CS4442/9542b Artificial Intelligence II Prof. Olga Veksler

Lecture 2

Introduction to ML Basic Linear Algebra Matlab

Some slides on Linear Algebra are from Patrick Nichols

Outline

- Introduction to Machine Learning
- Basic Linear Algebra
- Matlab Intro

Intro: What is Machine Learning?

- Difficult to come up with explicit program for some tasks
- Digit Recognition, a classic example
 - $\mathbf{0} \longrightarrow \mathbf{0} \qquad \mathbf{4}$
- Easy to collect images of digits with their correct labels

0	Ø	0	0	D	0	0	0	00	
/	۱	1	/	1	1	١	1	11	
2	2	2	2	2	2	٢	2	27	
3	3	3	3	3	3	3	ን	33	
4	4	4	4	4	4	4	4	44	
ξ	5	2	5	5	5	5	5	55	
6	6	6	6	Ь	6	6	6	66	
7	7	7	7	7	7	7	7	77	
8	8	8	8	8	ç	8	8	88	
9	9	9	9	9	9	9	9	99	

- Machine Learning Algorithm takes collected data and produces program for recognizing digits
 - done right, program will recognize correctly new images it has never seen

Intro: What is Machine Learning?

Traditional Programming

Intro: What is Machine Learning?

- General definition (Tom Mitchell):
 - Based on experience E, improve performance on task T as measured by performance measure P
- Digit Recognition Example
 - **T** = recognize character in the image
 - **P** = percentage of correctly classified images
 - **E** = dataset of human-labeled images of characters

Different Types of Machine Learning

Supervised Learning

- given training examples with corresponding outputs
- learn to produces correct labels for new examples
- Unsupervised Learning
 - given training examples only
 - discover good data representation
 - e.g. "natural" clusters
 - not covered

Reinforcement Learning

- learn to select action that maximizes payoff
- not covered

Two Types of Supervised Machine Learning

Classification

- output belongs to a finite set
- example: age \in {baby, child, adult, elder}
- output is also called *class* or *label*

Regression

- output is continuous
- example: age \in [0,130]

Supervised Machine Learning

- We are given examples with corresponding outputs
- Fish classification example (*salmon* or sea *bass*)

- Each example is represented in vector form
 - data may be given in vector form from the start
 - if not, for each example **i**, extract useful features and put them in a vector **x**ⁱ
 - fish classification example
 - extract two features, fish length and average fish brightness
 - can extract as many other features
 - can also use raw pixel values as features (for images)
 - An example is often called *feature vector*
 - Each output is represented with integer yⁱ

Supervised Machine Learning

- We are given

 - Training examples x¹, x²,..., xⁿ
 Target output for each sample y¹, y²,...yⁿ

- labeled data

- Training phase
 - estimate function $\mathbf{y} = \mathbf{f}(\mathbf{x})$ from labeled data
 - **f** is called *classifier*, *learning machine*, *prediction function*, etc.
- **Testing phase** (deployment)
 - predict label f(x) for a new (unseen) sample x

Training/Testing Phases Illustrated

Training

More on Training Phase

- Estimate prediction function **y** = **f**(**x**) from labeled data
- Choose hypothesis space **f**(**x**) belongs to
 - hypothesis space **f**(**x**,**w**) is parameterized by vector of *weights* **w**
 - each setting of w corresponds to a different hypothesis

- find f(x,w) in the hypothesis space s.t. f(xⁱ,w) = yⁱ "as much as possible" for training examples
 - "as much as possible" can be defined with loss function L(f(x,w),y)

Training Phase Example in 1D

- 2 class classification problem
 - yⁱ ∈{-1,1}
- Examples are one dimensional feature vectors
 - examples in class -1: {-2, -1, 1}
 - examples in class 1: {2, 3, 5}
- Hypothesis space $f(x,w) = sign(w_0 + w_1x)$
 - $\mathbf{w} = \begin{bmatrix} \mathbf{w}_0 \\ \mathbf{w}_1 \end{bmatrix}$
 - one member is f(x) = sign(-1 + 2x), i.e. $w_0 = -1$, $w_1 = 2$

Training Phase Example in 1D

- 2 class classification problem
 - yⁱ ∈{-1,1}
- Examples are one dimensional feature vectors
 - examples in class -1: {-2, -1, 1}
 - examples in class 1: {2, 3, 5}
- Let classifier be $f(x,w) = sign(w_0+w_1x)$
 - another member is f(x) = sign(-1.5 + x), i.e. $w_0 = -1.5$, $w_1 = 1$

 Often say f(x,w) is a classifier, and the process of finding good w is weight tuning

Training Phase Example in 2D

• For 2 class problem and 2 dimensional samples

 $\mathbf{f}(\mathbf{x},\mathbf{w}) = \operatorname{sign}(\mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2)$

- Can be generalized to examples of arbitrary dimension
- Classifier that makes a decision based on linear combination of features is called a **linear classifier**

Training Phase: Linear Classifier

bad setting of w

best setting of w

classification error 38%

classification error 4%

Training Stage: More Complex Classifier

- for example if **f**(**x**,**w**) is a polynomial of high degree
- 0% classification error

Test Classifier on New Data

- The goal is for classifier to perform well on new data
- Test "wiggly" classifier on new data: 25% error

Overfitting

- Have only limited amount of data for training
- Overfitting
 - complex model often have too many parameters to fit reliably with a limited amount of training data
 - Complex model may adapt too closely to the random noise of the training data

Overfitting: Extreme Example

- 2 class problem: face and non-face images
- Memorize (i.e. store) all the "face" images
- For a new image, see if it is one of the stored faces
 - if yes, output "face" as the classification result
 - If no, output "non-face"
 - also called "rote learning"
- problem: new "face" images are different from stored "face" examples
 - zero error on stored data, 50% error on test (new) data
 - decision boundary is very irregular
- Rote learning is memorization without generalization

slide is modified from Y. LeCun

Generalization

- The ability to produce correct outputs on previously unseen examples is called **generalization**
- Big question of learning theory: how to get good generalization with a limited number of examples
- Intuitive idea: favor simpler classifiers
 - William of Occam (1284-1347): "entities are not to be multiplied without necessity"
- Simpler decision boundary may not fit ideally to the training data but tends to generalize better to new data

Training and Testing

- How to diagnose overfitting?
- Divide all labeled samples x¹,x²,...xⁿ into training set and test set
- Use training set (training samples) to tune classifier weights w
- Use test set (test samples) to see how well classifier with tuned weights **w** work on unseen examples
- Thus there are 2 main phases in classifier design
 - 1. training
 - 2. testing

Training Phase

- Find weights w s.t. f(xⁱ,w) = yⁱ "as much as possible" for training samples xⁱ
 - "as much as possible" needs to be defined
 - usually some penalty whenever $f(\mathbf{x}^i, \mathbf{w}) \neq \mathbf{y}^i$
 - penalty defined with loss function L(f(xⁱ,w), yⁱ)
 - how to search for such w?
 - usually through optimization, can be quite time consuming
 - classification error on training data is called *training error*

Testing Phase

- The goal is good performance on unseen examples
- Evaluate performance of the trained classifier **f**(**x**,**w**) on the test samples (unseen labeled samples)
- Testing on unseen labeled examples lets us approximate how well classifier will perform in practice
- If testing results are poor, may have to go back to the training phase and redesign f(x,w)
- Classification error on test data is called *test error*
- Side note
 - when we "deploy" the final classifier f(x,w) in practice, this is also called testing

Underfitting

- Can also underfit data, i.e. too simple decision boundary
 - chosen hypothesis space is not expressive enough
- No linear decision boundary can well separate the samples
- Training error is too high
 - test error is, of course, also high

Underfitting \rightarrow Overfitting

- high training error
- high test error

- low training error
- low test error

- low training error
- high test error

How Overfitting affects Prediction

Fixing Underfitting/Overfitting

- Underfitting
 - add more features
 - use more complex f(x,w)
- Overfitting
 - remove features
 - collect more training data
 - use less complex f(x,w)

Sketch of Supervised Machine Learning

- Chose a hypothesis space f(x,w)
 - w are tunable weights
 - **x** is the input sample
 - tune w so that f(x,w) gives the correct label for training samples x
- Which hypothesis space **f**(**x**,**w**) to choose?
 - has to be expressive enough to model our problem well, i.e. to avoid *underfitting*
 - yet not to complicated to avoid *overfitting*

Classification System Design Overview

Collect and label data by hand salmon sea bass salmon salmon sea bass sea bass Image: Im

- Split data into training and test sets
- Preprocess data (i.e. segmenting fish from background)
 Image: Image
- Extract possibly discriminating features
 - length, lightness, width, number of fins, etc.
- Classifier design
 - Choose model for classifier
 - Train classifier on training data
- Test classifier on test data

we mostly look at these steps in the course

Basic Linear Algebra

- Basic Concepts in Linear Algebra
 - vectors and matrices
 - products and norms

Why Linear Algebra?

- For each example (e.g. a fish image), we extract a set of features (e.g. length, width, color)
- This set of features is represented as a *feature vector*
 - [length, width, color]
- All collected examples will be represented as collection of (feature) vectors

Often use linear classifiers since they are simple and computationally tractable

What is a Matrix?

 A matrix is a set of elements, organized into rows and columns

Basic Matrix Operations

addition, subtraction, multiplication by a scalar

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$
 add elements

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a-e & b-f \\ c-g & d-h \end{bmatrix}$$
 subtract elements

$$\alpha \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha \cdot a & \alpha \cdot b \\ \alpha \cdot c & \alpha \cdot d \end{bmatrix}$$

multiply every entry

Matrix Transpose

• **n** by **m** matrix A and its **m** by **n** transpose¹A

$$A = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ x_{21} & x_{22} & \cdots & x_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nm} \end{bmatrix} \qquad A^{T} = \begin{bmatrix} x_{11} & x_{21} & \cdots & x_{n1} \\ x_{12} & x_{22} & \cdots & x_{n2} \\ \vdots & \vdots & \cdots & \vdots \\ x_{1m} & x_{2m} & \cdots & x_{nm} \end{bmatrix}$$

Vectors

• Vector: N x 1 matrix

$$v = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• dot product and magnitude defined on vectors only

More on Vectors

 X_1

• n-dimensional row vector $x = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$

- Transpose of row vector is column vector $x^{T} = \begin{vmatrix} x_{2} \\ \vdots \end{vmatrix}$
- Vector product (or inner or dot product)

$$\langle x, y \rangle = x \cdot y = x^T y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{i=1\dots n} x_i y_i$$

More on Vectors

- Euclidian norm or length $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1...n} x_i^2}$
- If ||x|| =1 we say x is normalized or unit length
- angle q between vectors x and y: $\cos \theta = \frac{x' y}{\|x\| \|y\|}$
- inner product captures direction relationship

More on Vectors

- Vectors x and y are orthonormal if they are orthogonal and ||x|| = ||y|| =1
- Euclidian distance between vectors x and y

$$||x - y|| = \sqrt{\sum_{i=1...n} (x_i - y_i)^2}$$

Matrix Product

- # of columns of A = # of rows of B
- even if defined, in general AB ≠ BA

- Starting matlab
 - xterm -fn 12X24
 - matlab
 - matlab -nodisplay
- Basic Navigation
 - quit
 - more
 - help general
- Scalars, variables, basic arithmetic
 - Clear
 - + * / ^
 - help arith
- Relational operators
 - ==,&,|,~,xor
 - help relop
- Lists, vectors, matrices
 - A=[2 3;4 5]
 - A'
- Matrix and vector operations
 - find(A>3), colon operator
 - * / ^ .* ./ .^
 - eye(n),norm(A),det(A),eig(A)
 - max,min,std
 - help matfun

- Elementary functions
 - help elfun
- Data types
 - double
 - Char
- Programming in Matlab
 - .m files
 - scripts
 - function y=square(x)
 - help lang
- Flow control
 - if i== 1else end, if else if end
 - for i=1:0.5:2 ... end
 - while i == 1 ... end
 - Return
 - help lang
- Graphics
 - help graphics
 - help graph3d
- File I/O
 - load,save
 - fopen, fclose, fprintf, fscanf