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Neural Networks 

Many presentation Ideas are due to Andrew NG 
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• Motivation 
• Non linear discriminant functions 

• Introduction to Neural Networks 
• Inspiration from Biology 
• History 

• Perceptron 
• Multilayer Perceptron 
• Practical Tips for Implementation 

 



Need for Non-Linear Discriminant 

• Previous lecture studied linear discriminant 
• Works for linearly (or almost) separable cases 
• Many problems are far from linearly separable 

• underfitting with linear model 

x1 

x2 

g(x) = w0+w1x1+w2x2 

x1 

x2 



Need for Non-Linear Discriminant 
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• Can use other discriminant functions, 
like quadratics 

            g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2 

• Methodology is almost the same as 
in the linear case: 
•  f(x)   = sign(w0+w1x1+w2x2+w12x1x2 +w11x1

2 + w22x2
2) 

•      z   =        [ 1        x1        x2            x1 x2         x1
2           x2

2] 
•      a   =       [ w0      w1       w2         w12           w11

          w22] 
• “normalization”:  multiply negative class samples by -1 
• gradient descent to minimize Perceptron objective 

function 
  



Need for Non-Linear Discriminant 

x1 

x2 • May need highly non-linear decision 
boundaries 

• This would require too many high order 
polynomial terms to fit  

 g(x) = w0+w1x1+w2x2+ 
         + w12x1x2 + w11x1

2 +w22x2
2 + 

         + w111x1
3+ w112x1

2x2 +w122x1x2
2 + w222x2

3 +  
         + even more  terms of degree 4 
         + super many terms of degree k 
 • For n features, there O(nk) polynomial terms of degree k 

• Many real world problems are modeled with  hundreds and 
even thousands features 
• 10010 is too large of function to deal with 



Neural Networks 

x1 

x2 • Neural Networks correspond to some 
discriminant function gNN(x) 

• Can carve out arbitrarily complex 
decision boundaries without requiring so 
many terms as polynomial functions 

• Neural Nets were inspired by research in 
how human brain works 

• But also proved to be quite successful in 
practice 

• Are used nowadays successfully for a 
wide variety of applications 
• took some time to get them to work 

 



Brain vs. Computer 

• usually one very fast processor 
• high reliability 
• designed to solve logic and 

arithmetic problems 
• absolute precision 
• can solve a gazillion arithmetic 

and logic problems in an hour 
 

• huge number of parallel but 
relatively slow and unreliable 
processors 

• not perfectly precise, not 
perfectly reliable 

• evolved (in a large part) for 
pattern recognition 

• learns to solve various PR 
problems 

seek inspiration for classification from human brain 



One Learning Algorithm Hypothesis 
• Brain does many different things 
• Seems like it runs many different 

“programs” 
• Seems we have to write tons of 

different programs to mimic brain 

• Hypothesis: there is a single underlying learning algorithm 
shared by different parts of the brain 

• Evidence from neuro-rewiring experiments 

[Roe et al, 1992] 

• Auditory cortex learns to see  
• animals will eventually learn to perform a variety of object 

recognition tasks 

• There are other similar rewiring experiments 
 

 
• Route signal from eyes to the auditory cortex 

 
• Cut the wire from ear to auditory cortex 



Seeing with Tongue 
• Scientists use the amazing ability of the 

brain to learn to retrain brain tissue  
• Seeing with tongue 

• BrainPort Technology  
• Camera connected to a tongue array sensor 
• Pictures are “painted” on the tongue 

• Bright pixels correspond to high voltage 
• Gray pixels correspond to medium voltage 
• Black pixels correspond to no voltage 

• Learning takes from 2-10 hours 
• Some users describe experience resembling a 

low resolution version of vision they once had 
• able to recognize high contrast object, their location, 

movement tongue array 
sensor 



One Learning Algorithm Hypothesis 

• Experimental evidence that we can plug any sensor to any part 
of the brain, and brain can learn how to deal with it 

• Since the same physical piece of brain tissue can process sight,  
sound, etc.  

• Maybe there is one learning algorithm can process sight, 
sound, etc.  

• Maybe we need to figure out and implement an algorithm that 
approximates what the brain does 

• Neural Networks were developed as a simulation of  networks 
of neurons in human brain 



Neuron: Basic Brain Processor 
• Neurons (or nerve cells) are special cells that 

process and transmit information by 
electrical signaling 
•  in brain and also spinal cord 

• Human brain has around 1011 neurons   
• A neuron connects to other neurons to form 

a network 
• Each neuron cell communicates to anywhere 

from 1000 to 10,000 other neurons 



Neuron: Main Components 

12 

dendrites 

nucleus 

cell 
body 

axon 

axon 
terminals 

• cell body 
• computational unit 

• dendrites  
• “input wires”, receive inputs from other neurons 
• a neuron may have thousands of dendrites, usually short 

• axon  
• “output wire”, sends signal to other neurons 
• single long structure (up to 1 meter) 
• splits in possibly thousands branches at the end, “axon terminals” 



Neurons in Action (Simplified Picture) 

• Cell body collects and processes  
signals from other neurons 
through dendrites  

• If there the strength of incoming 
signals is large enough, the cell 
body sends an electricity pulse (a 
spike)  to its axon 

• This is the process by which all human 
thought, sensing, action, etc. happens 

• Its axon, in turn,  connects to 
dendrites of other neurons, 
transmitting spikes to other neurons 
 



Artificial Neural Network (ANN) History: Birth 
• 1943, famous paper by W. McCulloch (neurophysiologist)  and W. 

Pitts (mathematician)  
• Using only math and algorithms, constructed a model of how neural 

network may work 
• Showed it is possible to construct any computable function with their 

network 
• Was it possible to make a model of thoughts of a human being? 
• Can be considered to be the birth of AI 

• 1949,  D. Hebb, introduced the first (purely pshychological) 
theory of learning 
• Brain learns at tasks through life, thereby it goes through tremendous 

changes 
• If two neurons fire together, they strengthen each other’s responses and 

are likely to fire together in the future 



ANN History: First Successes 
• 1958, F. Rosenblatt,  

• perceptron, oldest neural network still in use today 
• that’s what we studied in lecture on linear classifiers 

• Algorithm to train the perceptron network 
• Built in hardware 
• Proved convergence in linearly separable case 

• 1959, B. Widrow and M. Hoff  
• Madaline 
• First ANN applied to real problem 

• eliminates echoes in phone lines 



ANN History: Stagnation 
• Early success lead to a lot of claims which were not 

fulfilled 
• 1969, M. Minsky and S. Pappert 

• Book “Perceptrons” 
• Proved that perceptrons can learn only linearly separable 

classes 
• In particular cannot learn very simple XOR function 
• Conjectured that multilayer neural networks also limited by 

linearly separable functions 

• No funding and almost no research (at least in North 
America)  in 1970’s as the result of 2 things above   



ANN History: Revival 
• Revival of ANN in 1980’s 
• 1982 joint US-Japanese conference on ANN 

• US worries that it will stay behind 

• Many examples of mulitlayer NN appear 
• 1986, re-discovery of backpropagation algorithm by  Werbos, 

Rumelhart, Hinton and Ronald Williams  
• Allows a network to learn not linearly separable classes 
• several successes, in particular on digit recognition, autonomous driving 

• 2008-now: deep neural networks  
• better training procedures, much larger datasets for training, GPU 
• more successes, several benchmark competitions won 

 



Perceptron: 1 Layer Neural Network (NN) 

• Linear classifier f(x) = sign(wtx+w0) is a single neuron “net”  

x1 

x2 

sign(wtx+w0) 

1 

w1 

w2 

w0 

layer 2 
output layer 

 

layer 1 
input layer 

 
bias unit 

• Input layer units  emits features, except bias emits “1” 
• Output layer unit applies h(t) = sign(t) 
• h(t) is also called an activation function 

 



Multilayer Perceptron (MLP) 

x1 

x2 

1 

layer 3 
output layer 

 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• First hidden unit outputs          h(w0+w1x1 +w2x2)                

w 
w 

 h( wh(·)+wh(∙) ) 

• Network implements classifier  f(x) = h(wh(∙)+wh(∙))  
• More complex boundaries than Perceptron 

• Second hidden unit outputs     h(w0+w1x1 +w2x2) 



MLP Small Example 

x1 

x2 

1 

 
• Implements classifier  

 

  f(x) = sign(  4h(⋅)+2h(⋅) + 7 )  
                     = sign(4 sign(3x1+5x2)+2 sign(6+3x2) + 7)  

 

• Computing  f(x) is called feed forward operation 
• graphically, function is computed from left to right 

• Edge weights are learned through training  

7 
6 

3 
5 

3 

4 

2 



MLP: Multiple Classes 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• 3 classes, 2 features, 1 hidden layer 
• 3 input units, one for each feature 
• 3 output units, one for each class 
• 2 hidden units 
• 1 bias unit, can draw in layer 1, or each layer has one 

layer 3 
output layer 

 



MLP: General Structure 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• Classification: 

layer 3 
output layer 

 
h(·) 

h(·) 

h(·) 

• If f1(x) is largest, decide class 1 
• If f2(x) is largest, decide class 2 
• If f3(x) is largest, decide class 3 
  

 =  f1(x) 

• f (x)  is multi-dimensional    

 =  f2(x) 

 =  f3(x) 














= f(x) 



MLP: General Structure 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• Input layer: d features, d input units 
• Output layer: m classes, m output units 
• Hidden layer: how many units? 

• more units correspond to more complex classifiers 

layer 3 
output layer 

 



MLP: General Structure 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• Can have many hidden layers 
• Feed forward structure 

• ith layer connects to (i+1)th  layer 
• except bias unit can connect to any layer 
• or, alternatively  each layer can have its own bias unit 

layer 4 
output layer 

 

layer 3 
hidden layer 

 



MLP: Overview 
• MLP corresponds to rather complex classifier f(x,w)  

• complexity depends on the number of hidden layers/units 
• f(x,w) is a composition of many functions 

• easier to visualize as a network 
• notation gets ugly 

• To train MLP, just as before 
•  formulate an objective or loss function L(w)   
• optimize it with gradient descent 

• lots of notation due to gradient complexity 
• lots of tricks to get gradient descent work reasonably well 

 



Expressive Power of MLP 
• Every continuous function from input to output can be 

implemented with enough hidden units, 1 hidden layer, 
and proper nonlinear activation functions 
• easy to show that with linear activation function, multilayer 

neural network is equivalent to perceptron  

 • This is more of theoretical than practical interest 
• proof is not constructive (does not tell how construct  MLP) 
• even if constructive, would be of no use, we do not know the 

desired function, our goal is to learn it through the samples 
• but this result gives confidence that we are on the right track  

• MLP is general (expressive) enough to construct any required decision 
boundaries, unlike the Perceptron 

 



Decision Boundaries 

• Perceptron (single 
layer neural net) 

• Arbitrarily complex 
decision regions 

• Even not contiguous 



Nonlinear Decision Boundary: Example 

x1 

x2 

1 -1 

-1 

1 

 – x1 + x2 – 1 > 0 ⇒ class 1 

x1 

x2 

1 -3 

1 

-1 

  x1  - x2 – 3  > 0 ⇒class 1  

x1 

x2 

-1 

1 
x1 

x2 

-3 

3 



Nonlinear Decision Boundary: Example 

x1 

x2 

1 -1 
-1 
1 

-3 
 1 
-1 

• Combine two Perceptrons into a 3 layer NN 

1.5 

1 

1 

x1 

x2 

-1 

1 x1 

x2 

-3 

3 + x1 

x2 

-3 

3 

1 

-1 



Multi-Layer Neural Networks: Activation Function 

• h() = sign() does not work for gradient 
descent 

• Can use sigmoid function 

• Rectified Linear (RuLu)  popular recently 



• Due to historical reasons, training and testing stages 
have special names 
• Backpropagation (or training)  
 Minimize objective function with gradient descent 

• Feedforward (or testing) 
  
 

NN: Modes of Operation 



NN: Vector Notation 
• Want  more compact (vector) notation 
• Compact notation for Perceptron 

 

x1 

x2 

sign(w·x+w0) 

1 

w1 

w2 

w0 

x = 
x2 

x1 w = 
w2 

w1 



NN: Vector Notation 
• Change notation a bit 

 
 

x1 

x2 

sign(w·x+b) 

1 

w1 

w2 

b 



NN: Vector Notation 
• Do not draw bias unit 

 
 x1 

x2 

sign(w·x+b) 
w1 

w2 

• Compact picture 
• h(t) = sign(t) 

 

 

x 
h(w·x +b) h 

layer 1 



NN: Vector Notation 

x2 

h1 

h1 

h 

h 

h 

h 

1 
3 
5 
2 

x1 

• For now, look just at the first layer (2 perceptrons) 
 



NN: Vector Notation, First Layer 

x 
h(w1·x +b1) h1=h(w1·x +b1) 

 

x 
h(w2·x +b2) h2=h(w2·x +b2) 

 

w1 = 
5 

1 

w2 = 
2 

3 

x2 

h 

h 

1 
3 
5 
2 

x1 

• Red Perceptron has weights w1 and bias b1 

• Green Perceptron has weights w2 and bias b2 



NN: Vector Notation , First Layer 

1 5 

3 2 

w1 = 
5 

1 
w2 = 

2 

3 

x 
h(w1·x +b1) h1=h(w1·x +b1) 

 

x 
h(w2·x +b2) h2=h(w2·x +b2) 

 

w1·x  

w2·x 

W1  

x2 

x1 

= 

  ·  x  



NN: Vector Notation , First Layer 

1 5 

3 2 

w1 = 
5 

1 
w2 = 

2 

3 

x 
h(w1·x +b1) h1=h(w1·x +b1) 

 

x 
h(w2·x +b2) h2=h(w2·x +b2) 

 

w1·x +b1 

w2·x+b2 

W1  

x2 

x1 

= 

 · x    +  b1  

b2 

b1 

+ 



NN: Vector Notation , First Layer 

1 5 

3 2 

w1 = 
5 

1 w2 = 
2 

3 

x 
h(w1·x +b1) h1=h(w1·x +b1) 

 

x 
h(w2·x +b2) h2=h(w2·x +b2) 

 

h1 

h2 

h(W1  

x2 

x1 

= 

 · x    +  b1)  

b2 

b1 

+ h 

• h(v) for vector v  means apply h to each component of v 



NN: Vector Notation , First Layer 

x 
h(w1·x +b1) h1=h(w1·x +b1) 

 

x 
h(w2·x +b2) h2=h(w2·x +b2) 

 

• h(v) for vector v means apply h to each component of v 

more compact 
 

x 
h(W1x +b1 ) h1 

W1 = 1 5 
3 2 

h1 =h(W1x +b1 )= 

 
h2 

h1 

b1 = 
b2 
 

b1 



NN: Vector Notation, Next Layer 

x2 

x 
h(W1x +b1 ) 

h 

h 
h 

h 

h 

h 

h1 
h(W2h1 +b2 ) 

h2 

1 
3 
5 
2 

x1 

• W2 is a matrix of weights between hidden layer 1 and 2 
• W2(r,c) is weight from unit  c  to unit r 

• b2 is a vector of bias weights for second hidden layer 
• b2

r is bias of unit r in second layer 
• h2 is a vector of second layer outputs 

• h2
r is output of unit r in second layer 

 



NN: Vector Notation, all Layers 

• Complete  depiction 
 x 

h(W1x +b1 ) 
h1 

h(W2h1 +b2 ) 
h2 

h(W3h2 +b3 ) 

 

o 

• o  is the vector from the output layer 
• o  = h(W3h2 +b3) 

  = h(W3h(W2h1 +b2 )+b3 ) 
  = h(W3h(W2h(W1x +b1)+b2)+b3 ) 

 

x2 

h 

h 
h 

h 

h 

h 

1 
3 
5 
2 

x1 



NN: Output Representation 
• Output of NN is a vector 
• So label yi of sample xi should also be a vector 
• Let xi be sample of class k 

 
 
 

                                       yi=  row k 
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• Want output unit ok = 1 
• Want other output units zero 

 


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row k f(xi) = o =  



• Want to minimize difference between yi and f(xi) 
• All network weights  W =  {W1, W2,…, Wl, b1, b2,…, bl} 
• Minimum Squared Error (MSE)  loss 
• Loss on one example xi   
 

Training NN: Loss Function 
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f(xi) = o =  yi =  

• f depends on W, but too cumbersome to write f(x,W) everywhere 
• Cross entropy loss works better than squared difference loss 



Training NN: Loss Function 
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1;,• Loss on all examples:  

• Gradient descent 

initialize w to random 
choose  ε, α 
while α||∇L(X,Y;W)|| > ε 
 w = w - α∇L(X,Y;W) 
  

• Let             X = x1 ,…, xn 
   Y = y1 ,…, yn 
 



• Need to find derivative of L(X,Y;W) wrt every network weight wi  

Training NN: Computing Gradient 

• Perform weight update for all network weights 

• Gradient descent tells us to add the following quantity to wi 
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• where α  is the learning rate 



Training NN: Computing Gradient  
• How many weights do we have in our network? 

x 
h(W1x +b1 ) 

h1 
h(W2h1 +b2 ) 

h2 
h(W3h2 +b3 ) 

 

o 

b1 [ ]
• Weights are in matrices W1, W2,…, Wl 

• And are in vectors b1, b2,…, bl  
  

[ ]W2 W1 [ ] W3 [ ]
b3 [ ]b2 [ ]



• Consider matrix 

Training NN:  Computing Gradient 
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Training NN: Computing Gradient 
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• Chain rule for derivatives of composed functions 

• NN is a composition of compositions … of compositions of 
functions  h(  h(  h ())) 

• Have to apply the chain rule a lot 



• First take derivatives wrt oj 

Training NN: Computing Gradient 
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• Consider derivative for one sample x, with true label y 
• dropped super-indexes for clarity 



• Compute derivatives backwards, starting in last layer 

Training NN: Computing Gradient 
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• Let vector  a3 = W3h2 +b3 

Training NN: Computing Gradient 
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Training NN: Computing Gradient 

• Sketch of derivation for  
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Training NN: Computing Gradient 
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• Thus 
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• Using chain rule 
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Training NN: Computing Gradient 
• Continue 
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Training NN: Computing Gradient 
• Rewrite 
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• Recall 
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• Continue computing backwards 
• Let vector  a2 = W2h1 +b2 
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• Let vector  a2 = W2h1 +b2 



• Continue computing  backwards 
• Let vector  a1 = W1x1 +b1 

 

Training NN: Computing Gradient 

x 
h(W1x +b1 ) 

h1 
h(W2h1 +b2 ) 

h2 
h(W3h2 +b3 ) 

 

o 

1h
L

∂
∂

( )( ) Tx
h
Lahdiag

W
h

h
L

W
L

1
1

1

1

11 '
∂
∂

=
∂
∂

∂
∂

=
∂
∂

( )( ) 1
1

1

1

11 '
h
Lahdiag

b
h

h
L

b
L

∂
∂

=
∂
∂

∂
∂

=
∂
∂



Training Protocols 
• Batch Protocol 

• full gradient descent 
• weights are updated only after all examples are processed 
• might be very slow to train 

• Single Sample Protocol 
• examples are chosen randomly from the training set 
•  weights are updated after every example 
• weighs get changed faster than batch, less stable 
• One iteration over all samples  (in random order) is called an epoch 

• Mini Batch 
• Divide data in batches, and update weights after processing each batch 
• Middle ground between single sample and batch protocols 
• Helps to prevent over-fitting in practice, think of it as “noisy” gradient 
• allows CPU/GPU memory hierarchy to be   exploited so that it trains much 

faster than single-sample in terms of wall-clock time 
• One iteration over all mini-batches is called an epoch 

 



Training DNN: Initialization 
• For gradient descent, need to pick  initialization 

parameters w 
• do not set all the parameters w equal 
• set the parameters in w randomly  



• Can adjust α at the training time 
• The loss function L(w) should decrease during gradient 

descent 
• if L(w) oscillates, α is too large, decrease it 
• if L(w) goes down but very slowly,  α is too small, increase it 

Training DNN: Learning Rate 



Training DNN: Gradient descent 

Gradient descent Stochastic gradient descent,  
1 epoch 

see all 
examples 

see only one 
example 

Update 20 times 
in an epoch 



Training DNN: Gradient descent 
• Real Example: Handwriting Digit Classification 

Batch size = 1 Gradient descent 



• Gradient descent finds only a local minima 
• Momentum: popular method to avoid local minima and 

speed up descent in flat (plateau) regions 
• Add temporal average direction in which weights have 

been moving recently 
• Previous direction: ∆wt=wt-wt-1 

• Weight update rule with momentum: 

Training DNN: Momentum 

previous  
direction 

steepest descent  
direction 

( ) ( ) 11 1 −+ ∆β+∇β−+= tttt wwLww



• Features should be normalized for faster convergence 
• Suppose  fish length is in meters and weight in grams 

• typical sample [length = 0.5, weight = 3000] 
• feature length will be almost ignored 
• If length is in fact important, learning will be very slow 

•Any normalization we looked at before  will do 
• test samples should be normalized exactly as training samples 

 

Training DNN: Normalization 



training time 

Large training error: 
random decision 
regions in the 
beginning - underfit 

Small training error: 
decision regions 
improve with time 

Zero training error:  
decision regions fit 
training data 
perfectly - overfit 

MLP Training: How long to Train?  

can learn when to stop training through validation 



MLP as Non-Linear Feature Mapping 

x1 

x2 

1 

• MLP can be interpreted as first mapping input 
features to new features 

• Then applying Perceptron (linear classifier) to the 
new features 



MLP as Non-Linear Feature Mapping 

x1 

x2 

1 

 this part implements 
Perceptron (liner classifier) 

y1 

y2 

y3 



MLP as Non-Linear Feature Mapping 

x1 

x2 

1 y1 

y2 

y3 

 this part implements 
mapping to new features y 



MLP as Nonlinear Feature Mapping 
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• Consider 3 layer NN example we saw previously: 

x1 

x2 

non linearly separable in 
the original feature space 

+ 

y1 

y2 

linearly separable in the 
new feature space 



• How many layers should we choose? 
     Shallow network 

Shallow vs. Deep Architecture 

    Deep network 

• Deep network lead to many successful 
applications recently 



• 2 layer networks can represent any function 
• But deep architectures are more efficient for representing some 

classes of functions 
• problems which can be represented with a polynomial number of nodes with 

k layers, may require an exponential number of nodes with k-1 layers 
• thus with deep architecture, less units might be needed overall 

• less weights, less parameter updates 
• maybe especially in image processing, with structure being mainly local 

 

 
 

 
 
 

Why Deep Networks 

 

• Sub-features created in deep 
architecture can potentially be shared 
between multiple tasks 

 

 
 

 



Training Deep Networks 
• Difficulties of supervised training of deep networks 

• Early layers of MLN do not get trained well 
• Diffusion of Gradient – error attenuates as it propagates to earlier 

layers 
• Exacerbated since top couple layers can usually learn any task 

"pretty well" and thus the error to earlier layers drops quickly as 
the top layers "mostly" solve the task– lower layers never get the 
opportunity to use their capacity to improve results, they just do a 
random feature map 

• Need a way for early layers to do effective work 
• Often not enough labeled data available while there may 

be lots of unlabeled data 
• Can we use unsupervised/semi-supervised approaches to take 

advantage of the unlabeled data 
• Deep networks tend to have more local minima problems 

than shallow networks during supervised training 
 

 



Greedy Layer-Wise Training 
• Greedy layer-wise training to insure lower layers learn 
1. Train first layer using your data without the labels (unsupervised) 

• we do not know targets at this level anyway 
• can use the more abundant unlabeled data which is not part of the training set  

2. Freeze the first layer parameters and start training the second layer using 
the output of the first layer as the unsupervised input to the second layer 

3. Repeat this for as many layers as desired 
• This builds our set of robust features 

4. Use the outputs of the final layer as inputs to a supervised layer/model and 
train the last supervised layer(s)  
• leave early weights frozen 

5. Unfreeze all weights and fine tune the full network by training with a 
supervised approach, given the pre-processed weight settings 

 



Greedy Layer-Wise Training 
• Greedy layer-wise training avoids many of the problems of trying 

to train a deep net in a supervised fashion 
• Each layer gets full learning focus in its turn since it is the only 

current "top" layer 
• Can take advantage of the unlabeled data 
• When you finally tune the entire network with supervised 

training the network weights have already been adjusted so 
that you are in a good error basin and just need fine tuning  
This helps with problems of 
• Ineffective early layer learning 
• Deep network local minima 



Neural Nets: Character Recognition 
• http://yann.lecun.com/exdb/lenet/index.html 
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Yann LeCun et. al. 

http://yann.lecun.com/exdb/lenet/index.html


ConvNet on Image Classification 



Concluding Remarks 
• Advantages 

•MLP can learn complex mappings from inputs to 
outputs, based only on the training samples 

•Easy to incorporate a lot of heuristics 
•Many competitions won recently 

• Disadvantages 
•May be difficult to analyze and predict its behavior 
•May take a long time to train 
•May get trapped in a bad local minima 
•A lot of tricks for successful implementation 
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