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Outline 

• Very Brief Intro to Computer Vision 
• Digital Images 
• Image Filtering 

• noise reduction 



Every Picture Tells a Story 
• Goal of computer vision is to write computer programs that can 

interpret images 
• bridge the gap between the pixels and the story 
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what we see what computers see 



Origin of Computer Vision: MIT Summer Project 



The problem 

real world 
scene 

sensing device interpreting 
device 

interpretations 

•  Want to make a computer understand images 
•  We know it is possible, we do it effortlessly! 

 a person, a 
person with 
folded arms, 
Pietro Perona  



Just Copy Human Visual System? 

• People try to but we don’t yet 
have a sufficient understanding of 
how our visual system works 

• O(1011) neurons used in vision 
• about 1/3 of human brain 

• Latest CPUs have only O(108) 
transistors  
• most are cache memory 

• Very different architectures: 
•  Brain is slow but parallel 
•  Computer is fast but mainly serial 

• Bird vs Airplane 
• Same underlying principles 
•  Very different hardware 

 



Why Computer Vision Matters 

Safety Health Security 

Comfort Personal Photos Fun 



“Early Vision” Problems 
• Edge extraction 

• Corner extraction 

• Blob extraction 



“Mid-level Vision” Problems 
• 3D Structure extraction  • Motion and tracking 

• Segmentation 



“High-level Vision” Problems 
• Face Detection 

• Object Recognition 

• Action Recognition 

• Scene Recognition 



Vision is inferential: Illumination 

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html 

• Vision is hard: even the simple problem of color 
perception is inferential 



Image Formation 



Sampling and Quantization 



Sensor Array 

after quantization and sampling real world object 



Digital Grayscale Image 
• Image is array f(x,y)    

• approximates continuous 
function f(x,y) from R2 to R: 

• f(x,y) is the intensity or 
grayscale at position (x,y) 
• proportional to brightness  of 

the real world point it images 
• standard range: 0, 1, 2,…., 255 

f(12,4)=75 f(10,6)= 170 

x 

y 

(1,1) 



Digital Color Image 
• Color image is three 

functions pasted together 
• Write this as a vector-

valued function:  
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R G B 

Digital Color Image 
• Can consider color image as 3 separate images: R, G, B  



Image Filtering 
• Given f(x,y) filtering computes new image h(x,y)  

• h(x,y)  is a function of f(x,y) in a local neighborhood 
around (x,y) 

• example:     h(x,y) = f(x,y)+f(x-1,y)× f(x,y-1)  

 

1 2 4 2 8 
9 2 2 7 5 
2 8 1 3 9 
4 3 2 7 2 
2 2 2 6 1 
8 3 2 5 4 

h(4,1) = 3 + 4 × 8 = 35 

h(6,5) = 4 + 5 × 1 = 9 

h(2,4) = 7 + 2×4 - 3×9 = -12 

• Linear filtering: function is a weighted sum 
(or difference) of pixel values 
 h(x,y) = f(x,y) + 2×f(x-1,y-1) - 3×f(x+1,y+1)  

 • Many applications 
• Enhance images 

• denoise, resize, increase contrast, … 
• Extract information from images 

• texture, edges, distinctive points … 
• Detect patterns 

• template matching 

 



Filtering for Noise Reduction: Motivation 
• Multiple images of even the same static scene are not identical 



Common Types of Noise 

 Salt and pepper noise: random 
occurrences of   black and white pixels 

 Gaussian noise: variations in intensity 
drawn from a Gaussian distribution 

 

 original image 

 

 Impulse noise: random occurrences of 
white pixels 

 

 



 G(0,25) noise 

 

 original image 

 

Gaussian Noise Most Commonly Assumed 



Noise Reduction 

• Noise can be reduced by averaging 
• If we had multiple images, simply average them 

ffinal (x,y)  =  ( f1(x,y) + f2(x,y) + … + fn(x,y)) )/n 
• But usually there is only one image! 

= + … + + 



First Attempt at a Solution 
• Replace each pixel with an average of all the 

values in its neighborhood 
• Assumptions:  

• expect a pixel to have intensities similar to its 
neighbors 

• noise is independent at each pixel 

 



Average Filter in 1D 
• Replace each pixel with an average of all the 

values in its neighborhood (= 5 pixels, say) 
• Moving average: 
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Average Filter in 1D 
• Replace each pixel with an average of all the 

values in its neighborhood (= 5 pixels, say) 
• Moving average in 1D 



Average Filter in 2D 
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Average Filter in 2D 
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Average Filter in 2D 
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Average Filter in 2D 
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Average Filter in 2D 
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Average Filter in 2D 
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Average Filter in 2D 
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Average Filter in 2D 

• Write as equation, averaging in window of size   (2k+1)x(2k+1) 
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• Window indexing 

 



Average Filter in 2D 

• Bring normalizing factor inside the sum 

 

( )
( )

( )∑ ∑
−= −=

++
+

=
k

ku

k

kv

vyuxf
k

yxg ,
12

1, 2

( )
( )

( )∑ ∑
−= −=

++
+

=
k

ku

k

kv

vyuxf
k

yxg ,
12

1, 2

• Visualize with mask H 
• also called filter, kernel 
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Average Filter in 2D 

0 10 20 30 30 
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box filter 

H[u,v]  g(x,y)  f(x,y) 

• Apply mask H to every image pixel  
 

 



Correlation Filtering 

• Generalize by allowing 
different weights for 
different pixels in the 
neighborhood 
 

 

( ) [ ] ( )∑ ∑
−= −=

++=
k

ku

k

kv

vyuxfvuHyxg ,,,

H[u,v] 

H[u,v] 
• Box filter 
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Filtering in 2D 

0 6 20 23 23 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
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H[u,v]  g(x,y)  f(x,y) 

• Apply the more general mask as before 
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Correlation filtering 
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• This is called correlation, denoted  g = H ⊗ f 
• The result of applying mask H to the whole image 

• Filtering an image: replace each pixel with a linear 
combination of its neighbors 

• The filter kernel or mask H is gives the weights in linear 
combination 
 



Smoothing by Averaging 

original filtered 

• What if the mask is larger than 3x3 ?  

• Pictorial representation of box filter: 
• white means large value, black means low value 

  



Effect of Average Filter 

7 × 7 

9 × 9 

11 × 11 

Gaussian noise Salt and Pepper noise 



Gaussian Filter 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

1 2 1 

2 4 2 

1 2 1 

• Nearest neighboring pixels to have the most influence 
• helps to lessen the effect of boundary smoothing  

This kernel H is an 
approximation of a 2d 

Gaussian function: 

H[u,v]  f(x,y) 
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Gaussian Filters: Mask Size 
• Gaussian has infinite domain, discrete filters use finite mask 

• set mask size to exclude non-useful (effectively zero) weights 
 

 

 

σ = 5 with 30 x 30 mask σ = 5 with 10 x 10 mask 

blue weights 
are so small 
they are 
effectively 0 



Gaussian filters: Variance 
• Variance (σ) contributes to the extent of smoothing 

• larger σ gives less rapidly decreasing weights 
• can construct a larger mask with non-negligible weights 

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel σ = 8 with 30 x 30 kernel 



Matlab 

>> hsize = 10; 
>> sigma = 5; 
>> h = fspecial(‘gaussian’, hsize, sigma); 
 
>> mesh(h); 
 
>> imagesc(h); 
 
>> outim = imfilter(im, h); % correlation  
>> imshow(outim); 

outim im 



Average vs. Gaussian Filter 

mean filter Gaussian filter 



More Average vs. Gaussian Filter 
mean filter Gaussian filter 

5 × 5 

15 × 15 

31 × 31 



Gaussian Filter with different Ϭ  

Ϭ=3 Ϭ=10 Ϭ=20 

original image 

corrupted by 
noise  Ϭ = 10 

corrupted by 
noise  Ϭ = 20 

corrupted by 
noise  Ϭ = 30 

filtered with different Ϭ  



Boundary Issues 
• What is the size of the output? 
• MATLAB: output size / “shape” options 

• shape = ‘full’: output size is sum of sizes of f and g 
• shape = ‘same’: output size is same as f 

• shape = ‘valid’: output size is difference of sizes of f and g  

f 

g g 

g g 

f 

g g 

g g 

f 

g g 

g g 

full same valid 



Boundary issues 
• What about near the edge? 

• the filter window falls off the edge of the image 
• need to extrapolate image 

clip filter (black) copy edge 

reflect across edge wrap around 



Properties of Smoothing Filters 

• Values positive  
• Sum to 1  

• constant regions same as input 
• overall image brightness stays unchanged 

• Amount of smoothing proportional to mask size 
• larger mask means more extensive smoothing 

 



Filtering an Impulse Signal 
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• What is the result of filtering the impulse signal 
(image) with arbitrary kernel H? 

H[u,v]  

g(x,y)=?  f(x,y) 

⊗  =  



Filtering an Impulse Signal 

0 0 0 0 0 0 0 
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• What is the result of filtering the impulse signal 
(image) with arbitrary kernel H? 

H[u,v]  

g(x,y)=?  f(x,y) 

⊗  =  
i h g 

f e d 

c b a 



Convolution 
• Convolution:  

• Flip the mask in both dimensions  
• bottom to top, right to left 

• Then apply cross-correlation 
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• Notation for convolution: g = H*f 



Convolution vs. Correlation 
• Convolution: g = H*f  
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• Correlation: g = H ⊗ f 
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• For  Gaussian or box filter, how the outputs differ?  
• If the input is an impulse signal, how the outputs differ? 



Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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Practice with Correlation Filtering 
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original shifted left 
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Practice with Correlation Filtering 
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Practice with Correlation Filtering 

original 
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blur (with a box filter) 
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Practice with Correlation Filtering 

original 

1 1 1 
1 1 1 
1 1 1 

0 0 0 
0 2 0 
0 0 0 - ?   ⊗                          =      

apply one mask 
after the other, 
or subtract masks 
and apply one 
resulting mask 
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-1/9 -1/9 -1/9 



Practice with Correlation Filtering 

original 

1 1 1 
1 1 1 
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0 0 0 
0 2 0 
0 0 0 - ?   ⊗                       =         

  sharpened 



Practice with Correlation Filtering 

1 1 1 
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⊗ • Why sharpens? 

=  
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original   f 

= 
sharpened detail 

original   f original   f 

+                  - 

smoothed 



Sharpening Example 

before after 



Separability 

• Sometimes filter is separable, can split into 
two steps: 
• Convolve all rows with 1D filter 
• Convolve all columns with 1D filter 

• Both box and Gaussian filters are separable 
• Great for efficiency! 



Box Filter 
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Gaussian Filter: Example 

• To convolve image with this: 

• First convolve each row with: 

• Then each column with: 

H 

Hc 

Hr 



Gaussian Filter: Example 
• Straightforward convolution with 5×5 kernel 

• 25 multiplications, 24 additions per pixel 

• Smart convolution 
• 10 multiplications,  9 additions per pixel 

• Savings are even larger for larger kernels 
• for n×n kernel, straightforward convolution is O(n2) 

• Smart convolution is O(n) per pixel 
 



Median Filters 

• A Median Filter selects median intensity in the window 
• No new intensities are introduced 
• Median filter preserves sharp details better than mean 

filter, it is not so prone to oversmoothing 
• Better for salt and pepper, impulse (spiky) noise 
• Is a median filter a kind of convolution? 

 

1 2 25 

3 24 22 

20 21 23 

X X X 

X 21 X 

X X X 

Median of {1,2,25,3,24,22,20,21,23} = {1,2,3,20,21,22,23,24,25}  is 21 



Median Filter 
• Median filter is edge preserving 

input: 

average: 

median: 



Median filter 

row of noisy image 

Salt and pepper noise median filtered 

row of filtered image 



Comparison: Salt and Pepper Noise Image 

5 × 5 

7 × 7 

Gaussian filter median filter 

3 × 3 



Comparison: Gaussian Noise Image 

5 × 5 

7 × 7 

Gaussian filter median filter 

3 × 3 



Filtering Fun: Face of Faces 

http://www.salle.url.edu/~ftorre/ 

http://www.salle.url.edu/%7Eftorre/


Salvador Dali, “Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the 
portrait of Abraham Lincoln”, 1976 



Summary 
• Image “noise” 
• Linear filters and convolution useful for 

• Enhancing images (smoothing, removing noise) 
• Box filter 
• Gaussian filter 
• Impact of scale / width of smoothing filter 

• Detecting features (next time) 

• Separable filters more efficient  
• Median filter: a non-linear filter, edge-preserving 
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