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Linear Classifier
Multiple Classes



Outline

e |inear Classifier

e Multiple classes

1. Use collection of 2-class classifiers
o one vs. all
. all pairs

2. Design multi-class loss functions

o Perceptron Loss Function
. Softmax Loss Function

e Weight Regularization



Using 2-class Case: One vs. All

e Haveclasses ], 2, ..., m
e (Can construct multi-class classifier based on 2-class classifiers
e One way

e Assume each 2-class classifier also gives confidence

e Distance from separating hyperplane
. . | AY o
e Higher distance, more confidence A , ®
: = ®
e Train m 2-class classifiers A = ®
e 1 vsother classes *x O\

2 vs. other classes * %
= / X

e m vs. other classes

e Make sure number of examples is balanced during training

e At test time, run new sample through m binary classifiers
e highest confidence class “wins”

e Works for any type of 2-class classifier, not just linear



Using 2-class Case: All pairs

e Train 2-class classifier for each distinct pair of classes (i,j)

1 2 3 4

AW IN|=

e At test time, run new example x through all binary classifiers

e Choose most frequently occurring class
e For example, x was classified

e l1timeasclass1

e 2 times as class 2 .
e (O times as class 3 —decide class 4

e 3times as class 4



Multiple Classes: General Case

e General multiclass case

e not based on 2-class classifiers
e Define m linear discriminant functions
g(x)=wx+w, fori=1,2,.. m
e Assignxtoclassi if
gi(x) > g(x) forallj=i
e LetR, be decision region for class i

e all samples in R, assigned to class i
R1

81(x) > g,(x)
8:(x) > g3(x)

R

8>(x) > g,(x)
8,(x) > g5(x)

R

g,(x) > g,(x)
go(x) > g3(x)




Multiple Classes

e Can be shown that decision regions are convex

e |n particular, they must be spatially contiguous




Failure Case for Linear Classifier

e Thus applicability of linear classifiers is limited to
mostly unimodal distributions, such as Gaussian

e For not unimodal data,
need non-contiguous
decision regions

e |inear classifier will fail




Multiclass Linear Classifier: Matrix Notation

Assume examples x are augmented with extra feature 1, no need
to write bias explicitly

e but from now on will not change notation to z’s
Define m discriminant functions
g(x)=wx fori=12,..m
Assign x to i that gives maximum g;(x)
Picture illustration

Q @ -3 pile all outputs

into one vector
TIY :
&) > 10 10

decide class 4




Multiclass Linear Classifier: Matrix Notation

e Could use one dimensional outputy, €11, 2, 3, ..., m}
e Convenient to use multi-dimensional outputs

1 0 0 0
J_O 1_1 j_o j_o
Y “lo Y “lo Y T Y “lo
0 0 0 1
class 1 class 2 class 3 class 4

e Fortraining, if > 0
sample is of class i, 3 1
want output vector
to be 0 everywhere j> -9 0
except position i, x is of class 2 10 0
where it should be 1 - -

got this  want this



Multiclass Linear Classifier: Matrix Notation

e Assign x to i that gives maximum g;(x)= w.'x

e |n matrix notation

=

W,

W,

2

'
i

4 -7
-3 2

5 2
-7 1

W

X

D

2
—4

47

__ 43_
Wx

e Assign x to class that corresponds to largest row of Wx



Quadratic Loss Function

e Assign sample x to class that corresponds to largest row of Wx!

e Loss function? T .
_4 0

47 0

|43 K

Wx!' i

e Canuse quadratic loss per sample x' as %||Wx - y'||?
e for example above, loss (22 + 4% + 472 +442)/2

e total loss on all training samples L(W) = 122 || Wx'- yi||?
e gradient of the loss

VL(W)= Z(Wxi —y' )(xi )t

|
V L(W) has the same shape as the same shape as W

batch gradient descent update
W=W — OLZ(WXi — yi) (xi)t



Suppose x=|3

update rule
(2 4 -T]
9 -3 2
4 5 2
2 -7 1

ok — |
Wx—-y=

too large

3
’ L3 2]=

-17

2
9
4
2

Quadratic Loss Function

Consider gradient descent update, single sample x with a=1

W =W — (Wx —y)x"

and is of class 2 and W =

too small ———

4 -7]
-3 2
5 2

-7

1

2

6

-19
19

4
-12

—64

44

—7 ]

4

—44

35




Quadratic Loss Function

[ 0] [0 0
I
°k| " >4l |1 3
too large X—y= melf =
too small ———
"_—17_ _O_ _—17_
[ 2 4 -7 0]
_ 6 -12 -4 —38
e Withnew W= , Wx =
-19 -64 -44 —299
19 44 35 221

e Already saw that quadratic loss does not work that well for classification



Perceptron Loss

e Generalize Perceptron loss to multiclass setting
e Per-example loss: largest score minus score for the correct class

2 0 20 0

—4 0 40 1

47 0 17 0

|—43 ] ] |—43] 0

Wx! yi Wx! yi
Loss is 47-(-43)= 90 Loss is 40-40=0

e Formula for Perceptron loss on sample x’
L(W) = max,[(Wx),-(Wx!) ]
e (Wxi), isthe entry in row k of vector Wx'
e cisthe correct class of sample x



Perceptron Loss Function

e Gradient of loss on one example
e cisthe correct class row
e risthe row where Wx' is largest

e ifr=c, _VLi(W)zo
0 0 0 O]
row r
e otherwise, —VL(W)=
O 0 0O
| row ¢
e Example
2] |0 0 0
—4 0
3 0 0)
a7 |,| |0 — VL, (W)= 1 s
-43| - |1 L 5




Perceptron Loss Function: Example Cont.

"0 0 0] 7 [0
0 0 0| 0
—VL.(W)=
1 3 2] L&)
yl
[ 2 4 7110 0 0 2 4 -7
. 9 -3 2 0O O 0 9 -3 2
e Witha=1,new W= -
4 5 2 -1 -3 -2 3 2 0
2 -7 1) |1 3 2| |3 -4 3
* With new weights e Compare to the old weights
0 [ 0
[
| 4 ok — 4
Wx' = 9 too large WX = 53
too small — T
_—3_ _—17_




Define softmax(a) function

Softmax renormalizes a vector so that it can be interpreted as
a vector of probabilities

Softmax Function

exp(a,)

> exela)

exp(a, )

> exela)

exp(a,)

gexp(aj)

exp(a, )

> exela)

Example

softmax

exp(-3)

exp(—3)+exp(2)+exp(1)

exp(2)

exp(—3)+exp(2)+exp(1)

exp(1)

- 0.005 |
0.7275

1 0.2676 |

| exp(—3)+exp(2)+exp(l)



Softmax Loss Function

e Generalization of logistic regression to multiclass case

Ty | 2
e |Instead of raw scores WaX
W, X -1
W, X |5
_WIX_ | -3]
e Use softmax scores
W x ] - 9] 7004731 | Prclassl)]
W X -1 0.0024 Pr(class2)
softmax . = softmax = _
/e 5 Sl Pr(class3)
W X _3 0.0003
S = = - - | Pr(class4) |

e (lassifier output interpreted as probability for each class



Gradient Descent: Softmax Loss Function

e Optimize under —log Pr(y') loss function

e Example

17 0 (2 4 -7]
0 9 -3 2
xI: 3 W =
0 4 5 2
2] [1] 2 =7 4]
yl
[ 0] "0.0000000001026197 | Priclassl)
. 4 0.000000005602796 | | Pr(class2)
softmax(Wx'): softmax = —
23 0.999999994294585 Pr(class3)
|-17 |  0.000000000000001 pr(classd)
e Loss on this exampleis —log(0.000000000000001) =40



Gradient Descent: Softmax Loss Function

e Update rule for weight matrix W

W=W + OLZ(Yi - softmax(w'x')) ('

|
e Example, single sample gradient descent with a =0.1

17 |0 (2 4 -7] 0
| 0 9 -3 2 . 4
i W = Wx' =

=13 o 4 5 2 23

_2_ 1] _2 -7 1] _17

Y -

e Update for W
(2 4 -7 0] 0 [ 2 4 7]
9 -3 2 0 4 9 -3 2
W = +0.1 | |-softmax L 3 2] =

4 5 2 0 23 39 47 1.8
2 -7 1 1 ~17 2.1 -6.7 1.2




Generalized Linear Classifier

Can use other discriminant functions, | o
like quadratics 09 /¢ Co
8(X) = WoHW X, HWoXy+ Wi, X X, +W o X2 + W)X, O K X\ O
%/ 5 * Ox,

Methodology is almost the same as
in the linear case

e f(x) =sign(Wy+w X +W,X,+W XX, +W X,> + W,,X,?)
. z = [1 x; X XX X2 X,?]
° a = [w, w w, w, Wiq W, ]

e use gradient descent to minimize Perceptron loss function,
any other loss function

e (Can add any degree polynomial features



Generalized Linear Classifier

Generalized linear classifier
g(x,w) = wot2,; . wih;(x)
h(x) are called basis function, can be arbitrary functions

e in strictly linear case, hi(x)= x.

Linear function in its parameters w
g(x,w) = wy+wth
h =[h,(x) hy(x) ... h_(x)]
w, w, .. w.]

Use the same training methods as before with new
feature vector h



Generalized Linear Classifier

Usually face severe

overfitting

e too many degrees of freedom

e boundary can “curve” to fit to the noise in the data

Regression example

from Bishop

0 over fitting x|




Generalized Linear Classifier

Helps to regularize by keeping w small

e small w means the boundary is not as curvy

Regression example

from Bishop

l,.ﬂ---qo M=0

Polynomial Coefficients

M=0 M=1 M=3 M=9
we 0.31 0.35
w} 7.99 232.37
w} -25.43 -5321.83
w} 17.37 48568.31
wh -231639.30
wk 640042.26
wy ~1061800.52

1042400.18

-557682.99
125201.43



Generalized Linear Classifier

Helps to regularize by keeping w small

e small w means the boundary is not as curvy
For example, add Al|w||? to the loss function
Recall quadratic loss function
L=2%% || f(x',w) - y' ||?
Regularized version

L =73, || f(x',w) - y' [|> +A[|w]|>

small A medium A large A

Regression example, wo {05 049 Yig
. o w} 232.37 4.74  -0.05
polynomial coefficients wh -5321.83 0.77  -0.06
_ wy 48568.31 -31.97 -0.05

for degree M =9 wj | -231639.30 -3.89 -0.03
With weight regularizer, thig| [ [PTO0-40 PRS0
. . wg | -1061800.52 41.32 -0.01
gradient of loss function has a wk | 1042400.18 -45.95  -0.00
i wi | -557682.99 -91.53 0.00

new term -oAw wi | 125201.43 72.68  0.01



Generalized Linear Classifier

e A is a meta-parameter, cannot tune on training data

e use validation or cross-validation to set it to a good value

e Consider polynomial of degree M=9 regression

medium A |

Error

0.5¢

L

) 0 i
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