Lhah

o
L

W
L

()

()
[]2

2
2
1

3
2

2

3
1

1

'

'
hh

ah
o
L

ah
o
L



















∂
∂
∂
∂

=

()
() []2

2
2
1

2

1
3
2

3
1

'0
0'

hh

o
L

o
L

ah
ah



















∂
∂
∂
∂









=

()
() []2

2
2
1

2

1
3
2

3
1

'
'

hh

o
L

o
L

ah
ah

diag



















∂
∂
∂
∂









=

Training NN: Computing Gradient

• Recall

()
()

() 















−

−
=−=

∂
∂

mm yxf

yxf
yxf

o
L


11

()
() []2

2
2
1

2

1
3
2

3
1

3 '
'

hh

o
L

o
L

ah
ah

diag
W
L



















∂
∂
∂
∂









=

∂
∂

()()()()Thyxfahdiag
W
L 23

3)(' −=
∂
∂

• We get what we want

Training NN: Computing Gradient

2

2

22 W
h

h
L

W
L

∂
∂

∂
∂

=
∂
∂

x
h(W1x +b1)

h1
h(W2h1 +b2)

h2
h(W3h2 +b3)

o

1

2

21 h
h

h
L

h
L

∂
∂

∂
∂

=
∂
∂

2h
L

∂
∂

2

2

22 b
h

h
L

b
L

∂
∂

∂
∂

=
∂
∂

• Continue computing backwards
• Let vector a2 = W2h1 +b2

Training NN: Computing Gradient

x
h(W1x +b1)

h1
h(W2h1 +b2)

h2
h(W3h2 +b3)

o

()() ()Th
h
Lahdiag

W
h

h
L

W
L 1

2
2

2

2

22 '
∂
∂

=
∂
∂

∂
∂

=
∂
∂

()()() 2
22

1

2

21 '
h
LWahdiag

h
h

h
L

h
L T

∂
∂

=
∂
∂

∂
∂

=
∂
∂

()() 2
2

2

2

22 '
h
Lahdiag

b
h

h
L

b
L

∂
∂

=
∂
∂

∂
∂

=
∂
∂

2h
L

∂
∂

• Continue computing backwards
• Let vector a2 = W2h1 +b2

• Continue computing backwards
• Let vector a1 = W1x1 +b1

Training NN: Computing Gradient

x
h(W1x +b1)

h1
h(W2h1 +b2)

h2
h(W3h2 +b3)

o

1h
L

∂
∂

()() Tx
h
Lahdiag

W
h

h
L

W
L

1
1

1

1

11 '
∂
∂

=
∂
∂

∂
∂

=
∂
∂

()() 1
1

1

1

11 '
h
Lahdiag

b
h

h
L

b
L

∂
∂

=
∂
∂

∂
∂

=
∂
∂

Training Protocols
• Batch Protocol

• full gradient descent
• weights are updated only after all examples are processed
• might be very slow to train

• Single Sample Protocol
• examples are chosen randomly from the training set
• weights are updated after every example
• weighs get changed faster than batch, less stable
• One iteration over all samples (in random order) is called an epoch

• Mini Batch
• Divide data in batches, and update weights after processing each batch
• Middle ground between single sample and batch protocols
• Helps to prevent over-fitting in practice, think of it as “noisy” gradient
• allows CPU/GPU memory hierarchy to be exploited so that it trains much

faster than single-sample in terms of wall-clock time
• One iteration over all mini-batches is called an epoch

Training DNN: Initialization
• For gradient descent, need to pick initialization

parameters w
• do not set all the parameters w equal
• set the parameters in w randomly

• Can adjust α at the training time
• The loss function L(w) should decrease during gradient

descent
• if L(w) oscillates, α is too large, decrease it
• if L(w) goes down but very slowly, α is too small, increase it

Training DNN: Learning Rate

Training DNN: Gradient descent

Gradient descent Stochastic gradient descent,
1 epoch

see all
examples

see only one
example

Update 20 times
in an epoch

Training DNN: Gradient descent
• Real Example: Handwriting Digit Classification

Batch size = 1 Gradient descent

• Gradient descent finds only a local minima
• Momentum: popular method to avoid local minima and

speed up descent in flat (plateau) regions
• Add temporal average direction in which weights have

been moving recently
• Previous direction: ∆wt=wt-wt-1

• Weight update rule with momentum:

Training DNN: Momentum

previous
direction

steepest descent
direction

() () 11 1 −+ ∆β+∇β−+= tttt wwLww

• Features should be normalized for faster convergence
• Suppose fish length is in meters and weight in grams

• typical sample [length = 0.5, weight = 3000]
• feature length will be almost ignored
• If length is in fact important, learning will be very slow

•Any normalization we looked at before will do
• test samples should be normalized exactly as training samples

Training DNN: Normalization

training time

Large training error:
random decision
regions in the
beginning - underfit

Small training error:
decision regions
improve with time

Zero training error:
decision regions fit
training data
perfectly - overfit

MLP Training: How long to Train?

can learn when to stop training through validation

MLP as Non-Linear Feature Mapping

x1

x2

1

• MLP can be interpreted as first mapping input
features to new features

• Then applying Perceptron (linear classifier) to the
new features

MLP as Non-Linear Feature Mapping

x1

x2

1

 this part implements
Perceptron (liner classifier)

y1

y2

y3

MLP as Non-Linear Feature Mapping

x1

x2

1 y1

y2

y3

 this part implements
mapping to new features y

MLP as Nonlinear Feature Mapping

x1

x2

1 -1
-1
1

-3
 1

-1

1.5

1
1

• Consider 3 layer NN example we saw previously:

x1

x2

non linearly separable in
the original feature space

+

y1

y2

linearly separable in the
new feature space

• How many layers should we choose?
 Shallow network

Shallow vs. Deep Architecture

 Deep network

• Deep network lead to many successful
applications recently

• 2 layer networks can represent any function
• But deep architectures are more efficient for representing some

classes of functions
• problems which can be represented with a polynomial number of nodes with

k layers, may require an exponential number of nodes with k-1 layers
• thus with deep architecture, less units might be needed overall

• less weights, less parameter updates
• maybe especially in image processing, with structure being mainly local

Why Deep Networks

• Sub-features created in deep
architecture can potentially be shared
between multiple tasks

Training Deep Networks
• Difficulties of supervised training of deep networks

• Early layers of MLN do not get trained well
• Diffusion of Gradient – error attenuates as it propagates to earlier

layers
• Exacerbated since top couple layers can usually learn any task

"pretty well" and thus the error to earlier layers drops quickly as
the top layers "mostly" solve the task– lower layers never get the
opportunity to use their capacity to improve results, they just do a
random feature map

• Need a way for early layers to do effective work
• Often not enough labeled data available while there may

be lots of unlabeled data
• Can we use unsupervised/semi-supervised approaches to take

advantage of the unlabeled data
• Deep networks tend to have more local minima problems

than shallow networks during supervised training

Greedy Layer-Wise Training
• Greedy layer-wise training to insure lower layers learn
1. Train first layer using your data without the labels (unsupervised)

• we do not know targets at this level anyway
• can use the more abundant unlabeled data which is not part of the training set

2. Freeze the first layer parameters and start training the second layer using
the output of the first layer as the unsupervised input to the second layer

3. Repeat this for as many layers as desired
• This builds our set of robust features

4. Use the outputs of the final layer as inputs to a supervised layer/model and
train the last supervised layer(s)
• leave early weights frozen

5. Unfreeze all weights and fine tune the full network by training with a
supervised approach, given the pre-processed weight settings

Greedy Layer-Wise Training
• Greedy layer-wise training avoids many of the problems of trying

to train a deep net in a supervised fashion
• Each layer gets full learning focus in its turn since it is the only

current "top" layer
• Can take advantage of the unlabeled data
• When you finally tune the entire network with supervised

training the network weights have already been adjusted so
that you are in a good error basin and just need fine tuning
This helps with problems of
• Ineffective early layer learning
• Deep network local minima

Neural Nets: Character Recognition
• http://yann.lecun.com/exdb/lenet/index.html

80

Yann LeCun et. al.

http://yann.lecun.com/exdb/lenet/index.html

ConvNet on Image Classification

Concluding Remarks
• Advantages

•MLP can learn complex mappings from inputs to
outputs, based only on the training samples

•Easy to incorporate a lot of heuristics
•Many competitions won recently

• Disadvantages
•May be difficult to analyze and predict its behavior
•May take a long time to train
•May get trapped in a bad local minima
•A lot of tricks for successful implementation

	Slide Number 1
	Outline
	Need for Non-Linear Discriminant
	Need for Non-Linear Discriminant
	Need for Non-Linear Discriminant
	Neural Networks
	Brain vs. Computer
	One Learning Algorithm Hypothesis
	Seeing with Tongue
	One Learning Algorithm Hypothesis
	Neuron: Basic Brain Processor
	Neuron: Main Components
	Neurons in Action (Simplified Picture)
	Artificial Neural Network (ANN) History: Birth
	ANN History: First Successes
	ANN History: Stagnation
	ANN History: Revival
	Perceptron: 1 Layer Neural Network (NN)
	Multilayer Perceptron (MLP)
	MLP Small Example
	MLP: Multiple Classes
	MLP: General Structure
	MLP: General Structure
	MLP: General Structure
	MLP: Overview
	Expressive Power of MLP
	Decision Boundaries
	Nonlinear Decision Boundary: Example
	Nonlinear Decision Boundary: Example
	Multi-Layer Neural Networks: Activation Function
	NN: Modes of Operation
	NN: Vector Notation
	NN: Vector Notation
	NN: Vector Notation
	NN: Vector Notation
	NN: Vector Notation, First Layer
	NN: Vector Notation , First Layer
	NN: Vector Notation , First Layer
	NN: Vector Notation , First Layer
	NN: Vector Notation , First Layer
	NN: Vector Notation, Next Layer
	NN: Vector Notation, all Layers
	NN: Output Representation
	Training NN: Loss Function
	Training NN: Loss Function
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training NN: Computing Gradient
	Training Protocols
	Training DNN: Initialization
	Training DNN: Learning Rate
	Training DNN: Gradient descent
	Training DNN: Gradient descent
	Slide Number 68
	Slide Number 69
	Slide Number 70
	MLP as Non-Linear Feature Mapping
	MLP as Non-Linear Feature Mapping
	MLP as Non-Linear Feature Mapping
	MLP as Nonlinear Feature Mapping
	Shallow vs. Deep Architecture
	Why Deep Networks
	Training Deep Networks
	Greedy Layer-Wise Training
	Greedy Layer-Wise Training
	Neural Nets: Character Recognition
	ConvNet on Image Classification
	Concluding Remarks

