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Intro: What is Machine Learning? 
• Difficult to come up with explicit program for some tasks

• Digit Recognition, a classic example

• Easy to collect images of digits with their correct labels 
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• Machine Learning Algorithm takes collected data and produces  
program for recognizing digits
• done right, program will recognize correctly new images it has never seen

4
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Intro: What is Machine Learning? 

• General definition (Tom Mitchell):

• Based on experience E, improve performance on task T as 
measured by performance measure P

• Digit Recognition Example

• T = recognize character in the image

• P = percentage of correctly classified images

• E = dataset of human-labeled images of characters
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Different Types of  Machine Learning 
• Supervised Learning

• given training examples with corresponding outputs

• learn to produces  correct labels for new examples

• Unsupervised Learning

• given training examples only

• discover good data representation

• e.g. “natural” clusters

• not covered 

• Reinforcement Learning

• learn to select action that maximizes payoff

• not covered 
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Two Types of Supervised Machine Learning

• Classification 
• output belongs to a finite set

• example: age  {baby, child, adult, elder} 

• output is also called class or label

• Regression
• output is continuous

• example:  age [0,130]



Supervised Machine Learning

salmon salmonsea bass sea bass

• We are given examples with corresponding outputs

• Fish classification example (salmon or sea bass)
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• Each example is represented in vector form
• data may be given in vector form from the start

• if not, for each example i, extract useful features and put them in a vector xi

• fish classification example
• extract two features,  fish length and average fish  brightness

• can extract as many other features

• can also use raw pixel values as features (for images)

• An example is often called feature vector

• Each output is represented  with integer yi



Supervised Machine Learning

• Training phase

• estimate function y = f(x) from labeled data
• f is called classifier, learning machine, prediction function, etc.

• Testing phase (deployment)

• predict label f(x) for a new (unseen) sample x

• We are given 

1. Training examples x1, x2,…, xn

2. Target output for each sample y1, y2,…yn
labeled data
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More on Training Phase

• Estimate prediction function y = f(x) from labeled data

• Choose hypothesis space f(x) belongs to

• hypothesis space f(x,w) is parameterized by vector of weights w

• each setting of w corresponds to a different hypothesis

• find f(x,w) in the hypothesis space s.t. f(xi,w) = yi “as much as 
possible” for training examples

• “as much as possible” can be defined with loss function L(f(x,w),y)

f(x,w1)
f(x,w3)

f(x,w2)

f(x,w4)

f(x,w5)

hypothesis space



Training Phase Example in 1D
• 2 class classification problem

• yi ∊{-1,1}

• Examples are one dimensional feature vectors
• examples in class -1:    {-2, -1, 1}

• examples in class 1:     {2, 3, 5}
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• Hypothesis space   f(x,w) = sign(w0 + w1x)
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• one member is f(x) = sign(-1 + 2x ), i.e. w0 = -1, w1 = 2



Training Phase Example in 1D

x

1.5+x

1.5

class -1 class 1

0

• Often say f(x,w) is a classifier, and the process of finding good w
is weight tuning

• 2 class classification problem
• yi ∊{-1,1}

• Examples are one dimensional feature vectors
• examples in class -1:    {-2, -1, 1}

• examples in class 1:     {2, 3, 5}

• Let classifier be   f(x,w) = sign(w0+w1x )
• another member is f(x) = sign(-1.5 + x ), i.e. w0 = -1.5, w1 = 1



Training Phase Example in 2D
• For 2 class problem and 2 dimensional samples

f(x,w) = sign(w0+w1x1+w2x2)

decision 
boundary

decision regions

x1

x2

• Can be generalized to examples of arbitrary dimension

• Classifier that makes a decision based on linear combination of 
features is called a linear classifier



Training Phase: Linear Classifier

classification error 38% 

bad setting of w

x1

x2

x1

x2

best setting of w

classification error 4% 
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Training Stage: More Complex Classifier

• for example if f(x,w) is a polynomial of high degree

• 0% classification error 

x1

x2



Test Classifier on New Data

• The goal is for classifier to perform well on new data

• Test “wiggly” classifier on new data: 25% error

x1

x2



Overfitting

• Have only  limited amount of data for training

• Overfitting
• complex model often have too many parameters to fit reliably with a 

limited amount of training data

• Complex model may adapt too closely to the random noise of the 
training data

x1

x2



Overfitting: Extreme Example
• 2 class problem: face and non-face images

• Memorize (i.e. store) all the “face” images

• For a new image, see if it is one of the stored faces

• if yes, output “face” as the classification result

• If no, output “non-face”

• also called “rote learning” 

• problem: new “face” images are different from stored 

“face” examples

• zero error on stored data, 50% error on test (new) data

• decision boundary is very irregular

• Rote learning is memorization without generalization

slide is modified from Y. LeCun



Generalization
training data

• The ability to produce correct outputs on previously unseen 

examples is called generalization

• Big question of learning theory: how to get good generalization 

with a limited number of examples

• Intuitive idea: favor simpler classifiers

• William of Occam (1284-1347): “entities are not to be multiplied without necessity”

• Simpler decision boundary may not fit ideally to the  training data 

but tends to generalize better to new data

new data
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Training and Testing
• How to diagnose overfitting?

• Divide all labeled samples x1,x2,…xn into  training set 
and test set 

• Use training set (training samples) to tune classifier 
weights w

• Use test set (test samples) to see how well classifier with 
tuned weights w work on unseen examples

• Thus there are 2 main phases in classifier design 

1. training 

2. testing



Training Phase

• Find  weights w s.t. f(xi,w) = yi “as much as possible” for  
training samples xi

• “as much as possible” needs to be defined
• usually some penalty whenever f(xi,w) ≠ yi

• penalty defined with loss function L(f(xi,w), yi)

• how to search for such w?
• usually through optimization, can be quite time consuming

• classification error on training data is called training error



Testing Phase
• The goal is good performance on unseen examples

• Evaluate  performance of the trained classifier f(x,w) on 
the test samples (unseen labeled samples) 

• Testing on unseen labeled examples lets us approximate 
how well classifier will perform in practice 

• If testing results are poor, may have to go back to the 
training phase and redesign f(x,w)

• Classification error on test data is called test error

• Side note

• when we “deploy” the final classifier f(x,w) in practice, this is 
also called testing
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• Can also underfit data, i.e.  too 
simple decision boundary 
• chosen hypothesis space is not 

expressive enough

• No linear decision boundary can 
well separate the samples

• Training error is too high
• test error is, of course, also high

Underfitting



Underfitting → Overfitting

underfitting “just right” overfitting

• high training error

• high test error

• low training error

• low test error 

• low training error

• high test error 



How Overfitting affects Prediction

Error

Model Complexity

training data

test data

ideal rangeunderfitting overfitting



Fixing Underfitting/Overfitting

• Underfitting

• add more features 

• use more complex f(x,w)

• Overfitting

• remove features

• collect more training data

• use less complex f(x,w)
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Sketch of Supervised Machine Learning 

• Chose a hypothesis space f(x,w)

• w are tunable weights

• x is the input sample

• tune  w so that f(x,w) gives the correct label for 
training samples x

• Which hypothesis space f(x,w) to choose?  

• has to be expressive enough to model our problem 
well, i.e. to avoid underfitting

• yet not to complicated to avoid overfitting



Classification System Design Overview

• Collect and label data by hand
salmon salmon salmonsea bass sea bass sea bass

• Preprocess data (i.e. segmenting fish from background)

• Extract possibly discriminating features
• length, lightness, width, number of fins,etc.

• Classifier design
• Choose model for classifier

• Train classifier on training data

• Test classifier on test data

• Split data into training and test sets

we mostly look at 
these steps in 
the course



Basic Linear Algebra

• Basic Concepts in Linear Algebra

• vectors and matrices

• products and norms



Why Linear Algebra?
• For each example (e.g. a fish image), we extract a set 

of features (e.g. length, width, color)

• This set of features is represented as a feature vector 
• [length, width, color]

• Often use linear classifiers since they are simple and 
computationally tractable

• All collected examples will be represented as collection 
of (feature) vectors

[l1, w1 , c1 ] 
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What is a Matrix?

• A matrix is a set of elements, organized into 
rows and columns
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Basic Matrix Operations

• addition, subtraction, multiplication by a scalar
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Matrix Transpose
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Vectors
• Vector:  N x 1 matrix

• dot product and magnitude defined on vectors only
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More on Vectors

• n-dimensional row vector  nxxxx 21
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• Transpose of row vector is column vector

• Vector product (or inner or dot product)
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More on Vectors
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More on Vectors

• Euclidian distance between vectors x and y
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• Vectors x and y are orthonormal if they are 
orthogonal and ||x|| = ||y|| =1
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Matrix Product
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• # of columns of A = # of rows of B

• even if defined, in general AB ≠ BA

cij = ai, bj

ai  is row i of A
bj is column j of B



MATLAB



• Starting matlab

• xterm -fn 12X24

• matlab 

• matlab -nodisplay

• Basic Navigation
• quit

• more 

• help general

• Scalars, variables, basic arithmetic

• Clear

• +   - * /   ^

• help arith

• Relational operators

• ==,&,|,~,xor

• help relop

• Lists, vectors, matrices

• A=[2 3;4 5]

• A’

• Matrix and vector operations

• find(A>3), colon operator

• *  /   ^  .*  ./   .^

• eye(n),norm(A),det(A),eig(A)

• max,min,std

• help matfun

• Elementary functions

• help elfun

• Data types

• double

• Char

• Programming in Matlab

• .m files

• scripts

• function y=square(x)

• help lang

• Flow control

• if  i== 1else end, if else if end

• for i=1:0.5:2   …  end

• while i == 1 … end

• Return

• help lang

• Graphics

• help graphics

• help graph3d

• File I/O

• load,save

• fopen, fclose, fprintf, fscanf


