CS4442/9542b Artificial Intelligence II Prof. Olga Veksler

Lecture 2
Introduction to ML
Basic Linear Algebra
Matlab

Some slides on Linear Algebra are from Patrick Nichols

Outline

- Introduction to Machine Learning
- Basic Linear Algebra
- Matlab Intro

Intro: What is Machine Learning?

- Difficult to come up with explicit program for some tasks
- Digit Recognition, a classic example

$$
0 \rightarrow 0 \quad 4 \rightarrow 4
$$

- Easy to collect images of digits with their correct labels

$$
\begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9
\end{array}
$$

- Machine Learning Algorithm takes collected data and produces program for recognizing digits
- done right, program will recognize correctly new images it has never seen

Intro: What is Machine Learning?

Traditional Programming

Machine Learning

Intro: What is Machine Learning?

- General definition (Tom Mitchell):
- Based on experience \mathbf{E}, improve performance on task \mathbf{T} as measured by performance measure \mathbf{P}
- Digit Recognition Example
- $\mathbf{T}=$ recognize character in the image
- $\mathbf{P}=$ percentage of correctly classified images
- $\mathbf{E}=$ dataset of human-labeled images of characters

Different Types of Machine Learning

- Supervised Learning
- given training examples with corresponding outputs
- learn to produces correct labels for new examples
- Unsupervised Learning
- given training examples only
- discover good data representation
- e.g. "natural" clusters
- not covered
- Reinforcement Learning
- learn to select action that maximizes payoff
- not covered

Two Types of Supervised Machine Learning

- Classification
- output belongs to a finite set
- example: age $\in\{b a b y$, child, adult, elder\}
- output is also called class or label
- Regression
- output is continuous
- example: age $\in[0,130]$

Supervised Machine Learning

- We are given examples with corresponding outputs
- Fish classification example (salmon or sea bass)

salmon
$\mathbf{y}^{1}=0$

sea bass
$y^{2}=1$

salmon
$\mathbf{y}^{3}=0$
$\mathbf{x}^{4}=\left[\begin{array}{l}6.4 \\ 7.0\end{array}\right]$

sea bass
$y^{4}=1$
- Each example is represented in vector form
- data may be given in vector form from the start
- if not, for each example \mathbf{i}, extract useful features and put them in a vector $\mathbf{x}^{\mathbf{i}}$
- fish classification example
- extract two features, fish length and average fish brightness
- can extract as many other features
- can also use raw pixel values as features (for images)
- An example is often called feature vector
- Each output is represented with integer $\mathbf{y}^{\mathbf{i}}$

Supervised Machine Learning

- We are given

1. Training examples $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{n}$
2. Target output for each sample $\mathbf{y}^{1}, \mathbf{y}^{2}, \ldots \mathbf{y}^{\mathrm{n}}$

- labeled data
- Training phase
- estimate function $\mathbf{y}=\mathbf{f}(\mathbf{x})$ from labeled data
- \mathbf{f} is called classifier, learning machine, prediction function, etc.
- Testing phase (deployment)
- predict label $\mathbf{f}(\mathbf{x})$ for a new (unseen) sample \mathbf{x}

Training/Testing Phases Illustrated

Training

```
training examples
    0000000006
    1111/111111111
    222222222
    333333n33
    4444444444
    E5\5\55S55
    6666666666
    7777777777
    8888888888
    9999999999
```


Testing

label prediction

More on Training Phase

- Estimate prediction function $\mathbf{y}=\mathbf{f}(\mathbf{x})$ from labeled data
- Choose hypothesis space $\mathrm{f}(\mathbf{x})$ belongs to
- hypothesis space $\mathbf{f}(\mathbf{x}, \mathbf{w})$ is parameterized by vector of weights \mathbf{w}
- each setting of \mathbf{w} corresponds to a different hypothesis

- find $\mathbf{f}(\mathbf{x}, \mathbf{w})$ in the hypothesis space s.t. $\mathbf{f}\left(\mathbf{x}^{i}, \mathbf{w}\right)=\mathbf{y}^{i}$ "as much as possible" for training examples
- "as much as possible" can be defined with loss function $\mathbf{L}(\mathbf{f}(\mathbf{x}, \mathbf{w}), \mathbf{y})$

Training Phase Example in 1D

- 2 class classification problem
- $y^{i} \in\{-1,1\}$
- Examples are one dimensional feature vectors
- examples in class -1 : $\{-2,-1,1\}$
- examples in class 1: $\{2,3,5\}$
- Hypothesis space $\mathbf{f}(\mathbf{x}, \mathbf{w})=\operatorname{sign}\left(\mathbf{w}_{0}+\mathbf{w}_{1} \mathbf{x}\right)$
- $\mathbf{w}=\left[\begin{array}{l}\mathbf{w}_{0} \\ \mathbf{w}_{1}\end{array}\right]$
- one member is $f(x)=\operatorname{sign}(-1+2 x)$, i.e. $\mathbf{w}_{\mathbf{0}}=-1, \mathbf{w}_{\mathbf{1}}=2$

Training Phase Example in 1D

- 2 class classification problem
- $y^{i} \in\{-1,1\}$
- Examples are one dimensional feature vectors
- examples in class -1 : $\{-2,-1,1\}$
- examples in class 1: $\{2,3,5\}$
- Let classifier be $\mathbf{f}(\mathbf{x}, \mathbf{w})=\operatorname{sign}\left(\mathbf{w}_{0}+\mathbf{w}_{1} \mathbf{x}\right)$
- another member is $f(\mathbf{x})=\operatorname{sign}(-1.5+\mathbf{x})$, i.e. $\mathbf{w}_{0}=-1.5, \mathbf{w}_{1}=1$

- Often say $\mathbf{f}(\mathbf{x}, \mathbf{w})$ is a classifier, and the process of finding good \mathbf{w} is weight tuning

Training Phase Example in 2D

- For 2 class problem and 2 dimensional samples

$$
f(\mathbf{x}, \mathbf{w})=\operatorname{sign}\left(w_{0}+w_{1} \mathbf{x}_{1}+w_{2} \mathbf{x}_{2}\right)
$$

- Can be generalized to examples of arbitrary dimension
- Classifier that makes a decision based on linear combination of features is called a linear classifier

Training Phase: Linear Classifier

bad setting of w

classification error 38\%
best setting of w

classification error 4\%

Training Stage: More Complex Classifier

- for example if $\mathbf{f}(\mathbf{x}, \mathbf{w})$ is a polynomial of high degree
- 0\% classification error

Test Classifier on New Data

- The goal is for classifier to perform well on new data
- Test "wiggly" classifier on new data: 25\% error

Overfitting

- Have only limited amount of data for training
- Overfitting
- complex model often have too many parameters to fit reliably with a limited amount of training data
- Complex model may adapt too closely to the random noise of the training data

Overfitting: Extreme Example

- 2 class problem: face and non-face images
- Memorize (i.e. store) all the "face" images
- For a new image, see if it is one of the stored faces
- if yes, output "face" as the classification result
- If no, output "non-face"
- also called "rote learning"
- problem: new "face" images are different from stored "face" examples
- zero error on stored data, 50% error on test (new) data
- decision boundary is very irregular
- Rote learning is memorization without generalization

Generalization

training data

new data

- The ability to produce correct outputs on previously unseen examples is called generalization
- Big question of learning theory: how to get good generalization with a limited number of examples
- Intuitive idea: favor simpler classifiers
- William of Occam (1284-1347): "entities are not to be multiplied without necessity"
- Simpler decision boundary may not fit ideally to the training data but tends to generalize better to new data

Training and Testing

- How to diagnose overfitting?
- Divide all labeled samples $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots \mathbf{x}^{n}$ into training set and test set
- Use training set (training samples) to tune classifier weights w
- Use test set (test samples) to see how well classifier with tuned weights w work on unseen examples
- Thus there are 2 main phases in classifier design

1. training
2. testing

Training Phase

- Find weights \mathbf{w} s.t. $f\left(\mathbf{x}^{i}, \mathbf{w}\right)=\mathbf{y}^{i}$ "as much as possible" for training samples \mathbf{x}^{i}
- "as much as possible" needs to be defined
- usually some penalty whenever $f\left(\mathbf{x}^{\mathbf{i}}, \mathbf{w}\right) \neq \boldsymbol{y}^{\mathbf{i}}$
- penalty defined with loss function $\mathbf{L}\left(\mathbf{f}\left(\mathbf{x}^{\mathbf{i}}, \mathbf{w}\right), \mathbf{y}^{\mathbf{i}}\right)$
- how to search for such w?
- usually through optimization, can be quite time consuming
- classification error on training data is called training error

Testing Phase

- The goal is good performance on unseen examples
- Evaluate performance of the trained classifier $f(\mathbf{x}, \mathbf{w})$ on the test samples (unseen labeled samples)
- Testing on unseen labeled examples lets us approximate how well classifier will perform in practice
- If testing results are poor, may have to go back to the training phase and redesign $f(\mathbf{x}, \mathbf{w})$
- Classification error on test data is called test error
- Side note
- when we "deploy" the final classifier $f(\mathbf{x}, \mathbf{w})$ in practice, this is also called testing

Underfitting

- Can also underfit data, i.e. too simple decision boundary
- chosen hypothesis space is not expressive enough
- No linear decision boundary can well separate the samples

- Training error is too high
- test error is, of course, also high

Underfitting \rightarrow Overfitting

underfitting

- high training error
- high test error
"just right"

- low training error
- low test error
overfitting

- low training error
- high test error

How Overfitting affects Prediction

Fixing Underfitting/Overfitting

- Underfitting
- add more features
- use more complex f(x,w)
- Overfitting
- remove features
- collect more training data
- use less complex $\mathbf{f}(\mathbf{x}, \mathbf{w})$

Sketch of Supervised Machine Learning

- Chose a hypothesis space $\mathbf{f}(\mathbf{x}, \mathbf{w})$
- w are tunable weights
- \mathbf{x} is the input sample
- tune \mathbf{w} so that $\mathbf{f}(\mathbf{x}, \mathbf{w})$ gives the correct label for training samples \mathbf{x}
- Which hypothesis space $\mathbf{f}(\mathbf{x}, \mathbf{w})$ to choose?
- has to be expressive enough to model our problem well, i.e. to avoid underfitting
- yet not to complicated to avoid overfitting

Classification System Design Overview

- Collect and label data by hand

- Split data into training and test sets
- Preprocess data (i.e. segmenting fish from background)
- Extract possibly discriminating features
- length, lightness, width, number of fins,etc.
- Classifier design
- Choose model for classifier
- Train classifier on training data
we mostly look at these steps in
the course
- Test classifier on test data

Basic Linear Algebra

- Basic Concepts in Linear Algebra
- vectors and matrices
- products and norms

Why Linear Algebra?

- For each example (e.g. a fish image), we extract a set of features (e.g. length, width, color)
- This set of features is represented as a feature vector
- [length, width, color]
- All collected examples will be represented as collection of (feature) vectors

$$
\begin{array}{ll}
{\left[l_{1}, \mathrm{w}_{1}, \mathrm{c}_{1}\right]} & \text { example } 1 \\
{\left[l_{2}, \mathrm{w}_{2}, \mathrm{c}_{2}\right]} & \text { example 2 } \\
{\left[l_{3}, \mathrm{w}_{3}, \mathrm{c}_{3}\right]} & \text { example } 3
\end{array} \longrightarrow\left[\begin{array}{ccc}
l_{1} & w_{1} & c_{1} \\
l_{2} & w_{2} & c_{2} \\
l_{3} & w_{3} & c_{3}
\end{array}\right]
$$

- Often use linear classifiers since they are simple and computationally tractable

What is a Matrix?

- A matrix is a set of elements, organized into rows and columns
rows

Basic Matrix Operations

- addition, subtraction, multiplication by a scalar

$$
\begin{gathered}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right] \text { add elements }} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a-e & b-f \\
c-g & d-h
\end{array}\right] \text { subtract elements }} \\
\alpha \cdot\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
\alpha \cdot a & \alpha \cdot b \\
\alpha \cdot c & \alpha \cdot d
\end{array}\right] \text { multiply every entry }
\end{gathered}
$$

Matrix Transpose

- \mathbf{n} by \mathbf{m} matrix A and its \mathbf{m} by \mathbf{n} transpose $\mathrm{A}^{\top} \mathrm{A}$

$$
A=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 m} \\
x_{21} & x_{22} & \cdots & x_{2 m} \\
\vdots & \vdots & \cdots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n m}
\end{array}\right] \quad A^{T}=\left[\begin{array}{cccc}
x_{11} & x_{21} & \cdots & x_{n 1} \\
x_{12} & x_{22} & \cdots & x_{n 2} \\
\vdots & \vdots & \cdots & \vdots \\
x_{1 m} & x_{2 m} & \cdots & x_{n m}
\end{array}\right]
$$

Vectors

- Vector: N x 1 matrix

$$
v=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- dot product and magnitude defined on vectors only

vector addition

vector subtraction

More on Vectors

- n -dimensional row vector $x=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$
- Transpose of row vector is column vector $x^{T}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$
- Vector product (or inner or dot product)

$$
\langle x, y\rangle=x \cdot y=x^{T} y=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}=\sum_{i=1 \ldots . . n} x_{i} y_{i}
$$

More on Vectors

- Euclidian norm or length $\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{\sum_{i=1 . . . n} x_{i}^{2}}$
- If $\|\boldsymbol{x}\|=1$ we say \boldsymbol{x} is normalized or unit length
- angle q between vectors \boldsymbol{x} and $\boldsymbol{y}: \cos \boldsymbol{\theta}=\frac{x^{T} y}{\|x\| y \|}$
- inner product captures direction relationship

More on Vectors

- Vectors x and y are orthonormal if they are orthogonal and $\|x\|=\|y\|=1$
- Euclidian distance between vectors x and y

$$
\|x-y\|=\sqrt{\sum_{i=1 . . . n}\left(x_{i}-y_{i}\right)^{2}}
$$

Matrix Product

$$
A B=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 d} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n d}
\end{array}\right]\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 m} \\
b_{21} & \cdots & b_{2 m} \\
b_{31} & \cdots & b_{3 m} \\
\vdots & \cdots & \vdots \\
b_{d 1} & \cdots & b_{d m}
\end{array}\right]=\left[\begin{array}{c}
\\
c_{i j} \\
\\
\begin{array}{c}
c_{i j}=\left\langle a^{\mathrm{i}}, b_{\mathrm{j}}\right\rangle \\
a^{i} \text { is row } \boldsymbol{i} \text { of } \boldsymbol{A} \\
b_{\mathrm{j}} \text { is column } \boldsymbol{j} \text { of } \boldsymbol{B}
\end{array}
\end{array}\right.
$$

- \# of columns of $A=\#$ of rows of B
- even if defined, in general $A B \neq B A$

MATLAB

- Starting matlab
- xterm -fn 12X24
- matlab
- matlab -nodisplay
- Basic Navigation
- quit
- more
- help general
- Scalars, variables, basic arithmetic
- Clear
- + - */ ^
- help arith
- Relational operators
- ==,\&,|,~,xor
- help relop
- Lists, vectors, matrices
- $A=[23 ; 45]$
- A^{\prime}
- Matrix and vector operations
- find($\mathrm{A}>3$), colon operator
- * / ^.* ./ .^
- eye(n),norm(A), $\operatorname{det}(A)$, eig(A)
- max,min,std
- help matfun
- Elementary functions
- help elfun
- Data types
- double
- Char
- Programming in Matlab
- .m files
- scripts
- function $\mathrm{y}=$ square (x)
- help lang
- Flow control
- if $i==1$ else end, if else if end
- for $i=1: 0.5: 2$... end
- while $i==1$... end
- Return
- help lang
- Graphics
- help graphics
- help graph3d
- File I/O
- load,save
- fopen, fclose, fprintf, fscanf

