
CS4442b/9542b: Artificial Intelligence II, Winter 2017
Assignment 3: Language Models

Due: April 11

1 Submission instructions

• Submit through OWL by 11:55pm on the due date.

• The extra credit in the assignment does not transfer to quizzes.

• In a few places, I ask you to discuss results. As long as you say something reasonable (i.e.
related to the question), you will get the credit.

• Report should be in pdf format.

• Make sure your zip file for submission is no more than 10MB

• VS creates a lot of auxiliary files that may result in super-big size of the zip. To ensure appro-
priate size, run ”clean solution” option before submitting your solution folder. If that doesn’t
help, use plugin that can create ”clean” archives https://marketplace.visualstudio.

com/items?itemName=RonJacobs.CleanProject-CleansVisualStudioSolutionsForUploadi

• We will not charge late penalty but you will get extra credit of 5% if you hand in your
assignment by April 11.

• Submit your Microsoft Visual Studio workspace in a single zipped file with name

A3 <first name> <last name>.zip. Your workspace should have separate projects corre-
sponding to problems: i.e. P1, P2, P3, P4, P5, P6, P7. Plus, if you choose, optional
P8. Your workspace can include any additional projects, if needed. The structure of your
submission should be as below.

A3_<first_name>_<last_name>.zip

|

--- A3_<first_name>_<last_name>

|

|-- Ngrams

| |

| --- <my *.cpp, *.h, *.vcxproj>

|

|-- Ngrams.sln

|

|-- P1

| |

| --- <your *.cpp, *.h, *.vcxproj for problem #1>

|

|-- P2

| |

| --- <your *.cpp, *.h, *.vcxproj for problem #2>

1

https://marketplace.visualstudio.com/items?itemName=RonJacobs.CleanProject-CleansVisualStudioSolutionsForUploadi
https://marketplace.visualstudio.com/items?itemName=RonJacobs.CleanProject-CleansVisualStudioSolutionsForUploadi

...

|-- PN

|

--- <your *.cpp, *.h, *.vcxproj for problem #N>

2 Code Provided

2.1 Intro

In this assignment, you will work with character and word (string) based language models. To
efficiently store and count nGrams, you should use either hash tables or balanced search trees. C++
standard library has hash table named unordered map. I provide you with code that illustrates
efficient nGram processing using unordered map, both in the case of character (char) and word
(string) models. If you wish, you can store nGrams using another data structure, but make sure
it is an efficient implementation (such as a hash table or a balanced tree).

I also provide code to read from files. You must use this code, in order to make sure parsing is
done in a consistent way. Lastly, I provide you with code to sample from a probability distribution
(for random sentence generation, problem 3) and code to compute edit distance between strings
(for spell checking application, problem 6).

All code was compiled and tested under MS studio 2010.

2.2 Code Provided

2.2.1 fileRead.h,fileRead.cpp

Contains code for reading from files. You will need the following functions.

• void read tokens(const std::string & filename, std::vector<std::string> & tokens,

bool eos) : reads file from filename into a vector of string. If eos = true, then reads
end of sentence marker as a special string EOS.

• void read tokens(const std::string & filename, std::vector<char> & tokens, bool

latin only): reads file from filename into a vector char. If latin only = false, it reads
all characters from file. If latin only = true, it reads only Latin characters and converts
upper case to lower case.

• EOS = "<EOS>": special marker for end of sentence.

2.2.2 test.cpp

Illustrates how to build character model and string model based on C++ unordered map, which
is a hash table. I will use terms hash table and unordered map interchangeably.

For word (string) language model, you should have typedef string T . For character (char)
language model, you should have typedef char T.

In both cases, an nGram is represented as a vector<T>. This vector serves as a key into the
hash table. I use int as the value associated with the key to give the count of how many times
nGram (vector<T>) occurred in the text data. When I insert a new nGram, I set its count to 1.
If I read that nGram again from the text, I update the count by 1.

2

One should be careful when using unordered map built-in function count(key). Despite being
called count, it has only two return values: 0, in case key is not in the hash table, and 1 if key
is in the hash table. To see how often key occurs in the unordered map, that is the value
associated with the key, use the square bracket operator. But also be aware that the squared
bracket operator will insert a new entry in the hash table if entry with the given key is not already
in the unordered map.

To illustrate, suppose h is unordered map, and currently does not have key "abc". If you use
h["abc"], it will cause entry with key "abc" to be inserted into h with some default value in the
value field (which is of type int in our case). Thus to check if there is an entry with key "abc", use
h.count("abc"). However, remember that if h.count("abc") returns 1, all this means that an
entry with key "abc" is in your hash table h. The actual count of how many times nGram "abc"

was read from file is in the value field associated with key "abc". You access it with h["abc"].
At this point, accessing h["abc"] is fine, since you already know that key "abc" is in your hash
table.

2.2.3 VectorHash.h

• class VectorHash: class needed for unordered map in function to construct a hash table
for vector keys. You just need to include this into your project.

2.2.4 utilsToStudents.h

• int drawIndex(vector〈 double 〉 &probs)): samples from probabilities given in input
vector of probabilities. Checks that input probabilities approximately add to 1. Use this for
the problem of random sentence generation.

• size t uiLevenshteinDistance(const std::string &s1, const std::string &s2): Com-
putes distance between two strings. Use it for the spell checker problem.

2.3 Samples of Input and Output

Folder InputOutput has sample input and output for this assignment.

2.4 Texts

Folder Texts contains text files and language files for this assignment.

Problem 1 (10 %)

This problem investigates word distribution in English language and whether it is true that it is
enough to know 100 words of English to read about 50% of the text. Read string tokens without
EOS markers.

(a) Write a program P1 which takes as command line arguments the name of the text file and
a value of k. Your program should compute counts of words in an input file and output k
most frequent words together with their counts, one per line, word and its count separated
by comma. Your program should also compute what percentage of words in the input file are

3

among the most k frequent words. For example, to output 4 most frequent words from file
“text.txt”, your program is invoked as

P1 text.txt 4

The output format should be:

and, 4

all, 2

the, 2

their, 2

33.3333 %

(b) How many words do you need to know to read about 50% of “DostoevskyKaramazov.txt” and
“DrSeuss.txt”? In other words, what should k be set for the most frequent words parameter
to get the output from the above program around 50% for these two texts?

Problem 2 (10 %)

This problem investigates language sparseness. Use the word language model. Do not read EOS
for this problem.

(a) Write a program P2 that takes as the command line arguments the names of two text files,
the size n for the nGram, and the last parameter that indicates whether to print out common
nGrams or not. The program should count and print to the standard output the percentage
of nGrams in the second text file that do not occur in the first text file. If the last input
parameter is 1, the program should print out the common nGrams between the two files, one
per line. If the last parameter is 0, your program should not print out common nGrams.

For example, if we want to count 5-Grams without printing, the program should be executed
with:

P2 text1.txt text2.txt 5 0

The output format should be:

65.001

If we want to count 6-Grams with the printing option, the program should be executed with:

P2 text1.txt text2.txt 6 1

The output format should be:

he thought much better of it

I can play piano in the

75.001

4

(b) Take two parts of the same novel, “DostoevskyPart1.txt” (as the first input file) and “Dosto-
evskyDostoevskyPart2.txt”(as the second input file). Use your program to compute and write
down the percentages of zero count nGrams for n = 1, 2, 3, ..., 6. What is the value of n that
gives no common nGrams between the two files? What is (are) the largest common nGram
for these files?

(c) Repeat part (b) for different writers, “Dickens.txt” (as first) and “KafkaTrial.txt” (as second).

(d) Repeat part (b) for the“opposite” writers, “MarxEngelsManifest.txt” (as first) and “Smith-
WealthNations.txt” (as second).

(e) Discuss the difference in results between parts (b,c,d).

Problem 3 (15 %)

This problem is about random text generation according to ML language model. Use string model
read EOS markers.

Random Sentence Generation
Let vocabulary V be all unique words in the input text file. Let m denote the size of V . Let

vocabulary words be indexed with integers in the range from 0 to m. Thus, our vocabulary V =
{v0, v1, ...vm−1}. You will generate a sequence of words w1, w2, ..., stopping sentence generation
when EOS marker is generated.

Case 1: If n = 1, then each word in a sentence is generated independently (no context).
Compute P (v) for all words v ∈ V , according to the ML unigram model. Store the computed
probabilities in a vector<double> probs, where probs[i] = P (vi), for i ∈ {0, 1, ...,m − 1}. To
generate the first word, use provided function int drawIndex(vector<double> &probs). The
output of drawIndex() is the index of the word chosen. For example, if the output is 10, this
means that v10 is chosen, and you set the first word in the sentence w1 to v10. Generate all other
words in the same way, stopping when EOS is generated.

Case 2: If n > 1, then there is context. For the first word w1, its context (previous word) is
EOS marker. Use ML to estimate P (v|EOS) for all v ∈ V . Store these probabilities in the vector
probs and generate the first word w1 using drawIndex(probs). To generate the second word, use
ML to estimate P (v|w1) for all v ∈ V , store these probabilities in vector probs and generate the
second word w2 using drawIndex(probs). Continue this procedure until you generate the EOS

marker.
Note that if n > 2, then as more context becomes available, you should use it. For example,

if n = 3, then to generate the third (and forth, and so on) word, you should use two previously
generated words for context. To be precise, to generate the kth word in the sentence wk, sample
from P (v|wk−n+1, ..., wk−1), where wk−n+1, ..., wk−1 are n− 1 previously generated words.

Make sure to initialize random seed generator with something like srand(time(NULL)).

(a) Write a program P3 which takes as command line arguments the name of a text file and the
size n of the nGram model. Your program should construct an ML (maximum likelihood)
language model from text.txt, and generate and print out a random sentence according to
the procedure described in class and summarized above. For example, to generate a sentence
using trigram model learned from from file text.txt, the program should be invoked with

P3 text.txt 3

5

(b) Run your program on “KafkaTrial.txt” with n = 1, 2, 3, 4, 6. Discuss your results, pay partic-
ular attention to the case of n = 1 and n = 6. You might want to look inside “KafkaTrial.txt”
to interpret your results for n = 6.

(c) Set n = 3 and generate a random sentence from “MarxEngelsManifest.txt”. Compare them
with the results generated from “KafkaTrial.txt”.

(d) Just for fun: Submit the funniest sentence from your program generated with either n = 2 or
3 from any text file you wish. I will run a poll for selecting the funniest sentence.

Problem 4 (10 %)

This problem is about Add-Delta language model. Use word model and do not read EOS markers.

(a) Write a program

P4 textModel.txt sentence.txt n delta

that builds Add-Delta model from text in file textModel.txt for n-grams with delta. The pro-
gram should read the sentence in the second file sentence.txt and output its log probability
to the standard output.

For example, to model language from file textModel.txt, estimate log probability of sentence
in file sentences.txt, build a 5-Gram Add-Delta model with delta = 0.1, use:

P4 textModel.txt sentences.txt 5 0.1

The output should be formatted as

-55.09

Set vocabulary size to the number of unique words in file textModel.txt plus one. We add
one to account for all the words that occur in file sentence.txt but do not occur in file
textModel.txt. Intuitively, this is maps all words that are not in our model file to the same
word “UNKNOWN”.

Implementaiton notes:

• Use double data type for probabilities to avoid underflows.

• To avoid integer overflows, use double instead of int.

• Be careful if your count variables are integers. With integer division, count of 2 divided
by count of 5 is 0, but the correct answer is 0.4. Cast integers to double before division.

• The output of your program is log probabilities (to avoid underflow), therefore your
output should be a negative number, since log(x) ≤ 0 for x ≤ 1.

• Make sure that your program works for the special case of unigrams (n = 1).

• If delta = 0, then Add-Delta model is equivalent to ML model and some sentences will
have probability 0. In this case, your program should not crash but output the maximum
negative number in double precision, which is pre-defined in the compiler as -DBL MAX.

6

(b) Run your program and report the output of your program for the following cases:

• P4 KafkaTrial.txt testFile.txt 1 1

• P4 KafkaTrial.txt testFile.txt 2 1

• P4 KafkaTrial.txt testFile.txt 2 0.001

• P4 KafkaTrial.txt testFile.txt 3 0.001

Problem 5 (15%)

This problem is about Good-Turing language model. Use word model and do not read EOS
markers.

(a) Write a program

P5 textModel.txt sentence.txt n threshold

that builds Good-Turing model from text in file textModel.txt for n-grams with parameter
threshold. The program should read the sentence in the second file sentence.txt and output
its log probability to the standard output. Recall that the threshold for Good-Turing is used
as follows. If an nGram has rate r < threshold, use Good-Turing estimate of probability.
If r ≥ threshold use ML estimate of probabilities.

For example, to model language from file textModel.txt, estimate log probability of sentence
in file sentence.txt, build a 4-Gram Good-Turing model with threshold = 6, use:

P5 textModel.txt sentence.txt 4 6

The output should be formatted as

-55.09

Just as in Problem 4, set vocabulary size to the number of unique words in file textModel.txt
plus 1.

Implementaiton notes:

• Do not forget to renormalize so that probabilities add up to 1.

• If the user sets threshold so high that Nr=0 for some r < threshold, then some esti-
mated GT probabilities will be 0. Before computing probabilities, loop over Nr to check
that they are not zero for all r ≤ threshold. You have to do this separately for 1-grams,
2-grams, ..., n-grams. If needed, reset threshold to a lower value so that Nr>0 for all r
< threshold.

• Use GT probabilities for all n-Grams. Namely, if input n = 3, you will need tri-grams,
bi-grams, and unigrams to compute probability of a sentence. Use GT estimates for all
of them.

(b) Run your program and report the output of your program for the following cases:

• P4 KafkaTrial.txt testFile.txt 1 1

• P4 KafkaTrial.txt testFile.txt 2 5

• P4 KafkaTrial.txt testFile.txt 3 5

7

Problem 6 (20 %)

In this problem we will use Add-Delta language model to classify which human languages (i.e.
English, French, etc.) a given sentence is written in. Use the character based language model that
reads all the characters, i.e. latin only = false. Set vocabulary size to 256.

Folder Languages contains training and test files for six languages. Each language file has
the name corresponding to the language. Training files have endings 1.txt (english1.txt,
danish1.txt, etc), and test files have ending 2.txt (english2.txt, danish2.txt, etc). Assume
that all the text files are stored in the same directory where the program is run, so you do not
have to specify their location.

Train the language models, separately, for each language on training files, i.e. those ending
in 1. Language classification is performed as follows. Given a sentence, compute its probability
under French, English, etc. language models and classify the sentence with the language giving
the maximum probability. For this problem, a sentence is a sequence of characters of fixed length
senLen, given as an input parameter. You need to parse an input file into consecutive chunks
of characters of length senLen, and classify each chunk. If the last chunk is of length less than
senLen, it should be omitted from classification.

Your program should output the total error rate (in percents), and the confusion matrix. The
total percentage error rate for all languages is the overall number of misclassified sentences in all
language files divided by the overall number of sentences in all language files, multiplied by 100
to express as percentage.

The confusion matrix is a 6 by 6 array, where C(i,j) is the number of sentences of language i

that were classified as language j. That is diagonal has the correct classifications, and off-diagonal
wrong classifications.

(a) Write program P6 for language identification. Your program is invoked with

P6 n delta senLength

Where n is the size of the nGram, delta is the parameter for Add-Delta, and senLength is
the sentence length.

The output of your program should be formatted as:

16.79

134 3 0 0 0 1

24 341 1 0 0 0

38 2 85 0 0 0

23 1 0 213 0 0

26 9 1 3 221 0

77 2 0 0 0 50

Where the first line is the percentage error rate, and the next size lines is the confusion matrix.

(b) Run your program and report the error rate on the following cases:

• P6 1 0 50

• P6 2 0 50

• P6 3 0 50

8

(c) Run your program and report the error rate on the following cases.

• P6 1 0.05 50

• P6 2 0.05 50

• P6 3 0.05 50

(d) Run your program and report the error rate on the following cases:

• P6 3 0.05 50

• P6 3 0.005 50

• P6 3 0.0005 50

(e) Compare and discuss the performance between (b,c,d).

(f) Explore and discuss how classification performance changes with the sentence length by run-
ning your program on the following cases:

• P6 2 0.05 10

• P6 2 0.05 50

• P6 2 0.05 100

Problem 7 (20 %)

In this problem you will develop a simple spell-checker.

(a) Write a spelling program P7 that is invoked with:

P7 textTrain.txt textCheck.txt dictionary.txt n t delta model

The input parameters are as follows: name of text file for model training, name of text file to
check spelling, name of text file with dictionary, n for the nGram model, threshold for Good-
Turing, delta for Add-One smoothing, model to use. As before, if model = 0 use Good-Turing,
and if model = 1 use Add-Delta.

Use word language model without reading EOS markers to read textTrain.txt and dictionary.txt.
File textCheck will contain several sentences (one per line) to check spelling of. Check
each sentence separately. It is convenient to read textCheck.txt with EOS marker to sep-
arate into sentences. Output the result of checking separately on new line. For example, if
textCheck.txt has sentences:

I lke to eat cereal in the morning.

Pla nicely!

The output should be formatted as:

i like to eat cereal in the morning

play nicely

We will assume that there is only one misspelled word per sentence. For each word w in the
sentence, find all candidate words in the dictionary with edit distance of ≤ 1 from w, using

9

the function uiLevenshteinDistance(). Let C(w) be the set of such candidate words for w.
We also include w in C(w).

As discussed in class, we will consider all possible sentences where one word w is replaced with
a word from C(w). This means you should iterate over all words in the sentence, and for each
word w iterate over all words in C(w), replacing w with a word from C(w) to generate the next
possible sentence.

You will implement a simpler version than what was discussed in class. Instead of implement-
ing the noisy channel model, you just select a sentence with the highest probability according
to the language model. Print to the standard output the best sentence. Note that the highest
probability sentence can be the unchanged input sentence.

(b) Report and discuss the results of your program for the following cases:

• P7 trainHuge.txt textCheck.txt dictionary.txt 2 3 1 1

• P7 trainHuge.txt textCheck.txt dictionary.txt 2 3 0.1 1

• P7 trainHuge.txt textCheck.txt dictionary.txt 2 3 0.01 1

(c) Report and discuss the results of your program for the following cases:

• P7 trainHuge.txt textCheck.txt dictionary.txt 1 3 0.01 1

• P7 trainHuge.txt textCheck.txt dictionary.txt 2 3 0.01 1

• P7 trainHuge.txt textCheck.txt dictionary.txt 3 3 0.01 1

(d) Report and discuss the results of your program for the following cases:

• P7 trainHuge.txt textCheck.txt dictionary.txt 1 3 1 0

• P7 trainHuge.txt textCheck.txt dictionary.txt 2 3 1 0

• P7 trainHuge.txt textCheck.txt dictionary.txt 3 3 1 0

Extra Credit Problem 8 (20 %)

Implement program P8 that improves your spelling correction program in problem 7 in any way.
You can build a better language model, implement the noisy channel model discussed in class,
implement a better edit distance between strings. Hand in your improved program, and re-
port/discuss the cases where your new program does something better compared to the old pro-
gram.

10

	Submission instructions
	Code Provided
	Intro
	Code Provided
	fileRead.h,fileRead.cpp
	test.cpp
	VectorHash.h
	utilsToStudents.h

	Samples of Input and Output
	Texts

