
CS4442b/9542b: Artificial Intelligence II, Winter 2018
Assignment 1: Hand Written Digit Classification

Due: February 12

Instructions:

• Submit your assignment through OWL by 11:55pm on the due date.

• Include all matlab code you write and a soft copy of answers to questions (in pdf
format). Do not need to include code/data that I give you. Do not zip your files,
submit all files individually.

• Except for problem 10, you cannot use matlab built-in tools for machine learn-
ing/classification, you have to develop learning tools from scratch. You can use
standard matlab functions for matrix manipulations. If in doubt about use of any
matlab function, post a question on the discussion board. For problem 10, you can
use matlab built in neural network tools as specified in the problem description.

• Make sure to use the function names, input/output parameters as I specify, including
capitalization. We have very limited TA support and having correction function
names helps to streamline grading. We will take %5 off the assignment grade
if you do not use the correct function names. If you write helper functions,
you can give them any names you wish.

• We give simple test cases. Passing these is a good indicator, but does not assure
that your code will pass more complex tests that will be run by TA.

• Do not share your code/accept code from other students/web/etc. We will run an
automatic software to measure the similarity of your code to the current students
and previous year students. If there is high code similarity, the penalty is negative
assignment score. This will jeopardize your chances of passing the course.

• This assignment has extra credit questions. Extra credit counts only towards the
assignments, it does not transfer to quizzes.

Data: In this assignment you will develop and test several classifiers for hand written digit
recognition using the reduced version of the famous MNIST dataset1. The images in the original
dataset are of size 28 by 28 pixels. We rescaled images to size 16 by 16 pixels for computational
efficiency. Each 2D image is stretched into a vector for training/testing. Thus each image is a 256
dimensional feature vector of raw pixel intensities.

Load data into matlab using command load A1. Matrix X train (size 5000 by 256) contains
5000 samples to use for training. Samples are stored as rows. Thus the first training image is in
X train(1,:). You can visualize any digit image with the provided matlab function showImage.
For example, to see the 7th training image, use showImage(X train(7,:)).

Column vector Y train contains the true labels of samples in X train. Thus its size is 5000

by 1. Since matlab starts indexing at 1, it is convenient to denote digit 0 with label 1, digit 1

with label 2, ..., digit 9 with label 10. Thus Y train contains integers from 1 to 10, corresponding

1http://yann.lecun.com/exdb/mnist/

1

http://yann.lecun.com/exdb/mnist/


to digits from 0 to 9. For example, the label of the first training image is Y train(1) is 6, which
means the first training image has digit 5. There is also matrix X test containing 2000 samples
to be used for testing, and column vector Y test containing true labels of samples in X test. All
results in the report for the problems below should be computed on data in ”A1.mat”.

For debugging purposes, I also provide you with a small dataset in A1 tiny.mat. The format
of the data in this file is the same as in A1.mat, except that each matrix has a suffix “tiny”. If
you want to experiment with the full version2 of the MINST dataset, you can get it from file
A1 full.mat. Again, all results should be reported for the data in A1.mat. However, for the
competition (problem 12), you can submit a classifier trained on the full version of the MINST
dataset. In fact, for the competition you can train on both the training and test samples contained
in A1 full.mat since the competition is based on different data (provided by students in the class).

You develop all functions in the assignment so that they can handle input data of any size.
When I ask you for training error, test error, etc. on X test, X train, etc., I always refer to the
data stored in file A1.mat.

Input/output samples: For each (non extra credit) problem, I provide sample input/output
in files with corresponding names. For example, for problem 1, the input/output sample file is
named p1 sample.

1. (5%) Some of the problems in the assignment deal with the 2-class classification problems.
Therefore, it is useful to have a function that extracts data for 2-class problem from our
multiclass data. Write a matlab function

[X out,Y out] = p1(X,Y,l1,l2)

that takes as input samples in matrix X, true labels in column vector Y, and two distinct
integers specifying labels l1, l2. The program should extract from X only the samples
whose true label is l1 or l2 and store them in output matrix X out. It should also store
the (renamed) corresponding labels in Y out. In Y out, the smaller of l1, l2 should be
renamed with 1, and the larger with 2.

For example, for input X =


1 2

−1 4
3 2
1 7
3 5

 , Y =


4
1
3
2
3

 , l1 = 3, l2 = 4,

the output of p1(X,Y,l1,l2) is X out =

 1 2
3 2
3 5

 , Y out =

 2
1
1

 .
Label 3 is renamed with 1 and label 4 with 2. You must avoid loops in this function in order
to receive the full credit. Note that the order of samples in the output can be different from
the order in the input, depending on your implementation. Useful matlab functions: find.

2. (10%) Assume multiclass setting for this problem. Write a matlab function

[err,CONF] = p2(C,T)

2The images are still reduced to the size 16 by 16 pixels, but otherwise A1 full.mat contains the same data as
the MINST dataset. Therefore you can compare your performance on the test data to what researchers were able
to get previously on the MINST dataset, see http://yann.lecun.com/exdb/mnist/.

2

http://yann.lecun.com/exdb/mnist/


that takes as an input a column vector C of classification results, and a column vector T of true
labels. Assume labels are from 1 to m, and compute m is the maximum integer contained
in C and T. The output should be the error rate err and confusion matrix CONF. Here
err is the fraction of misclassified examples, which is defined as the number of incorrectly
classified examples divided by the total number of examples. CONF is an m by m matrix
where CONF(i,j) is the number of examples of class i that are classified as class j. Thus
diagonal entries in CONF are the correct classifications, and off-diagonal entries are errors.

For example, for input: C =



3
1
1
3
2
3


, T =



2
4
1
3
3
3


, output is: CONF =


1 0 0 0
0 0 1 0
0 1 2 0
1 0 0 0

 ,

err = 3
6
. For example, CONF(3,2) = 1 because there is exactly one example (5th one) of

true class 3 that got classified as class 2.

You should try to write this function without loops. Useful matlab commands to avoid loops:
find, sub2ind, unique, hist, sum.

3. (10%) Assume multiclass setting for this problem.

(a) Write function

C = p3(X train, Y train, X test,k)

that performs kNN classification. Here X train, Y train, and X test are the training
samples, the true class of training samples, and the test samples, respectively, and k

is the parameter for kNN classifier. The output column vector C stores the classes
assigned to the test samples.

(b) Using the function you wrote in part (a), report the test errors for k = 1, 3, 5, 7. Do
you notice any trend? It is convenient to use function p2 you developed previously.

(c) Using the function you wrote in part (a), examine the confusion matrix for k = 5. It
is convenient to use the function p2. Which two digits (i,j) are most frequently
confused with each other? Is the confusion between these 2 digits symmetric (i.e. is
digit i mistaken for digit j almost as often as digit j mistaken for digit i)?

4. (5%) Assume 2-class setting for this problem. Write a function

C = p4(w,X)

that takes vector of weights w (size (d + 1) × 1), matrix X (size n× d) of samples to classify,
and performs linear classification. The output column vector C (size n× 1) stores the class
assigned to the samples in X. Assume the bias weight is stored in w(1), and the rest of the
weights in w(2:end). Positive samples should be assigned label 1, and negative label 2.

For example, for input X =

 1 2
−1 −4

3 2

 , w =

 2
−1
−3

 , the output is: C =

 2
1
2

 .

3



This is because for the first sample, we get w(1)+X(1,1)*w(2)+X(1,2)*w(3) < 0, for the
second sample, we get w(1)+X(2,1)*w(2)+X(2,2)*w(3) > 0, and for the last sample, we
get w(1)+X(3,1)*w(2)+X(3,2)*w(3) < 0.

5. (10%) Assume 2-class setting. The goal of this problem is to explore how well one can find
weights w for a linear classifier with random search.

(a) Write a function

w = p5(X train,Y train, iterNum)

that takes as an input training samples X train (size n× d) , their true class Y train

(size n × 1), and the number of iterations iterNum to run the algorithm for. At each
iteration, you should sample a random set of weights w for linear classifier and use
them to classify the training samples. The output should be the best weights w (size
(d + 1) × 1) you find, i.e. the weights that lead to the smallest error on the training
samples. Functions p2 and p4 you wrote previously are useful for this problem. Useful
matlab commands: randn. Do not use rand as it only generates positive numbers.

(b) Extract training and test data for digits 3 (class 4) and digit 8 (class 9) using function
p1. Train on training data using p5 for the case of 100, 1000, and 10000 iterations.
Report and discuss training and test error for each case. Functions p2, p4 are useful.

6. (15%) Assume 2-class setting for this problem.

(a) Write a function

w = p6(X Train,Y Train, iterNum, wInit, alpha )

that takes as an input training samples X Train, their true class Y Train, the number
of iterations iterNum, initial weights for linear classifier wInit, and learning rate alpha.
Your function should run logistic regression batch rule for iterNum iterations starting
with wInit. It should output the final vector of weights w. The input/output matrix
sizes are the same as in the previous problem. Although not required, for debugging it
is useful to compute the loss function at each iteration. It should be decreasing (almost
always) from one iteration to the next.

(b) Use the data from problem 5(b) but now train using p6 with learning rate alpha =

0.1, starting with w set to a vector of 1’s, and train for 30 iterations. Compute and
compare the training and test errors to that in problem 5(b).

7. (5%) Assume multiclass setting for this problem. Write a function

C = p7(W,X)

that takes a matrix of weights W (size m × (d + 1)) for multiclass linear classifier, matrix
of samples X (size n × d) to classify, and performs linear classification. The output column
vector C (size n × 1) is the classes (from 1 to m) assigned to samples in X. As discussed in
class, each row of W stores a discriminant function for one of the classes. The first entry in
each row is the bias weight. Thus the first column of W stores all the biases.

8. (15%) Assume multiclass setting for this problem.

4



(a) Write a function

W = p8(X train, Y train, iterNum, WInit,alpha)

that takes as an input training samples X train, their true class Y train, the number
of iterations iterNum, initial weights for linear classifier WInit, and fixed learning rate
alpha. Your function should run multiclass Perceptron single sample rule for iterNum
iterations starting with weights WInit. It should output the final matrix of weights
W. Even though it is better to reshuffle training samples, do not reshuffle for ease of
grading.

(b) Use multiclass digit training data X train and Y train to train using p8 with learning
rate alpha = 0.01. Start with W set to random, and run training for 100 iterations.
Compute and report the training and test errors. Using the confusion matrix on the
test data, find out which two digits are confused the most. Is this consistent with the
results in Problem 3(c)?

9. (10%) Assume multiclass setting for this problem.

(a) Write a function

W = p9(X Train,Y Train, iterNum, WInit, alpha )

that takes as an input training samples X Train, their true class Y Train, the number
of iterations iterNum, initial weights for linear classifier WInit, and fixed learning rate
alpha. Your function should run softmax single sample rule for iterNum iterations
starting with WInit. The output is the final matrix of weights W. Do not reshuffle
samples.

(b) Use multiclass digit training data X train and Y train to train using p9 with learning
rate alpha = 0.01. Start with W set to random, and run training for 100 iterations.
Compute and report the training and test errors. Compare the training and test errors
with those in problem 8(b).

10. (15%) Assume multiclass setting for this problem.

(a) Write a function

[net,valErr] = p10a(X train,Y train, H, regularizerWeight)

that takes as an input training samples X train, their true class Y train, number of hid-
den layers and units specified by row vector H, the weight of regularizer regularizerWeight.
This function should trains a neural network using matlab function patternnet. The
output is the trained network net and the validation error valErr. The number of
columns in H is equal to the number of hidden layers, and the entries in H give the num-
ber of hidden units in the corresponding hidden layer. For example, if H = [100,10],
a neural network 100 units in the first hidden layer and 10 units in the second hidden
layer should be trained. As in previous problems, X train stores samples as rows and
Y train is a column vector of true labels.

Brief tutorial on using matlab NN tools

This summary should be sufficient, but you can also find multiple tutorials on the web.

• Start with initializing NN as
net = patternnet(H);

Here H is exactly as described for p10 function input.

5



• Initialize the training, validation, and test folds ratio. For p10 function, we do not
need the test fold, only training and validation. Therefore, you should set training
fold to 70%, validation fold to 30%, and test fold to 0%.
net.divideParam.testRatio = 0;

net.divideParam.valRatio = 0.3;

net.divideParam.trainRatio = 0.7;

• Set regularization strength with
net.performParam.regularization = regularizerWeight;

• Call method train for training the network
[net,tr] = train(net,X,Y);

Matlab function X expects samples to be stored as columns, not rows, as in the rest
of the assignment. Also, Y should be a matrix of targets, i.e. mutli-dimensional
representation of the correct class, as in the lecture notes. Targets for each sample
are stored as columns. For each sample, all entries in its target column are zero
except there is a 1 in the row corresponding to the correct class. The output is the
trained network net and the model parameters tr that you will need to use to find
samples network used for validation.

• To classify any samples, use
Y = net(X)

Matrix X has samples stored as columns. The classificaiton result for sample stored
in column i of X is stored in column i of Y. The row of the largest entry in the ith
column of Y is the class the network assigns to the ith sample.

• To compute validation error, use tr output by the train function. Vector tr.valInd
gives the indexes of data used for validation by the network. Put these samples
through the network, and compute classification error.

(b) Write a function

[err,CONF] = p10b(X test,Y test, net)

that takes as an input samples X test, their true class Y test, trained neural network
net and outputs the error rate and confusion matrix this network has on the input
samples.

(c) Use multiclass digit training data X train and Y train to train a network using p10a.
Use one hidden layer with 100 units. Use regularization strength 0.8. Report validation
error. Using p10b, apply the trained network to the test data in X test and Y test

and report test error. Compare the test error to that in problems 8(b) and 9(b).

(d) Use validation error returned by p10 as a guide to search for the best network. Experi-
ment with different number of units in the first and second hidden layer (you can go to
more layers if you wish) and different regularization strengths. Choose as the best the
network that gives the smallest validation error. Report the best network parameters
you found (number of hidden layers, number of hidden units in each layer, regulariza-
tion strength), and also the validation error. Now apply your best network to the test
data and report the test error. Compare validation/test errors to that in part (b).

11. (Extra credit, 10%) Use provided matlab GUI brushStrokes gui for data collection. Draw
and save 5 images of each of the 10 digits (0,1,...,9). Images for digit 0 should be saved as
0 1.bmp, 0 2.bmp,...,0 5.bmp. Name convention for other digits is the same. A sample of

6



how your digits should be sized and positioned are in digitSamples.png. Images should be
saved in one directory. Submit the zipped directory through OWL by January 22.

12. (Extra Credit, 10%) Participate in competition on digit recognition dataset collected by
students in this course. Our class competition is hosted by

Kaggle https://www.kaggle.com/t/b5ed41cd9887458bac8df2f02a18121d.

From the above URL, load the data (studentCollect.mat) and the function fromMatrixtoCVS.m

that converts your matlab output into CVS format that Kaggle requires. To receive full
credit, you have to make some attempts to improve the classifier you develop in previous
problems. For example, you can use an enssemble of classifiers to make a decision, add
features, etc. Also you can train your classifier on the full dataset (including the data in
X test full and X train full).

In the written report, briefly explain what is the classifier you chose for competition sub-
mission, and what are the new about it compared to the classifiers developed in the other
problems in the assignment. The description of novelty can be just one sentence. For exam-
ple, you can say “I submit an ensemble of knn classifier on the full MINST data with k = 9,
11, 13”. Also let us know which name you used for competition on the Kaggle web site.

Submit the matlab function for the classifier you used in the competition. It should be
named

C = p12(X test),

Where X test are the samples to classify stored as rows, and C is the vector of class labels.
This function should run in a reasonable amount of time to be feasible to use in the provided
gui brushStrokes gui.m. If you need any data inside your p12 function, you can load it
inside the function with load myFile.mat. Submit any data files your function p12 needs
so that we can run it.

Optional: plug your classifier into function recognize digit so that it can be used in the
provided gui brushStrokes gui.m.

7

https://www.kaggle.com/t/b5ed41cd9887458bac8df2f02a18121d

