
CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 8
Computer Vision

Introduction, Filtering

Some slides from: D. Jacobs, D. Lowe, S.
Seitz , A.Efros , X. Li, R. Fergus, J. Hayes,
S. Lazebnik, D. Hoiem, S. Marschner

Outline

• Very Brief Intro to Computer Vision
• Digital Images
• Image Filtering

• noise reduction

Every Picture Tells a Story
• Goal of computer vision is to write computer programs that can

interpret images
• bridge the gap between the pixels and the story

1 2 0 2 2 1
9 2 2 7 1 2
2 8 2 3 2 2
4 2 2 7 2 8
2 2 2 6 0 2
8 3 2 5 2 2
7 2 4 2 1 9

what we see what computers see

Origin of Computer Vision: MIT Summer Project

The problem

real world
scene

sensing device interpreting
device

interpretations

• Want to make a computer understand images
• We know it is possible, we do it effortlessly!

 a person, a
person with
folded arms,
Pietro Perona

Just Copy Human Visual System?

• People try to but we don’t yet
have a sufficient understanding of
how our visual system works

• O(1011) neurons used in vision
• about 1/3 of human brain

• Latest CPUs have only O(108)
transistors
• most are cache memory

• Very different architectures:
• Brain is slow but parallel
• Computer is fast but mainly serial

• Bird vs Airplane
• Same underlying principles
• Very different hardware

Why Computer Vision Matters

Safety Health Security

Comfort Personal Photos Fun

“Early Vision” Problems
• Edge extraction

• Corner extraction

• Blob extraction

“Mid-level Vision” Problems
• 3D Structure extraction • Motion and tracking

• Segmentation

“High-level Vision” Problems
• Face Detection

• Object Recognition

• Action Recognition

• Scene Recognition

Vision is inferential: Illumination

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

• Vision is hard: even the simple problem of color
perception is inferential

Image Formation

Sampling and Quantization

Sensor Array

after quantization and sampling real world object

Digital Grayscale Image
• Image is array f(x,y)

• approximates continuous
function f(x,y) from R2 to R:

• f(x,y) is the intensity or
grayscale at position (x,y)
• proportional to brightness of

the real world point it images
• standard range: 0, 1, 2,…., 255

f(12,4)=75 f(10,6)= 170

x

y

(1,1)

Digital Color Image
• Color image is three

functions pasted together
• Write this as a vector-

valued function:

()
()
()
()

=

x,yb
x,yg
x,yr

y,xf

50
50

200

120
10
0

R G B

Digital Color Image
• Can consider color image as 3 separate images: R, G, B

Image Filtering
• Given f(x,y) filtering computes new image h(x,y)

• h(x,y) is a function of f(x,y) in a local neighborhood
around (x,y)

• example: h(x,y) = f(x,y)+f(x-1,y)× f(x,y-1)

1 2 4 2 8
9 2 2 7 5
2 8 1 3 9
4 3 2 7 2
2 2 2 6 1
8 3 2 5 4

h(4,1) = 3 + 4 × 8 = 35

h(6,5) = 4 + 5 × 1 = 9

h(2,4) = 7 + 2×4 - 3×9 = -12

• Linear filtering: function is a weighted sum
(or difference) of pixel values
 h(x,y) = f(x,y) + 2×f(x-1,y-1) - 3×f(x+1,y+1)

 • Many applications
• Enhance images

• denoise, resize, increase contrast, …
• Extract information from images

• texture, edges, distinctive points …
• Detect patterns

• template matching

Filtering for Noise Reduction: Motivation
• Multiple images of even the same static scene are not identical

Common Types of Noise

 Salt and pepper noise: random
occurrences of black and white pixels

 Gaussian noise: variations in intensity
drawn from a Gaussian distribution

 original image

 Impulse noise: random occurrences of
white pixels

 G(0,25) noise

 original image

Gaussian Noise Most Commonly Assumed

Noise Reduction

• Noise can be reduced by averaging
• If we had multiple images, simply average them

ffinal (x,y) = (f1(x,y) + f2(x,y) + … + fn(x,y)))/n
• But usually there is only one image!

= + … + +

First Attempt at a Solution
• Replace each pixel with an average of all the

values in its neighborhood
• Assumptions:

• expect a pixel to have intensities similar to its
neighbors

• noise is independent at each pixel

Average Filter in 1D
• Replace each pixel with an average of all the

values in its neighborhood (= 5 pixels, say)
• Moving average:

Average Filter in 1D
• Replace each pixel with an average of all the

values in its neighborhood (= 5 pixels, say)
• Moving average in 1D

Average Filter in 1D
• Replace each pixel with an average of all the

values in its neighborhood (= 5 pixels, say)
• Moving average in 1D

Average Filter in 1D
• Replace each pixel with an average of all the

values in its neighborhood (= 5 pixels, say)
• Moving average in 1D

Average Filter in 1D
• Replace each pixel with an average of all the

values in its neighborhood (= 5 pixels, say)
• Moving average in 1D

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

f(x,y) g(x,y)

sticking out not sticking out

sharp border border washed out

Average Filter in 2D

• Write as equation, averaging in window of size (2k+1)x(2k+1)

()

()
()∑ ∑

−= −=

++
+

=
k

ku

k

kv

vyuxf
k

yxg ,
12

1, 2

loop over all pixels in
neighborhood around pixel f (i,j)

normalizing factor

2k+1

-k,-k

k,k

• Window indexing

Average Filter in 2D

• Bring normalizing factor inside the sum

()
()

()∑ ∑
−= −=

++
+

=
k

ku

k

kv

vyuxf
k

yxg ,
12

1, 2

()
()

()∑ ∑
−= −=

++
+

=
k

ku

k

kv

vyuxf
k

yxg ,
12

1, 2

• Visualize with mask H
• also called filter, kernel

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

H[u,v]

1 1 1

1 1 1

1 1 1

1/9

=

[] ()∑ ∑
−= −=

++=
k

ku

k

kv

vyuxfvuH ,,

Average Filter in 2D

0 10 20 30 30
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1
1 1 1
1 1 1

box filter

H[u,v] g(x,y) f(x,y)

• Apply mask H to every image pixel

Correlation Filtering

• Generalize by allowing
different weights for
different pixels in the
neighborhood

() [] ()∑ ∑
−= −=

++=
k

ku

k

kv

vyuxfvuHyxg ,,,

H[u,v]

H[u,v]
• Box filter

1 2 1

2 4 2

1 2 1
16
1

1 1 1

1 1 1

1 1 1

9
1

Filtering in 2D

0 6 20 23 23
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1
2 4 2
1 2 1

H[u,v] g(x,y) f(x,y)

• Apply the more general mask as before

16
1

Correlation filtering

() [] ()∑ ∑
−= −=

++=
k

ku

k

kv

vyuxfvuHyxg ,,,

• This is called correlation, denoted g = H ⊗ f
• The result of applying mask H to the whole image

• Filtering an image: replace each pixel with a linear
combination of its neighbors

• The filter kernel or mask H is gives the weights in linear
combination

Smoothing by Averaging

original filtered

• What if the mask is larger than 3x3 ?

• Pictorial representation of box filter:
• white means large value, black means low value

Effect of Average Filter

7 × 7

9 × 9

11 × 11

Gaussian noise Salt and Pepper noise

Gaussian Filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• Nearest neighboring pixels to have the most influence
• helps to lessen the effect of boundary smoothing

This kernel H is an
approximation of a 2d

Gaussian function:

H[u,v] f(x,y)

16
1

Gaussian Filters: Mask Size
• Gaussian has infinite domain, discrete filters use finite mask

• set mask size to exclude non-useful (effectively zero) weights

σ = 5 with 30 x 30 mask σ = 5 with 10 x 10 mask

blue weights
are so small
they are
effectively 0

Gaussian filters: Variance
• Variance (σ) contributes to the extent of smoothing

• larger σ gives less rapidly decreasing weights
• can construct a larger mask with non-negligible weights

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel σ = 8 with 30 x 30 kernel

Matlab

>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’, hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation
>> imshow(outim);

outim im

Average vs. Gaussian Filter

mean filter Gaussian filter

More Average vs. Gaussian Filter
mean filter Gaussian filter

5 × 5

15 × 15

31 × 31

Gaussian Filter with different Ϭ

Ϭ=3 Ϭ=10 Ϭ=20

original image

corrupted by
noise Ϭ = 10

corrupted by
noise Ϭ = 20

corrupted by
noise Ϭ = 30

filtered with different Ϭ

Boundary Issues
• What is the size of the output?
• MATLAB: output size / “shape” options

• shape = ‘full’: output size is sum of sizes of f and g
• shape = ‘same’: output size is same as f

• shape = ‘valid’: output size is difference of sizes of f and g

f

g g

g g

f

g g

g g

f

g g

g g

full same valid

Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate image

clip filter (black) copy edge

reflect across edge wrap around

Properties of Smoothing Filters

• Values positive
• Sum to 1

• constant regions same as input
• overall image brightness stays unchanged

• Amount of smoothing proportional to mask size
• larger mask means more extensive smoothing

Filtering an Impulse Signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

• What is the result of filtering the impulse signal
(image) with arbitrary kernel H?

H[u,v]

g(x,y)=? f(x,y)

⊗ =

Filtering an Impulse Signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

• What is the result of filtering the impulse signal
(image) with arbitrary kernel H?

H[u,v]

g(x,y)=? f(x,y)

⊗ =
i h g

f e d

c b a

Convolution
• Convolution:

• Flip the mask in both dimensions
• bottom to top, right to left

• Then apply cross-correlation

() [] ()∑ ∑
−= −=

−−=
k

ku

k

kv

vyuxfvuHyxg ,,,

2k+1
-k,-k

k,k

f H H
flipped

• Notation for convolution: g = H*f

Convolution vs. Correlation
• Convolution: g = H*f

() [] ()∑ ∑
−= −=

−−=
k

ku

k

kv

vyuxfvuHyxg ,,,

• Correlation: g = H ⊗ f

() [] ()∑ ∑
−= −=

++=
k

ku

k

kv

vyuxfvuHyxg ,,,

• For Gaussian or box filter, how the outputs differ?
• If the input is an impulse signal, how the outputs differ?

Practice with Correlation Filtering

0 0 0
0 1 0
0 0 0

original

? ⊗ =

Practice with Correlation Filtering

0 0 0
0 1 0
0 0 0

original filtered (no change)

⊗ =

Practice with Correlation Filtering

0 0 0
1 0 0
0 0 0

original

? ⊗ =

Practice with Correlation Filtering

0 0 0
1 0 0
0 0 0

original shifted left
by 1 pixel with
correlation

⊗ =

Practice with Correlation Filtering

Original

?
1 1 1
1 1 1
1 1 1

⊗ =

Practice with Correlation Filtering

original

1 1 1
1 1 1
1 1 1

blur (with a box filter)

⊗ =

Practice with Correlation Filtering

original

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0 - ? ⊗ =

apply one mask
after the other,
or subtract masks
and apply one
resulting mask

-1/9 -1/9 -1/9

-1/9 17/9 -1/9

-1/9 -1/9 -1/9

Practice with Correlation Filtering

original

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0 - ? ⊗ =

 sharpened

Practice with Correlation Filtering

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0 -

⊗ • Why sharpens?

=

+

original f

=
sharpened detail

original f original f

+ -

smoothed

Sharpening Example

before after

Separability

• Sometimes filter is separable, can split into
two steps:
• Convolve all rows with 1D filter
• Convolve all columns with 1D filter

• Both box and Gaussian filters are separable
• Great for efficiency!

Box Filter
0 0 0 0 0 0

0 90 90 90 90 0

0 90 90 90 90 0

0 90 90 90 90 0

0 90 90 90 90 0

0 0 0 0 0 0

0 0 0 0 0 0

0 90 90 90 90 0

0 90 90 90 90 0

0 90 90 90 90 0

0 90 90 90 90 0

0 0 0 0 0 0

H Hc Hr

*H =

0 0 0 0 0 0

0 40 60 60 40 0

0 60 90 90 60 0

0 60 90 90 60 0

0 40 60 60 40 0

0 0 0 0 0 0

*Hc *Hr =

0 0 0 0 0 0

0 60 60 60 60 0

0 90 90 90 90 0

0 90 90 90 90 0

0 60 60 60 60 0

0 0 0 0 0 0

*Hr =

0 0 0 0 0 0

0 40 60 60 40 0

0 60 90 90 60 0

0 60 90 90 60 0

0 40 60 60 40 0

0 0 0 0 0 0

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9
1/3 1/3 1/3

1/3

1/3

1/3
= *

Gaussian Filter: Example

• To convolve image with this:

• First convolve each row with:

• Then each column with:

H

Hc

Hr

Gaussian Filter: Example
• Straightforward convolution with 5×5 kernel

• 25 multiplications, 24 additions per pixel

• Smart convolution
• 10 multiplications, 9 additions per pixel

• Savings are even larger for larger kernels
• for n×n kernel, straightforward convolution is O(n2)

• Smart convolution is O(n) per pixel

Median Filters

• A Median Filter selects median intensity in the window
• No new intensities are introduced
• Median filter preserves sharp details better than mean

filter, it is not so prone to oversmoothing
• Better for salt and pepper, impulse (spiky) noise
• Is a median filter a kind of convolution?

1 2 25

3 24 22

20 21 23

X X X

X 21 X

X X X

Median of {1,2,25,3,24,22,20,21,23} = {1,2,3,20,21,22,23,24,25} is 21

Median Filter
• Median filter is edge preserving

input:

average:

median:

Median filter

row of noisy image

Salt and pepper noise median filtered

row of filtered image

Comparison: Salt and Pepper Noise Image

5 × 5

7 × 7

Gaussian filter median filter

3 × 3

Comparison: Gaussian Noise Image

5 × 5

7 × 7

Gaussian filter median filter

3 × 3

Filtering Fun: Face of Faces

http://www.salle.url.edu/~ftorre/

http://www.salle.url.edu/%7Eftorre/

Salvador Dali, “Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the
portrait of Abraham Lincoln”, 1976

Summary
• Image “noise”
• Linear filters and convolution useful for

• Enhancing images (smoothing, removing noise)
• Box filter
• Gaussian filter
• Impact of scale / width of smoothing filter

• Detecting features (next time)

• Separable filters more efficient
• Median filter: a non-linear filter, edge-preserving

	Slide Number 1
	Outline
	Every Picture Tells a Story
	Origin of Computer Vision: MIT Summer Project
	The problem
	Just Copy Human Visual System?
	Why Computer Vision Matters
	“Early Vision” Problems
	“Mid-level Vision” Problems
	“High-level Vision” Problems
	Vision is inferential: Illumination
	Image Formation
	Sampling and Quantization
	Sensor Array
	Digital Grayscale Image
	Digital Color Image
	Digital Color Image
	Image Filtering
	Filtering for Noise Reduction: Motivation
	Common Types of Noise
	Gaussian Noise Most Commonly Assumed
	Noise Reduction
	First Attempt at a Solution
	Average Filter in 1D
	Average Filter in 1D
	Average Filter in 1D
	Average Filter in 1D
	Average Filter in 1D
	Average Filter in 2D
	Average Filter in 2D
	Average Filter in 2D
	Average Filter in 2D
	Average Filter in 2D
	Average Filter in 2D
	Average Filter in 2D
	Average Filter in 2D
	Average Filter in 2D
	Average Filter in 2D
	Correlation Filtering
	Filtering in 2D
	Correlation filtering
	Smoothing by Averaging
	Effect of Average Filter
	Gaussian Filter
	Gaussian Filters: Mask Size
	Gaussian filters: Variance
	Matlab
	Average vs. Gaussian Filter
	More Average vs. Gaussian Filter
	Gaussian Filter with different Ϭ
	Boundary Issues
	Boundary issues
	Properties of Smoothing Filters
	Filtering an Impulse Signal
	Filtering an Impulse Signal
	Convolution
	Convolution vs. Correlation
	Practice with Correlation Filtering
	Practice with Correlation Filtering
	Practice with Correlation Filtering
	Practice with Correlation Filtering
	Practice with Correlation Filtering
	Practice with Correlation Filtering
	Practice with Correlation Filtering
	Practice with Correlation Filtering
	Practice with Correlation Filtering
	Sharpening Example
	Separability
	Box Filter
	Gaussian Filter: Example
	Gaussian Filter: Example
	Median Filters
	Median Filter
	Median filter
	Comparison: Salt and Pepper Noise Image
	Comparison: Gaussian Noise Image
	Filtering Fun: Face of Faces
	Slide Number 78
	Summary

