
Some slides are from S. Seitz, S. Narasimhan, K. Grauman

CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 11
Computer Vision

Stereo

Outline
• Cues for 3D reconstruction
• Stereo Cues
• Stereo Reconstruction

1) camera calibration and rectification
• an easier, mostly solved problem

2) stereo correspondence
• a harder problem

2D Images
• Depth is inherently ambiguous from a single view

P

X ?

Y ?

Z ?

2D Images
• World is 3D
• In 2D images, depth (the third coordinate) is largely lost

• includes human retina

Street Pavement Art
• Viewed from the “right” side

Street Pavement Art
• Viewed from the “wrong” side

Babies and Animals Perceive Depth

The Visual Cliff, by William Vandivert, 1960

• Yet we perceive the world in 3D

3D Shape from Images
• What image cues provide 3D information?
• Cues from a single image
• Cues from multiple images

• Motion cues
• Stereo cues

• Can we use these cues in a computer vision
system?

Single Image 3D Cues: Shading

Merle Norman Cosmetics, Los Angeles

• Pixels covered by shadow are perceived to be further away

Single Image 3D Cues: Linear Perspective
• The further away are parallel lines, the closer they come together

Single Image 3D Cues: Relative Size
• If objects have the same size, those further away appear smaller

Single Image 3D Cues: Texture
• Further away texture appears finer (smaller scale)

Single Image 3D Cues: Known Size
• Ducks are smaller than elephants, duck is closer

Illusions: Linear Perspective + Relative Size

Illusions: Linear Perspective + Relative Size

Illusions: Ames Room

Cues from Multiple Image: Motion Parallax

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html

• Closer objects appear to move more than further away objects

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html

3D Shape from X
• X = shading, texture, motion, ...
• We will focus on stereo

• depth perception from two stereo images

Why Two Eyes? Cylopes?

Why Two Eyes?
• Charles Wheatstone first explained stereopsis in 1838

left image

(x,y)

3D Scene

right eye left eye

 right image

(x-d,y)

Why Two Eyes?
• Disparity d is the difference in x coordinates of corresponding points

left image

(x,y)

3D Scene

right eye left eye

 right image

(x-d,y)

Stereoscopes
• Wheatstone invented the first stereoscope

Anaglyph Images
• Encodes left and right image

into a single picture
• left eye image is transferred

to the red channel
• right eye image to the

green+blue = cyan channel

• Red filter lets through only
the left image

• Cyan filter lets through only
theright eye image

• Brain fuses into 3D
• Similar technology for 3D

movies
• Works for most of us

What is Needed for Stereopsis?
• Need monocular cues for stereopsis? Need object cues?

Answered by Julesz in 1960
• Image with no monocular cues and no recognizable

objects: random dots

Need Object Recognition for Stereopsis?
• Answered by Julesz in 1960
• Make a copy of it

Need Object Recognition for Stereopsis?
• Answered by Julesz in 1960
• Select a square

Need Object Recognition for Stereopsis?
• Answered by Julesz in 1960
• Copy square the right image, shifting by d to the left

• random dot stereogram

Need Object Recognition for Stereopsis?
• Answered by Julesz in 1960
• Random dot stereogram
• Humans perceive square floating in front of background

3D Shape from Stereo
• Use two cameras instead of two eyes

left image

(x,y)

3D Scene

right camera left camera

 right image

(x-d,y)

Stereo System

3D scene point

optical center
left camera

optical center
right camera

• Unlike eyes, usually stereo cameras are not on the same plane
• better numerical stability

Stereo System: Triangulation

• Depth by triangulation
• given two corresponding points in the left and right image
• cast the rays through the optical camera centers
• ray intersection is the corresponding 3D world point P
• depth of P is based on camera positions and parameters

• Triangulation ideas can be traced to ancient Greece

3D scene point P

optical center
left camera

optical center
right camera

document from 1533

What is needed for Triangulation

1. Distance between cameras, camera focal length
• Solved through camera calibration, essentially a solved problem
• We will not talk about it
• Code available on the web

• OpenCV http://www.intel.com/research/mrl/research/opencv/
• Matlab, J. Bouget http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
• Zhengyou Zhang http://research.microsoft.com/~zhang/Calib/

2. Pairs of corresponding pixels in left and right images
• Called stereo correspondence problem, still much researched

http://www.intel.com/research/mrl/research/opencv/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://research.microsoft.com/%7Ezhang/Calib/

Formula: Depth from Disparity

f
xl xr

baseline B

Cl Cr

P = (X,Y,Z)

Z

• Top down view on geometry (slice through XZ plane)
• from camera calibration, know the distance between camera optical

centers called baseline B, and camera focal length f

left optical
center

right optical
center

X

left image
point

right image
point

f

Z

Formula: Depth from Disparity
• Height to base ratio of triangle Cl P Cr :

f
xl xr

baseline B

Cl Cr

P = (X,Y,Z)

Z

left optical
center

right optical
center

X

left image
point

right image
point

f

Z

Z
B

Formula: Depth from Disparity

f
xl xr

baseline B

Cl Cr

P = (X,Y,Z)

Z

left optical
center

right optical
center

X

left image
point

right image
point

f

Z

• xl is positive, xr is negative

Z - f
B - xl + xr

• Height to base ratio of triangle xl P xr :

Formula: Depth from Disparity
• Cl P Cr and ∆ xl P xr are similar:

f
xl xr

baseline B

Cl Cr

P = (X,Y,Z)

Z

left optical
center

right optical
center

X

left image
point

right image
point

f

Z

Z
B

Z - f
B - xl + xr

=

Formula: Depth from Disparity
• Rewriting:

f
xl xr

baseline B

Cl Cr

P = (X,Y,Z)

Z

left optical
center

right optical
center

X

left image
point

right image
point

f

Z

Z B⋅ f
xl - xr

=

• xl - xr is the disparity

Stereo Correspondence: Epipolar Lines
• Which pairs of pixels correspond to the same scene element ?

• Epipolar constraint
• Given a left image pixel, the corresponding pixel in the right image must

lie on a line called the epipolar line
• reduces correspondence to 1D search along conjugate epipolar lines
• demo: http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

optical center
left camera

optical center
right camera

http://www.ai.sri.com/%7Eluong/research/Meta3DViewer/EpipolarGeo.html

Stereo Rectification
• Epipolar lines can be computed from camera calibration

• Usually they are not horizontal
 • Can rectify stereo pair to make epipolar lines horizontal

Stereo Correspondence

• From now on assume stereo pair is rectified
• How to solve the correspondence problem?
• Corresponding pixels should be similar in intensity

• or color, or something else

left image right image

(x,y) (x-d,y)

Difficulties in Stereo Correspondence
• Image noise

• corresponding pixels have similar, but not exactly the same
intensities

left image patch right image patch

 90

• Matching each pixel individually is unreliable

 98 90

Difficulties in Stereo Correspondence
• Especially in regions with (almost) constant intensity

? ? ?

• Matching each pixel individually is unreliable

Window Matching Correspondence

• Use a window (patch) of pixels
• more likely to have enough intensity variation to form a distinguishable

pattern
• also more robust to noise

Window Matching Correspondence

• Use a window (patch) of pixels
• more likely to have enough intensity variation to form a distinguishable

pattern
• also more robust to noise

Window Matching: Basic Algorithm

• for each epipolar line
• for each pixel p on the left line

• compare window around p with same window shifted to
many right window locations on corresponding epipolar line

• pick location corresponding to the best matching window

Which Locations to Try?

• Disparity cannot be negative
• Maximum possible disparity is limited by the camera setup

• assume we know maxDisp
• Disparity can range from 0 to maxDisp

• consider only (x,y), (x-1,y),…(x-maxDisp,y) in the right image

(x,y) (x,y) (x-1,y) (x-maxDisp,y)

Window Matching Cost

• How to define the best matching window?
• Define window cost

• sum of squared differences (SSD)
• or sum of absolute differences (SAD)
• many other possibilities

• Pick window of best (smallest) cost

SSD Window Cost

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

() () ()
() () ()
() () () 124546465564656

4477474747
4446464446

222

222

222

=−+−+−
+−+−+−
+−+−+−

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

() () ()
() () ()
() () () 124546465564656

4477474747
4446464446

222

222

222

=−+−+−
+−+−+−
+−+−+−

• This shift corresponds to disparity 0

Algorithm with SSD Window Cost

() () ()
() () ()
() () () 642554646565656

7477474747
64444464646

222

222

222

=−+−+−
+−+−+−
+−+−+−

Algorithm with SSD Window Cost

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

• This shift corresponds to disparity 1

Algorithm with SSD Window Cost

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

• This shift corresponds to disparity 2

() () ()
() () ()
() () () 8464656565856

474747474747
444446464846

222

222

222

=−+−+−
+−+−+−
+−+−+−

Algorithm with SSD Window Cost
3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

• Best SSD window cost is 8 at disparity 2
• Red pixel is assigned disparity 2
• Repeat this for all image pixels

12454 6425 8

Correspondence with SSD Matching

disparity

SS
D

co
st

• Unique best cost location

Compare to One Pixel “Window”

disparity

SS
D

co
st

• No unique best cost location

SAD Window Cost

1 1 10

1 1 10

1 1 19

• SSD is fragile to outliers
 1 1 10

1 1 10

1 1 99

SSD cost = 802 = 6400

1 1 10

1 1 10

1 1 19

31 31 31

31 31 31

31 31 29

SSD cost = 6384

• SAD (Sum of Absolute Differences) is more robust

1 1 10

1 1 10

1 1 19

1 1 10

1 1 10

1 1 99

SAD cost = 80

1 1 10

1 1 10

1 1 19

31 31 31

31 31 31

31 31 29

SAD cost = 232

best

best

Window Matching Efficency
• Suppose

• image has n pixels
• matching window is 11 by 11

• Need 11⋅11 = 121 additions and multiplications to
compute one window cost

• Multiply that by number of locations to check
(maxDisp+1)

• Multiply that by n image pixels
• 121 ⋅ n ⋅(maxDisp+1)
• Tooooo sloooow

• gets worse for larger windows
• Can get cost down to n ⋅(maxDisp+1) with integral images

Speedups: Integral Image
• Given image f(x,y), the integral image I(x,y) is the sum of values

in f(x,y) to the left and above (x,y), including (x,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

0 0 0 5 10

0 0 5 15 25

0 5 15 30 50

5 15 30 55 75

10 25 50 75 95

I(x,y)

• Example: I(2,2) = 0 + 0 + 0 + 0 + 0 + 5 + 0 + 5 + 5 = 15
• indexing starts at 0 in this example

Speedups: Integral Image
• Given image f(x,y), the integral image I(x,y) is the sum of values

in f(x,y) to the left and above (x,y), including (x,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

0 0 0 5 10

0 0 5 15 25

0 5 15 30 50

5 15 30 55 75

10 25 50 75 95

I(x,y)

• Example: I(4,1) = 0 + 0 + 0 + 5 + 5 + 0 + 0 +5 + 5 + 5 = 25

• Suppose computed integral image up to location (x,y)

Efficiently Computing Integral Image

I(x,y) = f(x,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y) I(x,y)

+

• Suppose computed integral image up to location (x,y)

Efficiently Computing Integral Image

I(x,y) = f(x,y) + I(x-1,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y) I(x,y)

+ + +
+ +
+ +
+ +

• Suppose computed integral image up to location (x,y)

Efficiently Computing Integral Image

I(x,y) = f(x,y) + I(x-1,y) + I(x,y-1)

 0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y) I(x,y)

+ + +
+ +
+ +
+ +

+
+
+

+
+
+

+
+
+

• Suppose computed integral image up to location (x,y)

Efficiently Computing Integral Image

I(x,y) = f(x,y) + I(x-1,y) + I(x,y-1) - I(x-1,y-1)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y) I(x,y)

+ + +
+ +
+ +
+ +

+
+
+

+
+
+

+
+
+

_
_
_

_
_
_

Integral Image: Order of Computation

I(x,y)

• Convenient order of computation
1. first row
2. first column
3. the rest in row-wise fashion

 1 2 3 4 5

6

7

8

9

10 11 12 13

14 15 16 17

18 19 20 21

22 23 24 25

Using Integral Image
• After computed integral image, sum over any rectangular

window is computed with four operations
• Top left corner (x1,y1) and bottom right corner (x2,y2)

I(x,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

I(x2,y2)

+ +
+ +
+ +
+ +

+ +
+ +
+ +
+ +

+
+
+
+

Using Integral Image
• After computed integral image, sum over any rectangular

window is computed with four operations
• Top left corner (x1,y1) and bottom right corner (x2,y2)

I(x2,y2) - I(x1-1,y2)

I(x,y)

+ +
+ +
+ +
+ +

+ +
+ +
+ +
+ +

-
-
-
-

+
+
+
+ 0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

-
-
-
-

Using Integral Image
• After computed integral image, sum over any rectangular

window is computed with four operations
• Top left corner (x1,y1) and bottom right corner (x2,y2)

I(x2,y2) - I(x1-1,y2) - I(x2,y1-1)

- - - - 0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y) I(x,y)

+ +
+ +
+ +
+ +

+ +
+ +
+ +
+ +

-
-
-
-

+
+
+
+

-
-
-
- -

- - - - -

Using Integral Image
• After computed integral image, sum over any rectangular

window is computed with four operations
• Top left corner (x1,y1) and bottom right corner (x2,y2)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

I(x2,y2) - I(x1-1,y2) - I(x2,y1-1) + I(x1-1,y1-1)

- - - -

I(x,y)

+ +
+ +
+ +
+ +

+ +
+ +
+ +
+ +

-
-
-
-

+
+
+
+

-
-
-
- - + +
+ + - - - - -

Using Integral Image
• After computed integral image, sum over any rectangular

window is computed with four operations
• Top left corner (x1,y1) and bottom right corner (x2,y2)

I(x2,y2) - I(x1-1,y2) - I(x2,y1-1) + I(x1-1,y1-1)

0 0 0 5 10

0 0 5 15 25

0 5 15 30 50

5 15 30 55 75

10 25 50 75 95

I(x,y)

0 0 0 5 5

0 0 5 5 5

0 5 5 5 10

5 5 5 10 0

5 5 10 0 0

f(x,y)

• Example 5 + 5 +10 + 5 + 10 + 0 = 75 -15 - 25 + 0 = 35

Inefficient Window Matching (SAD cost)
• for each pixel p

• for every disparity d
• compute cost between window around p in the left image

and the same window shifted by d in the right image
• pick d corresponding to the best matching window

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

256 186 4

Integral Image for Window Matching
• For each disparity d need to compute window cost for all pixels,

eventually
• For example, pick disparity d = 1

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

Integral Image for Window Matching
• Old inefficient algorithm:

• for each pixel p
• for every disparity d

• compute cost between window around p in the left image
and the same window shifted by d in the right image

• pick d corresponding to the best matching window

• New efficient algorithm:
• for each disparity d

• for every pixel p
• compute cost between window around p in the left image

and the same window shifted by d in the right image
• pick d corresponding to the best matching window

use integral image

swap

Integral Image for Window Matching
• Suppose current disparity is d = 1

• Overlay left and right image at disparity 1
• Compute AD (absolute difference) between every overlaid

pair of pixels
• Compute SAD in a window for every pixel

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

left image right image

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

left image right image

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

2 1 0 2 2 2

3 3 3 0 2 4

39 0 0 43 0 1

39 0 2 38 5 2

40 0 0 40 2 2

51 0 10 41 0 1

1 0 3 3 1 1

AD image for disparity 1

Integral Image for Window Matching
• current

disparity
is d = 1

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

left image right image

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

0 2 1 0 2 2 2

0 3 3 3 0 2 0

0 39 0 0 43 0 0

0 39 0 2 38 5 0

0 40 0 0 40 2 0

0 51 0 10 41 0 0

0 1 0 3 3 1 0

AD image for disparity 1

Integral Image for Window Matching
• current

disparity
is d = 1

• Pad AD
image
with zeros

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

• current
disparity
is d = 1

Integral Image for Window Matching
left image right image

 AD image for disparity 1

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

0 2 1 0 2 2 2

0 3 3 3 0 2 0

0 39 0 0 43 0 0

0 39 0 2 38 5 0

0 40 0 0 40 2 0

0 51 0 10 41 0 0

0 1 0 3 3 1 0

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

• current
disparity
is d = 1

left image right image

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

Integral Image for Window Matching

 AD image for disparity 1

0 2 1 0 2 2 2

0 3 3 3 0 2 0

0 39 0 0 43 0 0

0 39 0 2 38 5 0

0 40 0 0 40 2 0

0 51 0 10 41 0 0

0 1 0 3 3 1 0

3 5 4 4 2 4 2

7 4 1 4 4 2 6

46 46 46 3 6 6 7

48 46 44 6 4 9 7

47 47 47 7 4 2 4

58 56 46 5 6 6 7

3 4 4 1 4 3 2

3 5 4 4 2 4 2

7 4 1 4 4 2 6

2 7 46 46 46 6 7

5 9 46 46 44 9 7

4 7 47 47 47 2 4

4 7 56 56 46 6 7

3 4 4 1 4 3 2

• current
disparity
is d = 1

Integral Image for Window Matching
left image right image

 AD image for disparity 1

0 2 1 0 2 2 2

0 3 3 3 0 2 0

0 39 0 0 43 0 0

0 39 0 2 38 5 0

0 40 0 0 40 2 0

0 51 0 10 41 0 0

0 1 0 3 3 1 0

• Current disparity is 1
• For each window pixel, have to

compute window sums in AD image
• Apply integral image to AD image

AD image for disparity 1

Integral Image for Window Matching

0 2 1 0 2 2 2

0 3 3 3 0 2 0

0 39 0 0 43 0 0

0 39 0 2 38 5 0

0 40 0 0 40 2 0

0 51 0 10 41 0 0

0 1 0 3 3 1 0

 for every pixel p do
 bestDisparity[p] = 0
 bestWindCost[p] = HUGE

 for disparity d = 0, 1,…, maxD do
 overlay images at disparity d
 compute AD image for disparity d
 compute Integral image from AD image

for every pixel p do
 currentCost = window cost at pixel p, computed from integral image
 if currentCost < bestWindCost[p]
 bestWindCost[p] = currentCost
 bestDisparity[p] = d

 return bestDisparity

Efficient Algorithm for Window Matching

2 1 0 2 2 2

3 3 3 0 4 0

39 0 0 43 1 0

39 0 2 38 2 0

40 0 0 40 2 0

51 0 10 41 0 0

1 0 3 3 1 0

 AD image for disparity 1

Effect of Window size

left image right image true disparities
bright means larger disparity

3x3 window 7x7 window 15x15 window

Effect of Window size: Low Texture Area

left image 0 5 10 15
0

50

100

150

200

250

3x3
7x7

15x15

disparity
w

in
do

w
 co

st

• windows of size 3x3 and 7x7 are too small to have a
distinct pattern
• no clearly best disparity

• window of size 15x15 is large enough to have a
distinct pattern
• 7 is clearly the best disparity

• window has to be large enough

0 5 10 15
0

5

10

15

20

Effect of Window size: Near Discontinuities

left image

3x3
7x7

15x15

disparity

w
in

do
w

 co
st

• central pixel (the one we are matching) is the lamp
• windows of size 3x3 and 7x7 contain mostly the lamp
• window of size 15x15 contains mostly the wall

• we match the wall instead of the lamp!

• window must be small enough to contain mostly the
same object as the central pixel

Effect of Window size
• No single window size is ‘perfect’ for the image
• Smaller window

• works better around object boundaries
• noisy results in low texture areas

• Larger window
• better results in low texture areas
• does not preserve object boundaries well

• Adaptive window algorithms exist [Veksler’2001]

Better Stereo Algorithms

State of the art method
[Boykov, Veksler, Zabih, 2001]

ground truth

• Formulate stereo as energy minimization
• Recall binary object/background segmentation problem

object

background

Better Stereo Algorithms

ground truth

• Stereo is multi-label segmentation problem
• region 0 = label 0 “likes” disparity 0
• region 1 = label 1 “likes” disparity 1
• …
• region maxDisp = label maxDisp “likes” disparity maxDisp

disp 0
disp 1

disp 2

disp 4

Stereo with Graph Cuts

• Energy Function
• Data Term: assign each pixel disparity label it likes
• Smoothness Term: count number of label (disparity)

discontinuities

AD 5
 data term for label 5

AD 8
 data term for label 8

AD 10
 data term for label 10

AD 14
 data term for label 14

• Solved with Graph Cuts: iteratively cuts out
regions corresponding to disparities

• NP-hard with more than 2 labels, but
computes a good approximation

Stereo with Graph Cuts
• Start with everything as label (disparity) 0

Stereo with Graph Cuts
• “Cut out” label (disparity) 1

Stereo with Graph Cuts
• “Cut out” label (disparity) 2

Stereo with Graph Cuts
• “Cut out” label (disparity) 3

Stereo with Graph Cuts
• “Cut out” label (disparity) 4

Stereo with Graph Cuts
• “Cut out” label (disparity) 5

Stereo with Graph Cuts
• “Cut out” label (disparity) 6

Multiple Artificial Eyes
• Two eyes better than one → three eyes better than two → four

eyes better than three → … → the more, the better

Common Folk New that Already

Stereo with Structured Light

• Project “structured” light patterns onto the object
• Simplifies correspondence problem
• Need one camera and one projector

camera

projector

Stereo with Structured Light
• Triangulate between camera and projector

Kinect: Structured Infrared Light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

Laser Scanning

• Optical triangulation
• Project a single stripe of laser light
• Scan it across the surface of the object
• This is a very precise version of structured light scanning

Digital Michelangelo Project
Levoy et al.

http://graphics.stanford.edu/projects/mich/

http://graphics.stanford.edu/projects/mich/

Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Numerous Applications

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

• Autonomous navigation

http://www.frc.ri.cmu.edu/projects/meteorobot/index.html
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Novel View Synthesis

 input image (1 of 2)
 [Szeliski & Kang ‘95]

 depth map 3D rendering

Applications: Video View Interpolation
http://research.microsoft.com/users/larryz/videoviewinterpolation.htm

http://research.microsoft.com/users/larryz/videoviewinterpolation.htm

Stereo Correspondence

• Steps:

• Calibrate cameras
• Rectify images
• Stereo correspondence
• Apply depth/disparity formula

• Stereo correspondence is still heavily researched
• The simple window matching algorithm we studied is

heavily used in practice due to speed and simplicity
• Popular Benchmark

http://www.middlebury.edu/stereo

	Slide Number 1
	Outline
	2D Images
	2D Images
	Street Pavement Art
	Street Pavement Art
	Babies and Animals Perceive Depth
	3D Shape from Images
	Single Image 3D Cues: Shading
	Single Image 3D Cues: Linear Perspective
	Single Image 3D Cues: Relative Size
	Single Image 3D Cues: Texture
	Single Image 3D Cues: Known Size
	Illusions: Linear Perspective + Relative Size
	Illusions: Linear Perspective + Relative Size
	Illusions: Ames Room
	Cues from Multiple Image: Motion Parallax
	3D Shape from X
	Why Two Eyes? Cylopes?
	Why Two Eyes?
	Why Two Eyes?
	Stereoscopes
	Anaglyph Images
	What is Needed for Stereopsis?
	Need Object Recognition for Stereopsis?
	Need Object Recognition for Stereopsis?
	Need Object Recognition for Stereopsis?
	Need Object Recognition for Stereopsis?
	3D Shape from Stereo
	Stereo System
	Stereo System: Triangulation
	What is needed for Triangulation
	Formula: Depth from Disparity
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Stereo Correspondence: Epipolar Lines
	Stereo Rectification
	Stereo Correspondence
	Difficulties in Stereo Correspondence
	Difficulties in Stereo Correspondence
	Window Matching Correspondence
	Window Matching Correspondence
	Window Matching: Basic Algorithm
	Which Locations to Try?
	Window Matching Cost
	SSD Window Cost
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Correspondence with SSD Matching
	Compare to One Pixel “Window”
	Slide Number 55
	Window Matching Efficency
	Speedups: Integral Image
	Speedups: Integral Image
	Efficiently Computing Integral Image
	Efficiently Computing Integral Image
	Efficiently Computing Integral Image
	Efficiently Computing Integral Image
	Integral Image: Order of Computation
	Using Integral Image
	Using Integral Image
	Using Integral Image
	Using Integral Image
	Using Integral Image
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Effect of Window size
	Effect of Window size: Low Texture Area
	Effect of Window size: Near Discontinuities
	Effect of Window size
	Better Stereo Algorithms
	Better Stereo Algorithms
	Stereo with Graph Cuts
	Stereo with Graph Cuts
	Stereo with Graph Cuts
	Stereo with Graph Cuts
	Stereo with Graph Cuts
	Stereo with Graph Cuts
	Stereo with Graph Cuts
	Stereo with Graph Cuts
	Multiple Artificial Eyes
	Common Folk New that Already
	Stereo with Structured Light
	Stereo with Structured Light
	Kinect: Structured Infrared Light
	Laser Scanning
	Laser Scanned Models
	Laser Scanned Models
	Numerous Applications
	Novel View Synthesis
	Applications: Video View Interpolation
	Stereo Correspondence

