
CS4442b/9542b: Artificial Intelligence II, Winter 2018
Assignment 2: Computer Vision

Due: March 18

Instructions:

• This assignment is to be implemented in matlab.

• Include all code you write and a report with answers to questions. The report has
to be in PDF format. You do not need to include code/data that I give you.

• You can submit one zipped folder, but make sure it is under 10MB in size. We will
not grade zipped folders larger than 10MG.

• For most questions, I ask you to save an output image to a file with some particular
name. In addition to saving, also insert the output image into your pdf report.

• Use the function names, input/output parameters exactly as I specify.I provide
all function stubs in folder FunctionStubs , please use them. If you write helper
functions, you can give them any names you wish.

• Do not share your code/accept code from other students/web/etc. We will run an
automatic software to measure the similarity of your code to the current students
and previous year students. If there is high code similarity, the penalty is negative
assignment score. This will jeopardize your chances of passing the course.

• Extra credit counts only towards the assignments.

• Submit your assignment through OWL by 11:55pm on the due date.

Image I/O

Typing help images lists matlab functions for handling images. For this assignment you are
allowed to use only the image handling functions described in this section. You are not allowed
to use any other matlab functions specialized for images, unless you get my explicit permission.

To load an image into matrix A, use A = imread(‘filename.jpg’). If the image is grayscale,
then A has 2 dimensions. To get image width and height, use [r,c] = size(A) . Image height
(the number of rows) is r. Image width (the number of columns) is c. The top left pixel of an
image is A(1,1), the bottom right pixel is A(r,c). In the statement A(i,j), the valid range for
(i, j) is 1 ≤ i ≤ r, and is 1 ≤ j ≤ c.

For colored images, A is a 3 dimensional matrix. The third dimension corresponds to the red,
green, and blue color channels. A(i,j,1) is the red channel of pixel (i,j), A(i,j,2) is the green
channel, and A(i,j,3) is the blue channel. If you want to separate, say, the red channel of the
image image into a two dimensional array, use command R= A(:,:,1). Now R(i,j) is the red
channel of pixel (i,j). Similarly you can get the green and blue components. If you have separated
three channels of a color image into two dimensional arrays R, G, B, you can put them back
together into a three dimensional color image using A=cat(3,R,G,B).

1

When you load image into array A, it will be of type uint8, unsigned integer1. In matlab,
you cannot do much with array A if it is of unit8 type. Convert it to type double by typ-
ing A = double(A). Now you perform the usual arithmetic with A. To store double array A
as an image, convert it to type uint8 using A = uint8(A). You can convert and save with
imwrite(uint8(A),‘somename.jpg’)2. Matlab handles images in most common formats. For
example, to save in the PNG format use imwrite(uint8(A),‘somename.png’). To visualize
image inside matlab, use imagesc or image.

Throughout the assignment I specify input and out parameters as ‘gray scale image’ or ‘color
image’. It is always assumed that both gray scale and color images are in double format, not
uint8 format.

Useful matlab matrix manipulation functions for this assignment: reshape, colon, exp,
size, sum, power, zeros. Allowed matlab image processing functions are: imread, imwrite,
imresize, imagesc, image, padarray. If you want to use a function not on this list, ask me.

Intro

In this assignment, you will implement seam carving (in Problem 4) and figure-ground segmenta-
tion with interactive graph cuts (in Problem 5). In Problems 1, 2 and 3 you will implement some
functions useful for seam carving. Problems 6-7 are extra credit. You can use the interactive tool
you develop in Problem 5 to segment object masks from images and use those masks in the seam
carving algorithm.

Problem 1 (10%)

(a) Write function

outIm= applyFilter(im,F)

that takes as an input gray scale image im, a filter F and outputs the result of correlating
image im with filter F, i.e. outIm = F ⊗ im. The output image outImshould have the
same size as image im. To handle boundary issues, use the clip filter approach, i.e., pad image
with 0. Assume that F has an odd number of rows and columns. You cannot use any of the
matlab built-in methods for linear filtering, correlation, convolution, etc. You have to write
the correlation code from scratch.

(b) Apply filter

F =

 −1 −3 −1
0 0 0
1 3 1

to image ’swan.png’ and report the sum of absolute values in the output image. What is
this filter useful for?

1Command whos A will display the size and type of variable A.
2You can actually save an array of type double as image directly with imwrite command. However, in this case,

matlab assumes that your image values are in the range from 0 to 1 and clips all the values outside this range. So
if your double image has values from 0 to 255 and you save it without converting to uint8, the saved image might
be all black or white because of this clipping. If you first divide the double image by 255 and then save it, the
results will look ok.

2

Visualize the result using function stretch that I provide. Stretch takes a two dimensional
array of type double and linearly stretches its values into the range {0, 1, ..., 255}. Save your
filtered image (after it goes through my stretching function) as ’swanFiltered.png’. When
saving, do not forget to convert to uint8 type.

Problem 2 (5%)

(a) Write function

eng = computeEngGrad(im,F)

that takes as an input a color image im and outputs a gray scale image eng, which is equal
to the gradient magnitude of the input image. Compute the horizontal gradient component
based on filter F and the vertical gradient component based on the transpose of F .

Since the input is a color image, first convert it to grayscale by adding the three color channels
and dividing the sum by 3. Do not use matlab function rgb2gray as it rescales double images.
Let the resulting image be called imG. The energy image (i.e. the gradient magnitude image)
is computed as:

eng = sqrt(|F ⊗ imG|2 + |F T ⊗ imG|2)

where raising to power of two and the squared root function is applied to each matrix element
individually.

It is convenient to use applyFilter function from Problem 1.

(b) Apply the function you develop in (a) to image ’face.jpg’ with

F =
[

1 2 0 −2 −1
]
.

and report the sum of all values in the eng image. Also save your output image as to
’faceEngG.jpg’ after putting through the function stretch that I provide.

Problem 3 (5%)

(a) Write function

eng = computeEngColor(im,W)

that takes as an input a color image im, a vector W of size 3 for color based energy, and and
outputs color-based energy image eng. Vector W gives the weights for the color components.
Specifically, if imR, imG, imB denote the color components of image im, the output of your
function should be

eng = W (1) · imR +W (2) · imG +W (3) · imB.

(b) Apply the function you develop in (a) to image ’cat.png’ with W = [−3 1 − 3]. Report
the sum of values in the energy image. Save the output as ’catEngC.png’ after putting it
through the function stretch that I provide.

3

Problem 4 (55%) Seam Carving

In this problem you are to implement the seam carving algorithm. The energy is based on gradient,
color, and image mask. When resizing an image, a mask should be resized as well. To implement
this efficiently, most of the subroutines you are to develop will work with an image that has four
channels: the first three are the usual color channels, and the last channel is the mask. For
example, say the three channels R,G,B of the color image are:

11 12 13
14 15 16
17 1 8 19

21 22 23
24 25 26
27 28 29

31 32 33
34 35 36
37 38 39

and the mask M is:

1 0 -1
0 0 1
-1 1 1

To create an image with 4 channels, concatinate them along the third dimension with matlab
command cat(3, R,G,B,M). This will create the following matrix with 4 channels:

11 12 13
14 15 16
17 1 8 19

21 22 23
24 25 26
27 28 29

31 32 33
34 35 36
37 38 39

1 0 -1
0 0 1
-1 1 1

Suppose the above matrix with 4 channels is called im4. To access the color of pixel (r, c), use
im4(r, c, 1 : 3). To access the mask of pixel (r, c), use im4(r, c, 4).

To separate the color image from the 4-channel image, use im = im4(:, :, 1 : 3). Matrix im is
now the original color image. To separate the mask from the 4-channel image, use m = im4(:, :, 4).
Matrix m is now the original mask. In this assignment, whenever I refer to the 4-channel image,
I mean this combination of color and mask matrix.

(a) (5 %) Implement function

eng = computeEng(im4, F, W, maskW)

that takes as an input 4-channel image im4, a filter F to use for gradient energy, a weight vector
W to use for color energy, and the weight of the mask maskW. This function should compute
and return energy for seam carving that is the sum of gradient, color, and mask energies. For
gradient and color energies, you should reuse your previously implemented functions. The
mask energy is simply the maskW multiplied by the mask channel. In formula,

eng = computeEngGrad(im4(:, :, 1 : 3), F)+computeEngColor(im4(:, :, 1 : 3),W)+maskW∗im4(:, :, 4)

(b) (5 %) Implement function

4

imOut = removeSeamV(im4,seam)

that takes as an input a 4-channel image im4, a vertical seam and returns the input 4-channel
image with the seam removed. Recall that a vertical seam is a vector of the same size as
image height. That is the length of vector seam is equal to the number of rows in im4. Also,
seam(i) specifies the index of the column to remove in row i of image im4. Specifically, for
each i, pixel (i,seam(i)) is to be removed. If im has r rows and c columns, the output image
imOut has r rows and c-1 columns. Both im4 and imOut are 4-channel images. So when
you remove pixel (i,seam(i)), you must remove all of its 4 channel values.

(c) (5 %) Implement function

imOut = addSeamV(im4,seam)

This is the same function as in part (a), but now a vertical seam is added to im4. If im4
has r rows and c columns, the output image imOut has r rows and c+1 columns. Both im4
and imOut are 4-channel images. So when you add pixel (i,seam(i)), you must add all of
its 4 channel values.

(d) (5 %) Implement function

[M,P] = seamV DP(E)

that takes as an input a gray scale energy image E, and performs dynamic programming
for finding the optimal vertical seam. This function should return arrays M and P that are
constructed during dynamic programming. The sizes of M,P,E are equal. If during dynamic
programming the smallest cost path is not unique, you should chose the leftmost column for
the path3.

(e) (5 %) Implement function

[seam,c] = bestSeamV(M,P)

that takes as an input arrays M,P constructed in part (c) above, and computes and returns
the best seam and its cost c.

(f) (5 %) Implement function

[seam,im4Out,c] = reduceWidth(im4,E)

that takes as an input a 4-channel image im4, its corresponding energy image E and reduces
the width of the input image by one column, using the functions you have implemented above.
Namely, you should find the best vertical seam and remove it from im4, thus reducing the
width. The output should be the removed seam, the input 4-channel image reduced in size
by one column, and the cost of the removed seam c.

3That is, following the pseudo-code notation in the lecture notes, if there is no unique smallest number among
option1, option2, option3 option with the smallest subscript should be preferred

5

(g) (5 %) Implement function

[seam,im4Out,c] = reduceHeight(im4,E)

which is exactly the same as the one in (e) except it reduces the width of the image by removing
one row. For implementation, I suggest transposing4 the input 4-channel image and the energy
E after which you can reuse ReduceWidth function you have implemented above. Note that
the image should be transposed twice, before ReduceWidth and after ReduceWidth.

(h) (5 %) Implement function

[seam,im4Out,c] = increaseWidth(im4,E)

that is the same as reduceWidth in part (e), except the image width is increased.

(i) (5 %) Implement function

[seam,im4Out,c] = increaseHeight(im4,E)

that is the same as reduceHeight in part (f), except the image height is increased.

(j) (5 %) Reusing the functions you have developed in parts (a-i), implement function

[totalCost,imOut] = intelligentResize(im,v,h,W, mask,maskWeight)

that takes input color image im, the number of vertical seams to process v, the number of
horizontal seams to process h, the weight vector W for the color energy, and the mask image
with its weight maskWeight. The sign of v and h signal insertion/removal of seams. Positive
sign means seam insertion, negative seam removal.

Always process seams in alternating order, starting with a horizontal seam. For example, if
v = 4 and h = 2, then seam processing is done in order: horizontal insert, vertical insert,
horizontal insert, vertical insert, vertical insert, vertical insert. If v = -2 and h = 4, then
seam processing is done in order: horizontal insert, vertical remove, horizontal insert, vertical
remove, horizontal insert, horizontal insert.

For gradient energy, use filter F = [−1, 0, 1]. You should first construct the 4-channel image
im4 by concatenating the color image with its mask, as explained in the beginning of the
problem description. Then you should compute energy E and carve out the first seam. Re-
compute E for the new reduced/enlarged im4 after each seam carving operation5.

The output of your function should be the sum of all seams carved and the output carved
color image.

If you wish, you can record a seam removal/insertion movie, using videowriter command.
You can paint in red the inserted/removed seam using output parameter seam that functions
increaseHeight,decreaseHeight,increaseWidth,decreaseWidth return.

4Transposing an image will change columns into rows and transposing back returns rows into columns.
5You you want more efficiency, you can recompe E only around the changed part of the 4-channel image, i.e.

around the location of the carved out seam.

6

(k) (5 %) Apply intelligentResize to ‘cat.png’ with v=-20, h= -20, W=[1, -2, 1], and zero
mask (i.e. mask has no effect on the energy). Save the output as ’catResized.png’. Report
the total cost of all seams.

Apply intelligentResize to ‘face.jpg’ with v = −20, h = −20, W=[1, -2, 1], mask in
image ’faceMask.png’ and maskWeight = -100. Save the output as ’faceResized.png’.
Report the total cost of all seams.

Generate 1-3 examples of seam carving with your program and include them in the report.
Show only the final result. Use either your own images or my images with new parameter
setting for seam carving. Describe the energy you used and how many vertical/horizontal
seams were removed/added.

(l) (0 %) Just for fun. Submit one of your seam carving results for the best result competition.

Problem 5 (25%) Interactive Figure-Ground Segmentation

You will use interactive segmentation tool brushStrokes gui for this problem. Invoke it from
matlab command line by typing brushStrokes gui. Use load Image button to load an image6.
Paint foreground/background strokes using mouse and buttons FG label, BG label for switching
between the stroke types. Brush size can be changed by using the scroll down Scribble Radius
menu. You can use buttons Clear Curr Stroke and Clear All Strokes to remove strokes. Use
Segment button to invoke the segmentGC function that performs segmentation. You are to
implement this function. After it finishes, a new figure window will pop showing the foreground
object against the black background.

In folder ToStudents\Code\forFG there are many files needed to support computation of
the minimum cut. For the program to work, you need all of these files. However, you only need
to know/use the following two:

• segmentGC.m This is the function to fill in with the code for figure-ground segmentation.
I created this file so that brushStrokes gui GUI does not crash on invocation. Currently
segmentGC returns whole image as the foreground object. Fill it in with your segmentation
code, see part (a) below.

• [labels,eng start,eng finish] = solveMinCut(dataB,dataF,W) This is function for
computing the minimum cut on a graph. You should use it, but do not make any changes
to it. I explain how to use this function in Figure 1. Also see comments in the file solveM-
inCut.m itself.

(a) (20 %) Fill in implementation for function

[segm,eng finish] = segmentGC(im,scribbleMask,lambda,numClusters,inftyCost)

that takes a color input image im, foreground/background scribbles scribbleMask, the
strength of regularization lambda, number of clusters for kmeans numClusters, and cost to
set the infinity links to inftyCost. In scribbleMask, foreground seeds have value 2, back-
ground seeds have value 1, and the rest of the pixels are 0. This function should compute

6Please note that only color images can be processed with brushStrokes gui.

7

Figure 1: First row: pixel indexes, data terms for background and foreground, and the edge weights
between neighboring pixels. Second row: the input to function solveMinCut(dataB,dataF,W).
Each row of W specifies the graph edges. The rows of W can be in any order but column order
has to stay the same. That is the order, in each row is: node i, node j, the weight of the edge
between nodes i and j. Note that all edge information has to be repeated twice in W, once for each
direction. For example, the edge between pixels 1 and 3, which has weight 2, appears in the first
row (from 1 to 3), and in the second row (from 3 to 1). Arrays dataB, dataF, labels follow the
order imposed by pixel names. In this example, the image is indexed in the column-wise manner.
But you can index it in row-wise manner, if you wish. As long as pixel names are consecutive
integers from 1 to n, where n is the total number of pixels, any indexing will work. The optimal
segmentation corresponding to the output labels is shown on the bottom right. Blue means the
foreground and red background. The output energy values are eng start = 13, eng end = 12.

8

interactive figure-ground minimum cut segmentation and output the segmentation mask segm
as well as the final energy eng finish. The size of segm is the same as the input image size.
It should have two values: 1 for foreground pixels and 0 for background pixels.

If the input parameter numClusters is set to a value bigger than 0, you should use kmeans
to quantize image into numClusters color clusters and implement histogram based color
models for the foreground/background. Smooth histograms by adding 1 to every bin count,
as explained in class. Otherwise (if numClusters = 0), use just the infinity constraints
corresponding to the user scribbles for the data terms. Input parameter inftyCost specifies
the large value you should set your infinity cost links to. I recommend to keep inftyCost
around 1000, otherwise the graph cut library might have overflow issues for larger images.

You can use the matlab built in function kmeans that computes kmeans. Also helpful com-
mands to use are clusters and hist.

You are to implement contrast-sensitive weights

wpq = lambda · e−
|f(p)−f(q)|2

2σ2 .

Here lambda is set to the input parameter lambda and σ2 is computed as the average of
squared intensity differences between neighboring image pixels.

If you implement data costs just based on user interaction (without kmeans based models),
you will get 5% off this assignment part, i.e. maximum score is 15 instead of 20. In this case,
when input parameter numClusters is set to a value bigger than 0, your program should
terminate with a message that kmeans clustering is not implemented, to alert the teaching
assistant. Your code will run much faster if you implement this function without loops.

You can experiment with your program interactively using brushStrokes gui. This pro-
gram calls segmentGC internal each time the user presses “segment” button. Inside seg-
mentGC internal, parameters lambda, inftyCost, numClusters are loaded from file
“param.mat” if this file is present, or set to some default values. Then segmentGC internal
calls your function segmentGC. Therefore, if you want to change parameters lambda, in-
ftyCost, numClusters from my default values to your own, you should store them in file
“param.mat”. Use command save(‘param.mat’,’lambda’,’numClusters’,’inftyCost’) to
save just the parameters you need in file “param.mat”.

(b) (5%) Save labeling results into file “faceL.png” after you run your program on image “face.jpg”
with parameters: segmentGC(im,scribblesFace,50,50,1000). Here scribblesFace is provided in
file “q5.mat”. Also report the final energy. If you do not implement kmeans clustering data
terms, provide results for segmentGC(im,scribblesFace,50,0,1000).

Save labeling results into file “liftL.png” after you run your program on image “lift.jpg” with
parameters: segmentGC(im,scribblesLift,50,50,1000). Here scribblesLift is provided in file
“q5.mat”. Also report the final energy. If you do not implement kmeans clustering data
terms, provide results for segmentGC(im,scribblesLift,50,0,1000).

If your code runs very slowly on ‘face.jpg’ and ‘lift.png’, use the smaller versions of these
images, ‘faceSmall.jpg’ and ‘liftSmall.jpg’. Use scribblesFaceSmall and scribblesLiftSmall as
well in this case. Make sure to indicate in your assignment report if you are using smaller
images.

9

Problem 6 Extra Credit (10%)

Develop an interseting modification of the seam carving algorithm. For example, you can think of
a new term for the energy, or improve the repetitive-looking results that our current seam inser-
tion procedure tends to produce, etc. Implement your idea and illustrate/discuss the new image
generation results of your modified seam carving that were not possible before. Chose a mean-
ingful function name and input/output parameters as you wish. Explain what the input/output
parameters are.

Problem 7 Extra Credit, CNN (10%)

Download and install ConvNet matlab package from http://www.vlfeat.org/matconvnet/, ver-
sion 1.0-beta23. You should follow the installation instructions. If you have trouble with MEX
(compiling C++ code in matlab), you can take files in ToStudents\Code\CNN CodeToStudents\Mex
directory and copy them into your directory matconvnet-1.0-beta23 \matlab\mex. I provided
you with the code that trains a basic CNN network on the training data and evaluates the result
on test data on MNIST dataset.

The main function to call is cnn run. Before you call it, change directory names (the first two
lines of file setup.m to the correct that have the data on your computer in file setup. During train-
ing, the code displays ”traintop1err” and ”traintop5err”. You should be looking at ”traintop1err”
as classification error.

Change the network structure by adding more stages to get a better classification rate. The
network structure is built in file initializeCNN basic.m. This is the file you should change
to build a better network structure. In this file, you can also change all the important meta
parameters of the network such as momentum, learning rate, etc. You should hand in this file,
as well as describe in the report the changes you made and the test error on MNIST dataset.
You should also run your new network on the competition data on the Kaggle Weband report the
result.

10

