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Outline 
• Cues for 3D reconstruction 
• Stereo Cues 
• Stereo Reconstruction 

1) camera calibration and rectification  
• an easier, mostly solved problem 

2) stereo correspondence  
• a harder problem 

 



2D Images 
• Depth is inherently ambiguous from a single view 

P 

X ? 

Y ? 

Z ? 



2D Images 
• World is 3D 
• In 2D images, depth (the third coordinate) is largely lost 

• includes human retina 



Street Pavement Art 
• Viewed from the “right” side 



Street Pavement Art 
• Viewed from the “wrong” side 



Babies and Animals Perceive Depth 

The Visual Cliff, by William Vandivert, 1960 

• Yet we perceive the world in 3D 



3D Shape from Images 
• What image cues provide 3D information? 
• Cues from a single image 
• Cues from multiple images 

• Motion cues 
• Stereo cues 

• Can we use these cues in a computer vision 
system? 

 
 

 
 



Single Image 3D Cues: Shading 

Merle Norman Cosmetics, Los Angeles 

• Pixels covered by shadow are perceived to be further away 
 
 

 
 
 
 
 



Single Image 3D Cues: Linear Perspective 
• The further away are parallel lines, the closer they come together 

 
 

 
 
 
 
 



Single Image 3D Cues: Relative Size 
• If objects have the same size, those further away appear smaller 

 
 

 
 
 
 
 



Single Image 3D Cues: Texture 
• Further away texture appears finer (smaller scale) 
 
 
 
 



Single Image 3D Cues: Known Size 
• Ducks are smaller than elephants, duck is closer 
 
 
 
 



Illusions:  Linear Perspective + Relative Size 



Illusions:  Linear Perspective + Relative Size 



Illusions: Ames Room 



Cues from Multiple Image: Motion Parallax 

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html 

• Closer objects appear to move more than further away objects  
 
 

 
 
 
 
 

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html


3D Shape from X 
• X = shading, texture, motion, ... 
• We will focus on stereo 

• depth perception from two stereo images 

 



Why Two Eyes? Cylopes? 



Why Two Eyes? 
• Charles Wheatstone first explained stereopsis in 1838 

left image 

(x,y) 

3D Scene 

right eye left eye 

 right image 

(x-d,y) 



Why Two Eyes? 
• Disparity  d  is the difference in x coordinates of corresponding points 

left image 

(x,y) 

3D Scene 

right eye left eye 

 right image 

(x-d,y) 



Stereoscopes  
• Wheatstone invented the first stereoscope 

 
 

 
 
 
 
 



Anaglyph Images 
• Encodes left and right image 

into a single picture 
• left eye image is transferred 

to the red channel 
• right eye image to the 

green+blue = cyan channel 

• Red filter lets through only 
the left image 

• Cyan filter lets through only 
theright eye image 

• Brain fuses into 3D 
• Similar technology for 3D 

movies 
• Works for most of us 

 
 



What is Needed for Stereopsis?  
• Need monocular cues for stereopsis? Need object cues?  

Answered by Julesz in 1960 
• Image with no monocular cues and no recognizable 

objects:  random dots 
 

 
 
 
 
 



Need Object Recognition for Stereopsis?  
• Answered by Julesz in 1960 
• Make a copy of it 

 
 
 
 
 
 



Need Object Recognition for Stereopsis?  
• Answered by Julesz in 1960 
• Select a square 

 
 
 
 
 
 



Need Object Recognition for Stereopsis?  
• Answered by Julesz in 1960 
• Copy square the right image, shifting by d to the left 

• random dot stereogram 

 
 
 
 
 
 



Need Object Recognition for Stereopsis?  
• Answered by Julesz in 1960 
• Random dot stereogram 
• Humans perceive square  floating in front of background 

 
 
 
 
 
 



3D Shape from Stereo 
• Use two cameras instead of two eyes 

 
 
 
 
 
 

left image 

(x,y) 

3D Scene 

right camera left camera 

 right image 

(x-d,y) 



Stereo System 

3D scene point 

optical center 
left camera 

optical center 
right camera 

• Unlike eyes, usually stereo cameras are not on the same plane 
• better numerical stability 



Stereo System: Triangulation 

• Depth by triangulation 
• given two corresponding points in the left and right image 
• cast the rays through the optical camera centers 
• ray intersection is the corresponding 3D world point P 
• depth of P  is based on camera positions and parameters 

• Triangulation ideas can be traced to ancient Greece 

 

3D scene point  P 

optical center 
left camera 

optical center 
right camera 

document from 1533  



What is needed for Triangulation 

1. Distance between cameras, camera focal length 
• Solved through camera calibration, essentially a solved problem 
• We will not talk about it 
• Code available on the web 

• OpenCV   http://www.intel.com/research/mrl/research/opencv/ 
• Matlab, J. Bouget http://www.vision.caltech.edu/bouguetj/calib_doc/index.html 
• Zhengyou Zhang   http://research.microsoft.com/~zhang/Calib/  

2. Pairs of corresponding pixels in left and right images 
• Called stereo correspondence problem, still much researched 

 

http://www.intel.com/research/mrl/research/opencv/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://research.microsoft.com/%7Ezhang/Calib/


Formula: Depth from Disparity 

f 
xl xr 

baseline B 

Cl Cr 

P = (X,Y,Z) 

Z 

• Top down view on geometry (slice through XZ plane) 
• from camera calibration, know  the distance between camera optical 

centers called baseline B, and camera focal length f 

left optical 
center 

right optical 
center 

X 

left image 
point 

right image 
point 

f 

Z 



Formula: Depth from Disparity 
• Height to base ratio of triangle  Cl P Cr : 

 

f 
xl xr 

baseline B 

Cl Cr 

P = (X,Y,Z) 

Z 

left optical 
center 

right optical 
center 

X 

left image 
point 

right image 
point 

f 

Z 

Z 
B 



Formula: Depth from Disparity 

f 
xl xr 

baseline B 

Cl Cr 

P = (X,Y,Z) 

Z 

left optical 
center 

right optical 
center 

X 

left image 
point 

right image 
point 

f 

Z 

• xl  is positive, xr is negative 
 

Z - f 
B - xl + xr 

• Height to base ratio of triangle  xl P xr : 
 



Formula: Depth from Disparity 
• Cl P Cr  and ∆ xl P xr are similar: 

 

f 
xl xr 

baseline B 

Cl Cr 

P = (X,Y,Z) 

Z 

left optical 
center 

right optical 
center 

X 

left image 
point 

right image 
point 

f 

Z 

Z 
B 

Z - f 
B - xl + xr 

= 



Formula: Depth from Disparity 
• Rewriting: 

 

f 
xl xr 

baseline B 

Cl Cr 

P = (X,Y,Z) 

Z 

left optical 
center 

right optical 
center 

X 

left image 
point 

right image 
point 

f 

Z 

Z  B⋅ f 
xl - xr 

= 

• xl - xr is the  disparity 
 



Stereo Correspondence: Epipolar Lines 
• Which pairs of pixels correspond to the same scene element ? 

 

• Epipolar constraint 
• Given a left image pixel, the corresponding pixel in the right image must 

lie on a line called the epipolar line 
• reduces correspondence to 1D search along conjugate epipolar lines 
• demo:   http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html  

 

optical center 
left camera 

optical center 
right camera 

http://www.ai.sri.com/%7Eluong/research/Meta3DViewer/EpipolarGeo.html


Stereo Rectification 
• Epipolar lines can be computed from camera calibration 

 

• Usually they are not horizontal 
 • Can rectify stereo pair to make epipolar lines horizontal 



Stereo Correspondence 

 
• From now on assume stereo pair is rectified 
• How to solve the correspondence problem? 
• Corresponding pixels should be similar in intensity 

• or color, or something else 
 

left image right image 

(x,y) (x-d,y) 



Difficulties in Stereo Correspondence 
• Image noise 

• corresponding pixels have similar, but not exactly the same 
intensities 

left image patch right image patch 

 90 

• Matching each pixel individually is  unreliable 

 98  90 



Difficulties in Stereo Correspondence 
• Especially in regions with (almost) constant intensity 

? ? ? 

• Matching each pixel individually is unreliable 



Window Matching Correspondence 

• Use a window (patch) of pixels 
• more likely to have enough intensity variation to form a distinguishable 

pattern   
• also more robust to noise 

 



Window Matching Correspondence 

• Use a window (patch) of pixels 
• more likely to have enough intensity variation to form a distinguishable 

pattern   
• also more robust to noise 

 



Window Matching: Basic Algorithm 

• for each epipolar line 
• for each pixel p on the left line 

• compare window around p with same window shifted to 
many right window locations on corresponding epipolar line 

• pick location corresponding to the best matching window 



Which Locations to Try? 

• Disparity cannot be negative 
• Maximum possible disparity is limited by the camera setup 

• assume we know maxDisp 
• Disparity can range from 0 to maxDisp 

• consider only  (x,y), (x-1,y),…(x-maxDisp,y) in the right image 

(x,y) (x,y) (x-1,y) (x-maxDisp,y) 



Window Matching Cost 

• How to define the best matching window? 
• Define window cost 

• sum of squared differences (SSD) 
• or sum of absolute differences (SAD) 
• many other possibilities 

• Pick window of best (smallest) cost 



SSD Window Cost 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

2 7 46 46 46 6 7 

5 9 46 46 44 9 7 

4 7 47 47 47 2 4 

4 7 56 56 46 6 7 
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3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

2 7 46 46 46 6 7 

5 9 46 46 44 9 7 

4 7 47 47 47 2 4 

4 7 56 56 46 6 7 

3 4 4 1 4 3 2 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

46 46 46 3 6 6 7 

48 46 44 6 4 9 7 

47 47 47 7 4 2 4 
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• This shift corresponds to disparity 0 

Algorithm with SSD Window Cost 
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Algorithm with SSD Window Cost 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

2 7 46 46 46 6 7 

5 9 46 46 44 9 7 

4 7 47 47 47 2 4 

4 7 56 56 46 6 7 

3 4 4 1 4 3 2 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

46 46 46 3 6 6 7 

48 46 44 6 4 9 7 

47 47 47 7 4 2 4 

58 56 46 5 6 6 7 

3 4 4 1 4 3 2 

left image right image 

• This shift corresponds to disparity 1 



Algorithm with SSD Window Cost 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

2 7 46 46 46 6 7 

5 9 46 46 44 9 7 

4 7 47 47 47 2 4 

4 7 56 56 46 6 7 

3 4 4 1 4 3 2 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

46 46 46 3 6 6 7 

48 46 44 6 4 9 7 

47 47 47 7 4 2 4 

58 56 46 5 6 6 7 

3 4 4 1 4 3 2 

left image right image 

• This shift corresponds to disparity 2 
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Algorithm with SSD Window Cost 
3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

2 7 46 46 46 6 7 

5 9 46 46 44 9 7 

4 7 47 47 47 2 4 

4 7 56 56 46 6 7 

3 4 4 1 4 3 2 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

46 46 46 3 6 6 7 

48 46 44 6 4 9 7 

47 47 47 7 4 2 4 

58 56 46 5 6 6 7 

3 4 4 1 4 3 2 

left image right image 

• Best SSD window cost is 8 at disparity 2 
• Red pixel is assigned disparity 2 
• Repeat this for all image pixels 
 

12454 6425 8 



Correspondence with SSD Matching 

disparity 

SS
D 

co
st

 

• Unique best cost location 
 



Compare to One Pixel “Window” 

disparity 

SS
D 

co
st

 

• No unique best cost location 
 



SAD Window Cost 

1 1 10 

1 1 10 

1 1 19 

• SSD is fragile to outliers 
 1 1 10 

1 1 10 

1 1 99 

SSD cost =  802 = 6400 

1 1 10 

1 1 10 

1 1 19 

31 31 31 

31 31 31 

31 31 29 

SSD cost =  6384 

• SAD (Sum of Absolute Differences) is more robust 

1 1 10 

1 1 10 

1 1 19 

1 1 10 

1 1 10 

1 1 99 

SAD cost =  80  

1 1 10 

1 1 10 

1 1 19 

31 31 31 

31 31 31 

31 31 29 

SAD cost =  232 

best 

best 



Window Matching Efficency 
• Suppose  

• image has n pixels 
• matching window is 11 by 11 

• Need 11⋅11 = 121 additions and multiplications to 
compute one window cost 

• Multiply that by number of locations to check 
(maxDisp+1)  

• Multiply that by n  image pixels 
• 121 ⋅ n ⋅(maxDisp+1)  
• Tooooo sloooow 

• gets worse for larger windows 
• Can get cost down to n ⋅(maxDisp+1) with integral images 

 



Speedups: Integral Image 
• Given image f(x,y), the integral image I(x,y) is the sum of values 

in  f(x,y) to the left and above (x,y), including (x,y) 

0 0 0 5 5 

0 0 5 5 5 

0 5 5 5 10 

5 5 5 10 0 

5 5 10 0 0 

f(x,y) 

0 0 0 5 10 

0 0 5 15 25 

0 5 15 30 50 

5 15 30 55 75 

10 25 50 75 95 

I(x,y) 

• Example:  I(2,2) = 0 + 0 + 0 + 0 + 0 + 5 + 0 + 5 + 5 = 15 
• indexing starts at 0 in this example 



Speedups: Integral Image 
• Given image f(x,y), the integral image I(x,y) is the sum of values 

in  f(x,y) to the left and above (x,y), including (x,y) 

0 0 0 5 5 

0 0 5 5 5 

0 5 5 5 10 

5 5 5 10 0 

5 5 10 0 0 

f(x,y) 

0 0 0 5 10 

0 0 5 15 25 

0 5 15 30 50 

5 15 30 55 75 

10 25 50 75 95 

I(x,y) 

• Example:  I(4,1) = 0 + 0 + 0 + 5 + 5 + 0 + 0 +5 + 5 + 5 = 25  



• Suppose computed integral image up to location (x,y) 

Efficiently Computing Integral Image 

I(x,y) = f(x,y) 

0 0 0 5 5 

0 0 5 5 5 

0 5 5 5 10 

5 5 5 10 0 

5 5 10 0 0 

f(x,y) I(x,y) 

+ 



• Suppose computed integral image up to location (x,y) 

Efficiently Computing Integral Image 

I(x,y) = f(x,y)  +  I(x-1,y) 
 

0 0 0 5 5 

0 0 5 5 5 

0 5 5 5 10 

5 5 5 10 0 

5 5 10 0 0 

f(x,y) I(x,y) 

+ + + 
+ + 
+ + 
+ + 



• Suppose computed integral image up to location (x,y) 

Efficiently Computing Integral Image 

I(x,y) = f(x,y)  +  I(x-1,y)  +  I(x,y-1) 
 
 0 0 0 5 5 

0 0 5 5 5 

0 5 5 5 10 

5 5 5 10 0 

5 5 10 0 0 

f(x,y) I(x,y) 

+ + + 
+ + 
+ + 
+ + 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 



• Suppose computed integral image up to location (x,y) 

Efficiently Computing Integral Image 

I(x,y) = f(x,y)  +  I(x-1,y)  +  I(x,y-1) - I(x-1,y-1) 
 
 
 

0 0 0 5 5 

0 0 5 5 5 

0 5 5 5 10 

5 5 5 10 0 

5 5 10 0 0 

f(x,y) I(x,y) 

+ + + 
+ + 
+ + 
+ + 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

_ 
_ 
_ 

_ 
_ 
_ 



Integral Image: Order of Computation 

I(x,y) 

• Convenient order of computation 
1. first row 
2. first column 
3. the rest in row-wise fashion 

 
 1 2 3 4 5 

6 

7 

8 

9 

10 11 12 13 

14 15 16 17 

18 19 20 21 

22 23 24 25 



Using Integral Image 
• After computed integral image, sum over any rectangular 

window is computed with four operations 
• Top left corner (x1,y1) and bottom right corner (x2,y2) 

 
 

I(x,y) 

0 0 0 5 5 

0 0 5 5 5 

0 5 5 5 10 

5 5 5 10 0 

5 5 10 0 0 

f(x,y) 

I(x2,y2) 

+ + 
+ + 
+ + 
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+ + 
+ + 
+ + 
+ + 

+ 
+ 
+ 
+ 



Using Integral Image 
• After computed integral image, sum over any rectangular 

window is computed with four operations 
• Top left corner (x1,y1) and bottom right corner (x2,y2) 

 
 

I(x2,y2) - I(x1-1,y2) 
 

I(x,y) 

+ + 
+ + 
+ + 
+ + 

+ + 
+ + 
+ + 
+ + 
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+ 
+ 
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- 
- 
- 



Using Integral Image 
• After computed integral image, sum over any rectangular 

window is computed with four operations 
• Top left corner (x1,y1) and bottom right corner (x2,y2) 

 
 

I(x2,y2) - I(x1-1,y2) - I(x2,y1-1) 
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Using Integral Image 
• After computed integral image, sum over any rectangular 

window is computed with four operations 
• Top left corner (x1,y1) and bottom right corner (x2,y2) 

 
 

0 0 0 5 5 

0 0 5 5 5 

0 5 5 5 10 

5 5 5 10 0 

5 5 10 0 0 

f(x,y) 

I(x2,y2) - I(x1-1,y2) - I(x2,y1-1) + I(x1-1,y1-1) 
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Using Integral Image 
• After computed integral image, sum over any rectangular 

window is computed with four operations 
• Top left corner (x1,y1) and bottom right corner (x2,y2)  

I(x2,y2) - I(x1-1,y2) - I(x2,y1-1) + I(x1-1,y1-1) 
 

 
 

0 0 0 5 10 

0 0 5 15 25 

0 5 15 30 50 

5 15 30 55 75 

10 25 50 75 95 

I(x,y) 

0 0 0 5 5 

0 0 5 5 5 

0 5 5 5 10 

5 5 5 10 0 

5 5 10 0 0 

f(x,y) 

• Example  5 + 5 +10 + 5 + 10 + 0  = 75 -15 - 25 + 0 = 35  



Inefficient Window Matching (SAD cost) 
• for each pixel p  

• for every disparity d 
• compute cost between window around p in the left image 

and the same window shifted by d in the right image 
• pick d corresponding to the best matching window 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

2 7 46 46 46 6 7 

5 9 46 46 44 9 7 

4 7 47 47 47 2 4 

4 7 56 56 46 6 7 

3 4 4 1 4 3 2 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

46 46 46 3 6 6 7 

48 46 44 6 4 9 7 

47 47 47 7 4 2 4 

58 56 46 5 6 6 7 

3 4 4 1 4 3 2 

left image right image 

256 186 4 



Integral Image for Window Matching 
• For each disparity  d  need to compute window cost for all pixels, 

eventually 
• For example, pick disparity d = 1 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

2 7 46 46 46 6 7 

5 9 46 46 44 9 7 

4 7 47 47 47 2 4 

4 7 56 56 46 6 7 

3 4 4 1 4 3 2 

3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

46 46 46 3 6 6 7 

48 46 44 6 4 9 7 

47 47 47 7 4 2 4 

58 56 46 5 6 6 7 

3 4 4 1 4 3 2 

left image right image 



Integral Image for Window Matching 
• Old inefficient algorithm: 

• for each pixel p  
• for every disparity d 

• compute cost between window around p in the left image 
and the same window shifted by d in the right image 

• pick d corresponding to the best matching window 

• New efficient algorithm: 
• for each  disparity d  

• for every  pixel p 
• compute cost between window around p in the left image 

and the same window shifted by d in the right image 
• pick d corresponding to the best matching window 

use integral image 

swap 



Integral Image for Window Matching 
• Suppose  current disparity is d = 1 

• Overlay left and right image at disparity 1 
• Compute AD (absolute difference) between every overlaid 

pair of pixels 
• Compute SAD in a window for every pixel 
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4 7 56 56 46 6 7 
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7 4 1 4 4 2 6 

46 46 46 3 6 6 7 

48 46 44 6 4 9 7 

47 47 47 7 4 2 4 

58 56 46 5 6 6 7 

3 4 4 1 4 3 2 

left image right image 



3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

2 7 46 46 46 6 7 

5 9 46 46 44 9 7 

4 7 47 47 47 2 4 

4 7 56 56 46 6 7 
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AD image for disparity 1 

Integral Image for Window Matching 
• current 

disparity 
is d = 1 
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3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

2 7 46 46 46 6 7 

5 9 46 46 44 9 7 

4 7 47 47 47 2 4 

4 7 56 56 46 6 7 

3 4 4 1 4 3 2 

left image right image 
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AD image for disparity 1 

Integral Image for Window Matching 
• current 

disparity 
is d = 1 

• Pad AD 
image 
with zeros 
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• current 
disparity 
is d = 1 

Integral Image for Window Matching 
left image right image 

 AD image for disparity 1 
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3 5 4 4 2 4 2 

7 4 1 4 4 2 6 

46 46 46 3 6 6 7 

48 46 44 6 4 9 7 

47 47 47 7 4 2 4 

58 56 46 5 6 6 7 

3 4 4 1 4 3 2 

• current 
disparity 
is d = 1 

left image right image 
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Integral Image for Window Matching 
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• current 
disparity 
is d = 1 

Integral Image for Window Matching 
left image right image 

 AD image for disparity 1 

0 2 1 0 2 2 2 

0 3 3 3 0 2 0 

0 39 0 0 43 0 0 

0 39 0 2 38 5 0 

0 40 0 0 40 2 0 

0 51 0 10 41 0 0 
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• Current disparity is 1 
• For each window pixel, have to 

compute window sums in AD image  
• Apply integral image to AD image 

AD image for disparity 1 

Integral Image for Window Matching 

0 2 1 0 2 2 2 

0 3 3 3 0 2 0 

0 39 0 0 43 0 0 

0 39 0 2 38 5 0 

0 40 0 0 40 2 0 

0 51 0 10 41 0 0 

0 1 0 3 3 1 0 



      for every pixel p do 
     bestDisparity[p] =  0       
     bestWindCost[p] = HUGE   
      

 for disparity d = 0, 1,…, maxD  do 
 overlay images at disparity d 
 compute AD image for disparity d 
 compute Integral image from AD image  
 

for every pixel p  do 
 currentCost = window cost at pixel p, computed from integral image 
 if currentCost < bestWindCost[p] 
      bestWindCost[p] = currentCost 
      bestDisparity[p] = d 

     return bestDisparity 
 

Efficient Algorithm for Window Matching 

2 1 0 2 2 2 

3 3 3 0 4 0 

39 0 0 43 1 0 

39 0 2 38 2 0 

40 0 0 40 2 0 

51 0 10 41 0 0 

1 0 3 3 1 0 

 AD image for disparity 1 



Effect of Window size 

left image right image true disparities 
bright means larger disparity 

3x3 window 7x7 window 15x15 window 



Effect of Window size: Low Texture Area 

left image 0 5 10 15
0

50

100
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3x3  
7x7  

15x15  

disparity 
w

in
do

w
 co

st
 

• windows of size 3x3 and 7x7 are too small to have a 
distinct pattern  
• no clearly best disparity 

• window of size 15x15 is large enough to have a 
distinct pattern  
• 7 is clearly the best disparity  

• window has to be large enough 
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Effect of Window size: Near Discontinuities 

left image 

3x3  
7x7  

15x15  

disparity 

w
in

do
w

 co
st

 
• central pixel  (the one we are matching) is the lamp 
• windows of size 3x3 and 7x7 contain mostly the lamp  
• window of size 15x15 contains mostly the wall 

• we match the wall instead of the lamp! 

• window must be small enough to contain mostly the 
same object as the central pixel 



Effect of Window size 
• No single window size is ‘perfect’ for the image 
• Smaller window 

• works better around  object boundaries  
• noisy results in low texture areas 

• Larger window 
• better results in low texture areas 
• does not preserve object boundaries well 

• Adaptive window algorithms exist  [Veksler’2001] 



Better Stereo Algorithms 

State of the art method 
[Boykov, Veksler, Zabih,  2001] 

ground truth 

• Formulate stereo as energy minimization 
• Recall binary object/background segmentation problem 

object 

background 



Better Stereo Algorithms 

ground truth 

• Stereo is multi-label segmentation problem 
• region 0 = label 0   “likes” disparity 0 
• region 1 = label 1    “likes” disparity 1 
• … 
• region maxDisp  = label maxDisp “likes” disparity maxDisp 

disp 0 
disp 1 

disp 2 

disp 4 



Stereo with Graph Cuts 

• Energy Function 
• Data Term: assign each pixel disparity label it likes 
• Smoothness Term: count number of label (disparity) 

discontinuities 

AD  5  
 data term for label 5 

AD  8  
 data term for label 8 

AD  10  
 data term for label 10 

AD  14  
 data term for label 14 

• Solved with Graph Cuts: iteratively cuts out 
regions corresponding to disparities 

• NP-hard with more than 2 labels, but 
computes a good approximation 

 



Stereo with Graph Cuts 
• Start with everything as label (disparity) 0 



Stereo with Graph Cuts 
• “Cut out” label (disparity) 1 



Stereo with Graph Cuts 
• “Cut out” label (disparity) 2 



Stereo with Graph Cuts 
• “Cut out” label (disparity) 3 



Stereo with Graph Cuts 
• “Cut out” label (disparity) 4 



Stereo with Graph Cuts 
• “Cut out” label (disparity) 5 



Stereo with Graph Cuts 
• “Cut out” label (disparity) 6 



Multiple Artificial Eyes 
• Two eyes better than one → three eyes better than two → four 

eyes better than three → … → the more, the better 



Common Folk New that Already 



Stereo with Structured Light 

• Project “structured” light patterns onto the object 
• Simplifies  correspondence problem 
• Need one camera and one projector 

camera  

projector 



Stereo with Structured Light 
• Triangulate between camera and projector 



Kinect: Structured Infrared Light 

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/ 

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/


Laser Scanning 

• Optical triangulation 
• Project a single stripe of laser light 
• Scan it across the surface of the object 
• This is a very precise version of structured light scanning 

Digital Michelangelo Project 
Levoy et al. 

http://graphics.stanford.edu/projects/mich/ 
 

http://graphics.stanford.edu/projects/mich/


Laser Scanned Models 

The Digital Michelangelo Project, Levoy et al. 



Laser Scanned Models 

The Digital Michelangelo Project, Levoy et al. 



Numerous Applications 

Nomad robot searches for meteorites in Antartica 
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html 
 

• Autonomous  navigation 

http://www.frc.ri.cmu.edu/projects/meteorobot/index.html
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html


Novel View Synthesis 

  input image (1 of 2) 
  [Szeliski & Kang ‘95] 

  depth map   3D rendering 



Applications: Video View Interpolation 
http://research.microsoft.com/users/larryz/videoviewinterpolation.htm  

http://research.microsoft.com/users/larryz/videoviewinterpolation.htm


Stereo Correspondence 
 
• Steps: 

• Calibrate cameras 
• Rectify images 
• Stereo correspondence 
• Apply depth/disparity formula 

• Stereo correspondence is still heavily researched 
• The simple window matching algorithm we studied is 

heavily used in practice due to speed and simplicity 
• Popular Benchmark   

http://www.middlebury.edu/stereo 
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