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Outline 
• Linear Classifier 

• Multiple classes 
1. Use collection of 2-class classifiers 

• one vs. all 
• all pairs 

2. Design multi-class loss functions 
• Perceptron Loss Function 
• Softmax Loss Function 

• Weight Regularization 
 
 

 



• Have classes 1, 2, … , m  
• Can construct multi-class classifier based on 2-class classifiers 
• One way 

• Assume each 2-class classifier also gives confidence 
• Distance from separating hyperplane 

• Higher distance, more confidence 

• Train m 2-class classifiers 
• 1  vs other classes 
• 2  vs. other classes 
• …. 
• m  vs. other classes 
• Make sure number of examples is balanced during training 

Using 2-class Case: One vs. All 

• Works for any type of 2-class classifier, not just linear 
 

• At test time, run new sample through m binary classifiers 
• highest confidence class “wins” 



Using 2-class Case: All pairs 

1 2 3 4 

1 

2 

3 

4 

• Train 2-class classifier for each distinct pair of classes (i,j) 
 

• At test time, run new example x through all binary classifiers 
• Choose most frequently occurring class 
• For example,  x was classified  

• 1 time as class 1 
• 2 times as class 2 
• 0 times as class 3 
• 3 times as class 4 
 

 

decide class 4 



• General multiclass case 
• not based on 2-class classifiers 

• Define m  linear discriminant functions 
gi(x) = wi

tx + wi0  for i = 1, 2, … m 

Multiple Classes: General Case 

• Assign x to class i  if 
  gi(x)  >  gj(x) for all j ≠ i  

• Let Ri be decision region for class i  
• all samples in Ri assigned to class i   

g2(x) > g1(x) 
g2(x) > g3(x) 

R1 
R2 

R3 

g1(x) > g2(x) 
g1(x) > g3(x) 

g3(x) > g1(x) 
g3(x) > g2(x) 



Multiple Classes 
• Can be shown that decision regions are convex 
• In particular, they must be spatially contiguous 



• Thus applicability of linear classifiers is limited to 
mostly unimodal distributions, such as Gaussian 

• For not unimodal data, 
need non-contiguous 
decision regions 

• Linear classifier will fail 

Failure Case for Linear Classifier 



Multiclass Linear Classifier: Matrix Notation  
• Assume examples x are augmented with extra feature 1, no need 

to write bias explicitly 
• but from now on will not change notation to z’s  

• Define m discriminant functions  
gi(x) = wi

tx    for i = 1, 2, … m 
• Assign x to i that gives maximum gi(x) 
• Picture illustration 
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decide class 4 



Multiclass Linear Classifier: Matrix Notation 
• Could use one dimensional output yi  ∊ {1, 2, 3, …, m} 
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• Convenient to use multi-dimensional outputs 
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• For training, if 

sample is of class i,  
want output vector 
to be  0 everywhere 
except position i, 
where it should be 1 

x is of class 2 



• Assign x to i that gives maximum gi(x)= wi
tx  

  x 

g1(x)  
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g4(x)  
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• In matrix notation 
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x W Wx 
• Assign x to class that corresponds to largest row of Wx  

Multiclass Linear Classifier: Matrix Notation 
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• Assign sample  xi to class that corresponds to largest row of Wxi 
• Loss function?  
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• Can use  quadratic loss per sample xi  as  ½|| Wxi - yi
 ||2  

• for  example above, loss (22 + 42 + 472 +442)/2 

• total  loss on all training samples L(W) =  ½ Σi || Wxi - yi ||2  
• gradient of the loss 

•  ∇ L(W) has the same shape as the same shape as W 
• batch gradient descent update 

( ) ( )ti

i

ii xyWxWW ∑ −α−=

Quadratic Loss Function 



• Consider gradient descent update, single sample x with  α = 1 

( ) txyWxWW −−=

• Suppose                  and is of class 2 and  
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• update rule 

Quadratic Loss Function 
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Quadratic Loss Function 
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Wx• With new                                             , 

• Already saw that quadratic loss does not work that well for classification 
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• Generalize Perceptron loss to multiclass setting 
• Per-example loss: largest score minus score for the correct class 
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Loss is 47-(-43)= 90  
 

Perceptron Loss 
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Loss is 40-40= 0  
 

• Formula for Perceptron loss on sample xi  
Li(W) = maxk[(Wxi)k-(Wxi)c] 

• (Wxi)k  is the entry in row k of vector  Wxi  

• c is the correct class of sample xi 



( ) 0=∇− WLi

• Gradient of loss on one example 
• c is the correct class row 
• r is the row where Wxi is largest 
• if r = c,  

• Example 
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Perceptron Loss Function 
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W• With α = 1, new  

• With new weights 
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Perceptron Loss Function: Example Cont. 
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• Compare to the old weights 
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Softmax Function 
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• Define softmax(a) function  
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• Example 
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• Softmax renormalizes a vector so that it can be interpreted as 

a vector of probabilities  
 



• Generalization of logistic regression to multiclass case 

• Instead of raw scores   
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• Use softmax  scores  

=













































xw

xw

xw

xw

T
4

T
3

T
2

T
1

maxsoft

( )

( )

( )

( )

























=

4

3

2

1

classPr

classPr

classPr

classPr























=

00030

95000

00240

04730

.

.

.

.

Softmax Loss Function 
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• Classifier output interpreted as probability for each class 



• Optimize under   –log Pr( yi)  loss function 
 

 
 

Gradient Descent: Softmax Loss Function 

• Example 
 

 
 

• Loss  on this example is    –log(0.000000000000001) = 40 
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• Update rule for weight matrix W 
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Gradient Descent: Softmax Loss Function 

• Example, single sample gradient descent with α = 0.1 
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• Update for W 
 

 
 



x1 

x2 • Can use other discriminant functions, 
like quadratics 

            g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2 

• Methodology is almost the same as 
in the linear case 
•  f(x)   = sign(w0+w1x1+w2x2+w12x1x2 +w11x1

2 + w22x2
2) 

•      z   =        [ 1        x1        x2            x1 x2         x1
2           x2

2] 
•      a   =       [ w0      w1       w2         w12           w11

          w22] 
• use gradient descent to minimize Perceptron loss function, 

any other loss function 

• Can add any degree polynomial features 
  

Generalized Linear Classifier 



• Generalized linear classifier 

 g(x,w) = w0+Σi=1…m wihi(x) 
• h(x) are called basis function, can be arbitrary functions 

• in strictly linear case, hi(x)= xi 
 

 
• Linear function in its parameters w 

 g(x,w) = w0+wth 
h = [h1(x)   h2(x)   …  hm(x)] 

      [w1       w2       …       wm] 

• Use the same training methods as before with new 
feature vector h 

 
 

Generalized Linear Classifier 



• Usually face severe overfitting 
• too many degrees of freedom 
• boundary can “curve” to fit to the noise in the data 

• Regression example 

Generalized Linear Classifier 



• Helps to regularize by keeping w small 
• small w means the boundary is not as curvy 

• Regression example 

Generalized Linear Classifier 



• Helps to regularize by keeping w small 
• small w means the boundary is not as curvy 

• For example, add  λ||w||2 to the loss function 
• Recall quadratic loss function 

 L=½Σi|| f(xi,w) - yi ||2  

• Regularized version 

L = ½Σi || f(xi,w) - yi ||2 +λ||w||2  

Generalized Linear Classifier 

small λ medium λ large λ 

• Regression example, 
polynomial coefficients 
for degree M = 9 

• With weight regularizer, 
gradient of loss function has a 
new term -αλw 



• λ  is a meta-parameter, cannot tune on training data 
• use validation or cross-validation to set it to a good value 

• Consider polynomial of degree M=9 regression 

Training 
Validation 

Er
ro

r 

Generalized Linear Classifier 

medium λ 
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