
CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 5
Machine Learning
Linear Classifier
Multiple Classes

Outline
• Linear Classifier

• Multiple classes
1. Use collection of 2-class classifiers

• one vs. all
• all pairs

2. Design multi-class loss functions
• Perceptron Loss Function
• Softmax Loss Function

• Weight Regularization

• Have classes 1, 2, … , m
• Can construct multi-class classifier based on 2-class classifiers
• One way

• Assume each 2-class classifier also gives confidence
• Distance from separating hyperplane

• Higher distance, more confidence

• Train m 2-class classifiers
• 1 vs other classes
• 2 vs. other classes
• ….
• m vs. other classes
• Make sure number of examples is balanced during training

Using 2-class Case: One vs. All

• Works for any type of 2-class classifier, not just linear

• At test time, run new sample through m binary classifiers
• highest confidence class “wins”

Using 2-class Case: All pairs

1 2 3 4

1

2

3

4

• Train 2-class classifier for each distinct pair of classes (i,j)

• At test time, run new example x through all binary classifiers
• Choose most frequently occurring class
• For example, x was classified

• 1 time as class 1
• 2 times as class 2
• 0 times as class 3
• 3 times as class 4

decide class 4

• General multiclass case
• not based on 2-class classifiers

• Define m linear discriminant functions
gi(x) = wi

tx + wi0 for i = 1, 2, … m

Multiple Classes: General Case

• Assign x to class i if
 gi(x) > gj(x) for all j ≠ i

• Let Ri be decision region for class i
• all samples in Ri assigned to class i

g2(x) > g1(x)
g2(x) > g3(x)

R1
R2

R3

g1(x) > g2(x)
g1(x) > g3(x)

g3(x) > g1(x)
g3(x) > g2(x)

Multiple Classes
• Can be shown that decision regions are convex
• In particular, they must be spatially contiguous

• Thus applicability of linear classifiers is limited to
mostly unimodal distributions, such as Gaussian

• For not unimodal data,
need non-contiguous
decision regions

• Linear classifier will fail

Failure Case for Linear Classifier

Multiclass Linear Classifier: Matrix Notation
• Assume examples x are augmented with extra feature 1, no need

to write bias explicitly
• but from now on will not change notation to z’s

• Define m discriminant functions
gi(x) = wi

tx for i = 1, 2, … m
• Assign x to i that gives maximum gi(x)
• Picture illustration

 x

g1(x)

g2(x)

g3(x)

g4(x)

−
10

9
3
5→ 5

→ 3

→ -9

→ 10

pile all outputs
into one vector

decide class 4

Multiclass Linear Classifier: Matrix Notation
• Could use one dimensional output yi ∊ {1, 2, 3, …, m}

got this

0
0
1
0

want this

• Convenient to use multi-dimensional outputs

=

0
0
0
1

jy

class 1

=

0
0
1
0

jy

class 2

=

0
1
0
0

jy

class 3

=

1
0
0
0

jy

class 4

 x

g1(x)

g2(x)

g3(x)

g4(x)

−
10

9
3
5

• For training, if

sample is of class i,
want output vector
to be 0 everywhere
except position i,
where it should be 1

x is of class 2

• Assign x to i that gives maximum gi(x)= wi
tx

 x

g1(x)

g2(x)

g3(x)

g4(x)

w2
tx

w3
tx

w4
tx

w1
tx

 x

• In matrix notation

−

−
−

172
254
239
742

4
7
1

−

−
=

43
47

4
2w1

w2
w3
w4

x W Wx
• Assign x to class that corresponds to largest row of Wx

Multiclass Linear Classifier: Matrix Notation

[]742 −

x

x

x

x

 x
[]239 −

[]254

[]172 −

• Assign sample xi to class that corresponds to largest row of Wxi
• Loss function?

−

−

43
47

4
2

Wxi

1
0
0
0

yi

() ()()∑ −=∇
i

tiii xyWxWL

• Can use quadratic loss per sample xi as ½|| Wxi - yi
 ||2

• for example above, loss (22 + 42 + 472 +442)/2

• total loss on all training samples L(W) = ½ Σi || Wxi - yi ||2
• gradient of the loss

• ∇ L(W) has the same shape as the same shape as W
• batch gradient descent update

() ()ti

i

ii xyWxWW ∑ −α−=

Quadratic Loss Function

• Consider gradient descent update, single sample x with α = 1

() txyWxWW −−=

• Suppose and is of class 2 and

=

2
3
1

x

−

−
−

=

172
254
239
742

W

−

=

−

−

=−

17
23

3
0

0
0
1
0

17
23

4
0

yWx
ok

too small
too large

[]

−−−

−

−

−
−

=

−

−

−

−
−

=

345117
466923

693
000

172
254
239
742

231

17
23

3
0

172
254
239
742

W

• update rule

Quadratic Loss Function

−−−
−−
−

=

354419
446419
4126
742

Quadratic Loss Function

−−−
−−
−

=

354419
446419
4126
742

W

−
−

=

221
299

38
0

Wx• With new ,

• Already saw that quadratic loss does not work that well for classification

−

=

−

−

=−

17
23

3
0

0
0
1
0

17
23

4
0

yWx
ok

too small
too large

• Generalize Perceptron loss to multiclass setting
• Per-example loss: largest score minus score for the correct class

−

−

43
47

4
2

Wxi

1
0
0
0

yi
Loss is 47-(-43)= 90

Perceptron Loss

− 43
17
40
20

Wxi

0
0
1
0

yi
Loss is 40-40= 0

• Formula for Perceptron loss on sample xi
Li(W) = maxk[(Wxi)k-(Wxi)c]

• (Wxi)k is the entry in row k of vector Wxi

• c is the correct class of sample xi

() 0=∇− WLi

• Gradient of loss on one example
• c is the correct class row
• r is the row where Wxi is largest
• if r = c,

• Example

()

−−−
=∇−

231
231
000
000

WLi

• otherwise, ()

=∇−
0000

0000

WLi

-xi

xi

row r

row c

Perceptron Loss Function

Wxi

−

−

43
47

4
2

1
0
0
0

yi

2
3
1

xi

()

−−−
=∇−

231
231
000
000

WLi

−

=

3
9
4
0

iWx

−

−
−

=

−−−
+

−

−
−

=

343
023
239
742

231
231
000
000

172
254
239
742

W• With α = 1, new

• With new weights

1
0
0
0

yi

=

2
3
1

ix

Perceptron Loss Function: Example Cont.

−

=

17
23

4
0

i
oldxW

• Compare to the old weights

ok

too small
too large

Softmax Function

()
()

()
()

()
()

()
()

∑

∑

∑

∑

=

=

=

=

4

1j

4

4

1j

3

4

1j

2

4

1j

1

exp

exp

exp

exp

j

j

j

j

aexp

a

aexp

a

aexp

a

aexp

a

• Define softmax(a) function

4

3

2

1

a
a
a
a

=

26760

72750

0050

.

.

.

softmax

• Example

()
() () ()

()
() () ()

()
() () ()

++−

++−

++−
−

123
1exp

123
2exp

123
3exp

expexpexp

expexpexp

expexpexp

−

1

2

3

softmax

• Softmax renormalizes a vector so that it can be interpreted as

a vector of probabilities

• Generalization of logistic regression to multiclass case

• Instead of raw scores

xw

xw

xw

xw

T
4

T
3

T
2

T
1

−

−
=

3

5

1

2

• Use softmax scores

=

xw

xw

xw

xw

T
4

T
3

T
2

T
1

maxsoft

()

()

()

()

=

4

3

2

1

classPr

classPr

classPr

classPr

=

00030

95000

00240

04730

.

.

.

.

Softmax Loss Function

−

−

3

5

1

2

maxsoft

• Classifier output interpreted as probability for each class

• Optimize under –log Pr(yi) loss function

Gradient Descent: Softmax Loss Function

• Example

• Loss on this example is –log(0.000000000000001) = 40

=

2

3

1
ix

−

−
−

=

172
254
239
742

W

1
0
0
0

yi

()=iWxmaxsoft

()

()

()

()

=

4

3

2

1

classPr

classPr

classPr

classPr

=

−17

23

4

0

maxsoft

00000010.00000000

42945850.99999999

56027960.00000000

01026190.00000000

• Update rule for weight matrix W

()() ()∑ −+=
i

tiiTi xxWmaxsoftyWW α

Gradient Descent: Softmax Loss Function

• Example, single sample gradient descent with α = 0.1

[]231

17

23

4

0

1

0

0

0

10

172

254

239

742

−

−

+

−

−

−

= maxsoft.W

=

2

3

1
ix

−

−
−

=

172
254
239
742

W

1
0
0
0

yi

−

=

17

23

4

0

iWx

−

−

−

=

217612

817493

239

742

...

...

• Update for W

x1

x2 • Can use other discriminant functions,
like quadratics

 g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2

• Methodology is almost the same as
in the linear case
• f(x) = sign(w0+w1x1+w2x2+w12x1x2 +w11x1

2 + w22x2
2)

• z = [1 x1 x2 x1 x2 x1
2 x2

2]
• a = [w0 w1 w2 w12 w11

 w22]
• use gradient descent to minimize Perceptron loss function,

any other loss function

• Can add any degree polynomial features

Generalized Linear Classifier

• Generalized linear classifier

 g(x,w) = w0+Σi=1…m wihi(x)
• h(x) are called basis function, can be arbitrary functions

• in strictly linear case, hi(x)= xi

• Linear function in its parameters w

 g(x,w) = w0+wth
h = [h1(x) h2(x) … hm(x)]

 [w1 w2 … wm]

• Use the same training methods as before with new
feature vector h

Generalized Linear Classifier

• Usually face severe overfitting
• too many degrees of freedom
• boundary can “curve” to fit to the noise in the data

• Regression example

Generalized Linear Classifier

• Helps to regularize by keeping w small
• small w means the boundary is not as curvy

• Regression example

Generalized Linear Classifier

• Helps to regularize by keeping w small
• small w means the boundary is not as curvy

• For example, add λ||w||2 to the loss function
• Recall quadratic loss function

 L=½Σi|| f(xi,w) - yi ||2

• Regularized version

L = ½Σi || f(xi,w) - yi ||2 +λ||w||2

Generalized Linear Classifier

small λ medium λ large λ

• Regression example,
polynomial coefficients
for degree M = 9

• With weight regularizer,
gradient of loss function has a
new term -αλw

• λ is a meta-parameter, cannot tune on training data
• use validation or cross-validation to set it to a good value

• Consider polynomial of degree M=9 regression

Training
Validation

Er
ro

r

Generalized Linear Classifier

medium λ

	Slide Number 1
	Outline
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Multiclass Linear Classifier: Matrix Notation
	Multiclass Linear Classifier: Matrix Notation
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

