CS4442/9542b
Artificial Intelligence |
prof. Olga Veksler

Lecture 4
Machine Learning

Linear Classifier
2 classes

Outline

e Optimization with gradient descent

e Linear Classifier

e Two class case
e Loss functions

e Perceptron
e Batch
e Single sample
e Logistic Regression

Optimization

How to minimize a function of a single variable
J(x) =(x-5)?

From calculus, take derivative, setitto O

d
—J(x)=0
-0

Solve the resulting equation
e maybe easy or hard to solve

Example above is easy:

iJ(x)=2(x—5)=o = x=5
dx

Optimization
How to minimize a function of many variables
J(x) = J(x,..., xy)

From calculus, take partial derivatives, set them to O

gradient
= =
—J
o, (x)
: = V)(x)=0

6:
—
P

Solve the resulting system of d equations

It may not be possible to solve the system of equations
above analytically

e Gradient VIJ(x) points in the direction of steepest
increase of function J(x)

e - VI(x) points in the direction of steepest decrease

Picture from Andrew Ng

Gradient Direction in 1D

e QGradient s just derivative in 1D
e Example: J(x) =(x-5)2and derivative is iJ(x):z(x—s)

J(x) |

negative
slope,
negative
derivative

e |etx=3

d
e ——1J(3)=4
dx()

e derivative says increase X

dx
J(x)
positive
slope,
positive
derivative
X
e |etx=8
d
o ——JI3)=-6
- 6)

derivative says decrease x

Gradient Direction in 2D

J(x4, X,) =(x,-5)?+(x,-10)?

p =
-) =2(x, -5) 10 -

1

iJ(x):Z(x2 —10) 5
OX,

global min
O

[_10‘?61
10
X,

5 10

Gradient Descent: Step Size

J(x4, X,) =(x,-5)%+(x,-10)? X, 1

global min
Which step size to take? 10T °
Controlled by parameter o 5t —10\'a
e called learning rate l 10]
. xl
From previous slide i —
5 10

MR

leta=0.2

a—avi(a) = m +0.2 hﬂ = m

J(10, 5) = 50; J(8,7) =18

k=1

x1) = any initial guess

choose a, €

while o||VI(xM)|| > €
x(k1) = x (K - o VJ(x(K)
k=k+1

Gradient Descent: Local Minimum

e Not guaranteed to find global minimum
e getsstuck in local minimum

_Vj(x(l))

J(x) |

X

global minimum x (k) x(2) x(1)

e Still gradient descent is very popular because it is
simple and applicable to any differentiable function

How to Set Learning Rate a.?

If oo too small, too
many iterations to
converge

If oo too large, may
overshoot the local
minimum and possibly
never even converge

J(x)]

N

J(x)1

® ® 0 ®
x@ X2 x(1) x(3)

It helps to compute J(x) as a function of iteration
number, to make sure we are properly minimizing it

Variable Learning Rate

e |f desired, can change learning rate a at each iteration

k=1 k=1
x1) = any initial guess x1) = any initial guess
choose a, € choose €
while o|[VIx®)[[> |~ | while of[VI(x¥)]| >
x() = x () - g, VI (x) choose ol
K=k+1 x(6+1) = x 09 - () 7)(x(9)
k=k+1

Variable Learning Rate

e Usually do not keep track of all intermediate solutions

k=1 k=1

x!Y = any initial guess X = any initial guess

cho.ose Q, € — choose a, €

while o|[VJ(xW)|| > € while a||VJ(x)|| > €
x(+) = x (K) - g, VI(x®) X=X - o VJ(x)
k=k+1 k=k+1

Learning Rate

e Monitor learning rate by looking at how fast the
objective function decreases

very high learning rate

J(x)

low learning rate

high learning rate

good learning rate

number of iterations

Advanced Optimization Methods

e There are more advanced gradient-based
optimization methods

e Such as conjugate gradient
e automatically pick a good learning rate a
e usually converge faster

e however more complex to understand and
implement

e in Matlab, use fminunc for various advanced
optimization methods

Supervised Machine Learning (Recap)

e Chose type of f(x,w)
e w are tunable weights, x is the input example
e f(x,w) should output the correct class of sample x

e use labeled samples to tune weights w so that
f(x,w) give the correct class y for x

e with help of loss function L(f(x,w) ,y)

e How to choose type of f(x,w)?
e many choices
e previous lecture: kNN classifier
e this lecture: linear classifier

Linear Classifier

e (Classifier is linear if it makes a decision based on linear
combination of features

g(X,W) = Wy+X, W, + ... + X W,

e g(x,w) sometimes called discriminant function
e Encode 2 classes as
e y = 1 forthe first class 1 f(x)
e vy = -1 forthesecond class ; X
e One choice for linear classifier / s
f(x,w) = sign(g(x,w)))

e 1 if g(x,w)is positive
e -1if g(x,w)is negative

Linear Classifier: Decision Boundary

*

% uow|ps
ssoq

o '8
*

O
LR
O @

LR
® °

bad boundary better boundary

f(x,w) = sign(g(x,w)) = sign(wy+x,w, + ... + x,w,)
Decision boundary is linear

Find w,, w,,..., w, that gives best separation of two
classes with linear boundary

o LDF: g(x,wW,Wg) = WX, W, + ... + X W,

bias or threshold

decision boundary
X) =

More on Linear Discriminant Function (LDF)

e Decision boundary: g(x,w) = wy+x,w, + ... + x;w =0
e This is a hyperplane, by definition

e apointin 1D

e alinein2D

e aplanein 3D
e a hyperplane in higher dimensions

Vector Notation

Linear discriminant function g(x,w, wg) = wix + w,

Example in 2D

X, 3
g(xrwywo):3X1+2X2 +4 XZI: :| W:|:2}, W0:4

X,

Shorter notation if add extra feature of value 1 to x

1 4 ==
z=\x, | a=|3 g(z,a)=z'a=[4 3 2| x,
| X5 | == X, |

Use a'z instead of wix + w,

g(z,a)=z'a=4+3x, +2x, =x'w+w, =g(x,w,w,)

Fitting Parameters w

1

e Rewrite g(x,w,w,) = [w, w'] = a'z =g(z,a)
new weight X

vectora pew

feature
vector z

e zis called augmented feature vector
e new problem equivalent to the old g(z,a) = atz

Augmented Feature Vector

e Feature augmenting simplifies notation
e Assume augmented feature vectors for the rest of lecture

e given examples xi,..., X" convert them to augmented examples
z1,..., 2" by adding a new dimension of value 1

e g(z,a) =a'z
e f(z,a) = sign(g(z,a))

Solution Region

e |fthereis weight vector a that classifies all examples
correctly, it is called a separating or solution vector
e then there are infinitely many solution vectors a
e then the original samples x,... X" are also linearly separable

e Solution region: the set of all solution vectors a

v

Loss Function

How to find solution vector a?

or, if no separating a exists, a good approximate solution
vector a?

Design a non-negative loss function L(a)

L(a) is small if a is good
L(a) is large if a is bad

Minimize L(a) with gradient descent

Usually design of L(a) has two steps

1.

2.

design per-example loss L(f(Z',a),y')
e penalizes for deviations of f(z',a) from y'

total loss adds up per-sample loss over all training examples

L(a)= ZL(f(zi,a),yi)

Loss Function, First Attempt

e Per-example loss function measures if error happens

e Example

e aby')-|

1
1 1
i _|:2} v =1

f(zl,a): sign(atzl)
=sign(1.2-3-2)
=1

L(f(zl,a), yl)zl

0 if fz',a)=y
1 otherwise X

2_1 2
Z—4 y:_l

f(zz,a): sign(atzz)
=sign(1-2—-3-4)
=

L(f(zz,a),yz)z 0

Loss Function, First Attempt

e Per-example loss function measures if error happens

i N ro £ f(zi,a)=vi
L(f(z ,a),y)—il otherwise

e Total loss function
L(a)= ZL(f(zi,a),yi)

e For previous example

| 2 L(f(z',a)y*)~1 L(a)=1+0=1

30 Lf(z2,a)y?)=0

e Thus this loss function just counts the number of errors

Loss Function: First Attempt

e Per-example loss e Total loss

L(f(z',a) y)= {O # 1(e,2)=y L(a)= Z'—(f(zi ’ a), Y)

1 otherwise

e Unfortunately, cannot minimize this loss function with
gradient descent

e piecewise constant, gradient zero or does not exist

1 L(a)

— —I
1

Perceptron Loss Function

e Different Loss Function: Perceptron Loss

feabv)- {8 y'(a'z') it f(z',a)=y

otherwise
* L,(a)is non-negative
e positive misclassified example Z'
e azZ<0

| [g
e vyiatZ)< 0 Z
e negative misclassified example z' o
e a'z'>0
e yi=-1
e vyiatz)< 0

o if Z'is misclassified then y'(atz') < 0
e if Z'is misclassified then -yi(atz') > O

* L,(a) proportional to distance of misclassified example to boundary

e Example

J

3

Perceptron Loss Function

|

()

f(zl,a): sign(atzl)
=sign(1-2-3-2)

=sign(—4)
— 1

L, (f(zl,a), yl): 4

* TotallossL,(a)=4 +0=4

if f(zi,a)zyi
—yi(atzi) otherwise

1 2 _ _
22:[} Y = 1

4

f(zz,a): sign(atzz)
=sign(1-2-3-4)
— 1

L, (f(z2 = a), e)= 0

Perceptron Loss Function

e Per-example loss e Total loss
Lp(f(zi,a),yi):{o if f(zi,a):Vi Lp(a):Zi:L(f(zira)ryi)

—yi(atzi) otherwise

* L (a)is piecewise linear and suitable for gradient descent

y Lo(a)

Ma

Optimizing with Gradient Descent
e Per-example loss e Total loss

(ealy)-{0 Y@= T)y

—yi(atzi) otherwise

e Recall minimization with gradient descent, main step
X=x—0o VJ(x)

* Gradient descent to minimize L,(a), main step

a=a-—a VLy(a) oL

* Need gradient vector VL (a) oa,
e has as many dimensions as dimension of a 2 oL
 ifahas 3 dimensions, gradient VL (a) has 3 a=|3 VL, (a)= aap

. . 1 2

dimensions
oL,
| Oa,

Optimizing with Gradient Descent

e Per-example loss e Total loss

Lp(f(zi,a),yi):{o it (e, a)=y (@)= Lt a)y)

~yi(a'z') otherwise
* Gradient descent to minimize L,(a), main step
a=a-—a VLy(a)

* Need gradient vector VL(a)

VL,(a) =V L,(tz,a)y') = Vi, (taly)

oL, (f(z',a)y')]

per example gradient oa,
\ 8Lp (f(z‘,a),yi)
oa,

e Compute and add up per example

gradient vectors oL, (z,a)y')
oa,

Per Example Loss Gradient

e Per-example loss has two cases

”[g} if f(z,a)=y

e First case, f(zi,a) =y

VL, (f(zi,a),yi): /B

: ? otherwise

e To save space, rewrite
- (f(zi,a),yi):{

0 if f(zi,a): vi

? otherwise

Per Example Loss Gradient

e Per-example loss has two cases

L, (fz,a)y')= {0 if (z,a)=y

—yi(atzi) otherwise

e Second case, f(z,a) zy

1 [ZCv(as+az +az)

i(i =
oa, %al_l

VL (e aby)= | 2 (v | o Yt auti o)

88—:3(i(,:a"zi)) _88—;(_ y (alzil +a,2; + aszis))

<
mﬁ
N— .

e/

<

_ _yizi

e Combining both cases, gradient for per-example loss

VL (fz',a)y')= {O if f(z',a)=y'

—vy'z' otherwise

Optimizing with Gradient Descent

Gradient for per-example loss

VL, (fz',a)y')= {0 if f(z,a)=y'

—y'zZ’ otherwise
Total gradient VL, (a)= ZV'—p (f(zira)'yi)

Simpler formula VL, (a)= Z— y'z

misclassif ied
examples i

Gradient decent update rule for L (a)
a=a+a Z:yizi

misclassif ied
examples i

e called batch because it is based on all examples
e can be slow if number of examples is very large

Perceptron Loss Batch Example

e Examples

2

2
3

B

class 1

e Labels

ylzl y2=l y3=1 y4

4
3

g

e Add extra feature

|

3
5

|

X

4

|

1
3

| -

class 2

-1 y’=-1

e Pile all examples as rows in matrix Z

e Pile all lIabels into column vector Y

|

S|
6

|

e e

ORLPWHEDN

SOOwWoOTww

Perceptron Loss Batch Example

e ExamplesinZ, labelsinY 2]
12 3] [71)
1 4 3 1] o= .
Z=/1 3 5| Y= 1 N
11 3 -1 N
15 6| [-1 A ————

e |nitial weights a=|1

e Thisislinex; +x,+1=0

Perceptron Loss Batch Example

(1 2 3] == 6
o 5 []
1 4 3 1 1 ,
Z=|1 3 5 a=|1 Y=| 1 ‘°’ ® B []
11 3 == -1 i
N O
1 5 6 —1 \/
I R R B R

e Perceptron Batch -

a=a+a) yz
misclassif ied
examples i

e Let ususelearningrate a =0.2

a=a~+0.2 Z:yizi

misclassif ied
examples i

e Sample misclassified if y(a'z) < 0

Perceptron Loss Batch Example

1 2 3] =L 6
o 2 L]

1 4 3 1 1 4

135 a:]. Y:l 3¥ .. .

11 3 == -1 i
\ o

1 5 6 -1 \/
-1\5\1éé£15

Sample misclassified if y(a'z) < O
Find all misclassified samples with one line in matlab
Could have for loop to compute a'z

For i=1 1]

yazi=1[1 1 1]j2 =6>0

Repeatfori=2,3,4,5

Perceptron Loss Batch Example

(1 2 3] == 6
o 5 []
1 4 3 1 1 ,
Z=|1 3 5 a=|1 Y=| 1 3 ® B []
11 3 == -1 i
N O
1 5 6 —1 \/
R R R T

e Sample misclassified if y(atz) < 0
e Find all misclassified samples with one line in matlab
e Can compute a'z for all samples

a'z' | 6
a'z’ 8
a'z’ |= 2*a =| 9
a'z’ 5
a'z’ | 12

Perceptron Loss Batch Example

N

Il
BB et LS P
g~ W b N

e Sample misclassified if y(atz) < 0

ICDOOU"IOOOO

1
Y=| 1
1 -1

—

__1_

-1 = N - N S S, -

-

* Cancompute y(a'z) for all samples in one line

e Per example loss is Lp(f(zira)ryi)

e s e

1(t 1)
/o)
o)
e

a'2)

=Y.*(Z*a)=

N O1© 00 O

—-12

{O— y'(a'z')

Y Ll@)=5+12=17

if f(zi,a): y'
otherwise

O
L]
N L]
X\!
o\ 1 2 3 5
Total loss is

Perceptron Loss Batch Example

1 2 3
1 4 3 1 1] -
z=|1 3 5| a=|1 Y= 1 il o N]
11 3 1 1 1
15 6 -1 fh\
e Samples 4 and 5 misclassified L
e Perceptron Batch rule update a=a + 0.2 Z:yizi
xamples 1
[[1] [1]) [1] [o.2] [0.2] [0.6]
a=a+02-1-/1|-1-{5||=/1(-]0.2|—-| 1 |=|-0.2
. 3] 16]) |1] |0.6] |[1.2| [-0.8

e Thisisline -0.2x,-0.8x,+0.6=0

Perceptron Loss Batch Example

6
1 2 3 | u
1 4 3 0.6 4l
Z=|1 3 5| a=|-02| y= i O BN []
~0.8 2
1 1 3 | —0.8_ 1 ~
1 5 6 -1 i
= = I~

e Sample misclassified if y(atz) < 0

=i
o
=i
oS
[dn]
iy
(93]

e Find all misclassified samples T_ 297 X
~2.6 X
(Z*a).*Y =1 —-4.0 X

2

==

e Totallossis L(a)=2.2 +2.6 +4=8.8

e previous loss was 17 with 2 misclassified examples

Perceptron Loss Batch Example

12 3 —2.2] Y :
1 4 3 R = —2.6)
0.6 1 X . o »
z=|1 3 5|a=|-02|y=| 1| (Z*a)*Y =[-40| Y -
11 3 |-08] |-1 2 S
1 5 6 _1 L 5'2_ K 1 2 3 4 5
e Perceptron Batch rule update
a=a-+0.2 Zy'z'
misclassif ied
examples i
1| [1] [1]) [o0.6] [0.2] [0.2] [0.2]
a=a+0.21|2|+1-|4|+1-|3|| ={=-0.2|+/041|+/0.8|+|0.6]| =
El | 3| 5 -08| [06] [06] | 1

e Thisisline 1.6x,+1.4x,+1.2=0

Perceptron Loss Batch Example

N

Il
Bt | etcad et e e
g P W AN
o W Ul W W

e Sample misclassified if y(atz) < 0

e Find all misclassified samples

(1.2]

1.6
1.4

(Z*a).*Y =

8.6
11.8
13.0

~7

-17.6.

e Totallossis L(a)=7+17.6=24.6

e previous loss was 8.8 with 3 misclassified examples

X
X

e J|oss went up, means learning rate of 0.2 is too high

Perceptron Single Sample Gradient Descent

e Batch Perceptron can be slow to converge if lots of examples
e Single sample optimization

update weights a as soon as possible, after seeing 1 example
e One iteration (epoch)

e go over all examples, as soon as find misclassified example, update

a =a+o-yz

zis misclassified example, y is its label . , "‘anewA
e Geometricintuiton "
e z misclassified by a means

a‘'yz=<0

zis on the wrong side of decision
boundary

adding a-y z moves decision boundary
in the right direction

lllustration for positive example z
e Best to go over examples in random order

Perceptron Single Sample Rule

if ouis too small, z is still
misclassified

(1) |
4 (K)

if auis too large, previously
correctly classified sample z' is
now misclassified

A 4

see only one
example

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
b b
Batch Gradient Descent, Single sample gradient descent,

one iteration one iteration

Perceptron Single Sample Rule Example

features grade
name good tall? sleeps in chews
attendance? class? gum?
Jane yes yes no no A
Steve yes yes yes yes F
Mary no no no yes F
Peter yes no no yes A

e class 1: students who get grade A
e class 2: students who get grade F

Perceptron Single Sample Rule Example

e Convert attributes to numerical values

features
name good tall? sleeps in chews
attendance? class? gum?
Jane 1 1 -1 -1 1
Steve 1 1 1 1 -1
Mary -1 -1 -1 1 -1
Peter 1 -1 1 1 1

Augment Feature Vector

features
name | extra good tall? sleeps in chews
attendance? class? gum?
Jane 1 1 -1 -1 1
Steve 1 1 1 1 -1
Mary 1 -1 -1 -1 1 -1
Peter 1 -1 1 1 1

e convert samples x?,..., X" to augmented samples z3,..., 2"
by adding a new dimension of value 1

Apply Single Sample Rule

features
name | extra good tall? sleeps in chews
attendance? class? gum?
Jane 1 1 -1 -1 1
Steve 1 1 1 1 -1
Mary 1 -1 -1 -1 1 -1
Peter 1 -1 1 1 1

e Set fixed learningratetoa =1

e Gradient descent with single sample rule

visit examples in random order

example misclassified if y(atz) < 0

when misclassified example z found, update a'k*1) =ak) + yz

Apply Single Sample Rule

[0.25
= 0.25 e for simplicity, we will visit all
- : >
e initial weights a" =|0.25 samples sequentially
= e example misclassified if y(a‘z) < 0
0.25|
, I
name y V(3 tz) misclassified:
Jane 1 | 0.25*1+0.25*1+0.25*1+0.25%(-1)+0.25*(-1) >0 no
Steve | -1 | -1*(0.25%1+0.25%1+0.25*1+0.25*1+0.25%1) <0 yes
(0.25] [1] [0.75]
0.25] |1 0.75
e new weights a?=a%+yz={0.25|-|1|=|0.75
0.25] |1 0.75
025 |1] |0.75

Apply Single Sample Rule

[0.75
0.75
a®=10.75
0.75
0.75
, P
name | y Y(atz) misclassified:
Mary -1 | -1*(-0.75*%1-0.75*(-1) -0.75 *(-1) -0.75 *(-1) -0.75*1) < 0 yes
(0.75] | 1] [-1.75]
0.75| | -1 0.25
e new weights a®=a®+yz={0.75|-|-1| =| 0.25
0.75| | -1 0.25
075 | 1] |-1.75]

Apply Single Sample Rule
—1.75]

0.25
=| 0.25

0.25
-1.75

name y

y(az)

misclassified?

Peter | 1

-1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1< 0

yes

e new weights

a¥ =a® 4 yz=

—1.75]
0.25
0.25
0.25

-1.75

[—0.75]

1.25
—-0.75
—-0.75

-0.75

Single Sample Rule: Convergence

—0.75|
1.25
a¥ =] -0.75
—0.75
- 0.75
nhame Y y(a tz) misclassified?
Jane 1 -0.75 *1 +1.25*1 -0.75*1-0.75 *(-1) -0.75 *(-1)+0 no
Steve | -1 -1*(-0.75*1+1.25*1 -0.75*1 -0.75*1-0.75*1)>0 no
Mary -1 -1*(-0.75 *1+1.25*(-1)-0.75*(-1) -0.75 *(-1) -0.75*1)>0 no
Peter 1 -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

Single Sample Rule: Convergence

—0.75
1.25
a¥ =|-0.75
—0.75

|- 0.75

e Discriminant function is
g(z) =-0.75 z,+1.25z, — 0.75z, - 0.75z,- 0.75z,

e Converting back to the original features x
g(x) = 1.25x, — 0.75x, - 0.75x;- 0.75x, - 0.75

Final Classifier

Trained LDF: g(x) = 1.25x, — 0.75X, - 0.75x, - 0.75x, - 0.75

Leads to classifier:
1.25x, — 0.75x, - 0.75x;- 0.75x, > 0.75 = grade A
/ / \ \

good tall sleeps in class chews gum
attendance

This is just one possible solution vector

With alt=[0,0.5, 0.5, 0, 0], solution is [-1,1.5, -0.5, -1, -1]
1.5%, - 0.5x, - X3 - X, > 1= grade A

e in this solution, being tall is the least important feature

Convergence under Perceptron Loss

1. Classes are linearly separable

* with fixed learning rate, both single sample and batch versions converge to
a correct solution a

* can be any ain the solution space

2. Classes are not linearly separable
* with fixed learning rate, both single sample and batch do not converge
* can ensure convergence with appropriate variable learning rate
e a—>0 as k> e
* example, inverse linear: a = c/k, where c is any constant
* also converges in the linearly separable case

* Practical Issue: both single sample and batch algorithms converge
faster if features are roughly on the same scale

e see kNN lecture on feature normalization

Batch vs. Single Sample Rules

Batch

True gradient descent, full
gradient computed

Smoother gradient because
all samples are used

Takes longer to converge

Single Sample
Only partial gradient is
computed

Noisier gradient, may
concentrates more than
necessary on any isolated
training examples (those
could be noise)

Converges faster

Mini-Batch

* Update weights after seeing batchSize examples

* Faster convergence than the Batch rule

* Less susceptible to noisy examples than Single Sample Rule

Linear Classifier: Quadratic Loss

Other loss functions are possible for our classifier

f(zi, a): sign(ztai)

Quadratic per-example loss
L, (f(zi, a), z'): %(yi —a'z')2

Trying to fit labels +1 and -1 to function a‘z

This is just standard line fitting in (linear regression)
. note that even correctly classified examples can have a large loss

Can find optimal weight a analytically with least squares

. expensive for large problems

Gradient descent more efficient for a larger problem

VL (a)= Z:(yi —atzi) i

Batch update rule

a= a+aZ(—a'z)7

Linear Classifier: Quadratic Loss

e (Quadratic loss is an inferior choice for classification

v

*Z

. Optimal classifier under . Classifier found with
guadratic loss Perceptron loss
. smallest squared errors . huge squared errors
. one sample misclassified . all samples classified correctly

e |dea: instead of trying to get atz close to y, use some
differentiable function 6(a'z) with “squished range”, and try
to get 6(a'z) closetoy

Linear Classifier: Logistic Regression

e Denote classes with 1 and 0 now
e y'=1 for positive class, y'= 0 for negative

e Use logistic sigmoid function 6(t) for “squishing” a'z

6(t)T / 6(atz)“ -
0.5

olt)= 1+exp(—t)

e Despite “regression” in the name, logistic regression is used
for classification, not regression

guadratic loss

= -
=29 logistic

regression loss

O(a'z)

o —@

®
Vv

atz

Logistic Regression: Loss Function

e Could use (y'- 6(atz)) 2 as per-example loss function

e [nstead use a different loss
e if example z has label 1, want 6(a'z) close to 1, define loss as
—log [6(a"z)]
. if example z has label 0, want 6(a"z) close to 0, define loss as
—log [1-6(a"z)]

Logistic Regression: Loss Function

Per-example loss function 6(at'z)
e if example x has label 1, loss is
—log [6(a"z)]
. if example x has label O, loss is
—log [1-6(a"z)]
Total loss is sum over per-example losses

atz

Convex, can be optimized exactly with gradient descent
Gradient descent batch update rule

a=a+ azi: (yi — cs(atzi)) Z'

Logistic Regression has interesting probabilistic interpretation
e P(class 1) = 6(a"2)
. P(class 0) =1 - P(class 1)
e Therefore loss function is -log P(y) (negative log-likelihood)
. standard objective in statistics

Logistic Regression vs. Perceptron

Green example classified correctly, but = @ =

close to decision boundary O (w'x)

J Suppose wtx = 0.8 for green example 0.5

. classified correctly, no loss under Perceptron

. loss of -log(6(0.8)) = 0.37 under logistic X
regression

. Logistic Regression (LR) encourages decision boundary
move away from any training sample

. may work better for new samples (better
generalization) N

* zero Perceptron loss e zero Perceptron loss e red classifier works

e smaller LR loss e larger LR loss better for new data

Linear Classifier: Logistic Regression

e ExamplesinZ, labelsinY z -
12 3] [1 :
1 4 3 1) ¢ B =
Z=|1 3 5| Y=|1 { Q
11 3 0 \(’
156/ |0 e

e Batch Logistic Regression with learning rate a=1

1
e |nitial weights a=|1
1

e Thisislinex; +x,+1=0

Linear Classifier: Logistic Regression

3

N

Il
a1 b 1 s £ e
gl P W b D
oo W U1 W

e |ogistic Regression Batch rule update witha =1

a=a+ Sl -olez)e

e Can compute each (y'- 6(atz')) z! with for loop, and add them up

e Fori=1,

v ol -

1-ol[1 1 1]2

1

1

: ©
5]

4

’ ©]

2
RN

\

N

1 \o 1 3 4 5
I [0.0025

(1-0(6)) 2| =0.0025| 2 |=| 0.005

: 0.0075

Linear Classifier: Logistic Regression

1 2 3 B 1 5 .
1 4 3 1 1 4
z=|1 3 5| a=|1 Y=|1 Z ® N]
1 1 3 1 0
15 6 0 f\>'
N s s
Logistic Regression Batch rule update witha =1
a:a+Z:(yi—cs(atzi))zi = =
: a'z' 6
But also can compute update with a few a'z’ 8
lines in Matlab, no need for a loop a'z’ |[=2*a=| 9
First compute atz' for all examples a'z’ 5
a'z’ 112 |

Linear Classifier: Loglstlc Regression

N

Il
a1 b 1 s £ e
gl P W b D

o W 01 W

e Batch update rule

a=a+ Zi:(yi — cs(atzi)) 4

a'z!
a'z?
a'z’

a'z*

a'z’

o1 © 00 O

12

6
5
4
3
2
1

N
F

1
—

(6)

(8
(
(5

0(12)

Q

Q
(®

Q
\/_/_/_/

Q

[0.9975 |

0.9997
0.9999
0.9933

| 1.000 |

Linear Classifier: Logistic Regression

e Assume you have sigmoid function 6(t) implemented
e takes scalar t as an input, outputs 6(t)

e To apply sigmoid to each element of column vector with
one line, use arrayfun(functionPtr, A) in matlab

o(6) | [0.9975]
o(8) | |0.9997
o(9) (=] 0.9999
o(5) | |0.9933
0(12)| | 1.000

Linear Classifier: Logistic Regression

12 3 1 6 ®
1 4 3 =5 it i -
z=|1 3 5| a=|1 Y=|1 3 o B [
11 3 St 0 |
15 6 0 \?
e Batch rule update 11 Nz s 4 s
a=a+ Z‘(yi —o(atzi)) z'
i e Subtract from labels Y
"ofa'z!)] [0.9975° = "0.9975] [0.0025
o(a'z?)| |0.9997 0.9997 | | 0.0003
o(a'z®)|=| 0.9999 0.9999 |=| 0.0001
ofa'z*)| |0.9933 0.9933 | |-0.9933
(a2®)| | 1.000 | | 1.000 | | —1.000

Linear Classifier: Logistic Regression

1

o b W B~ DN

1
1
1
1

y — O
_v2—0
v’ -0
v'-o
v° -0

3

o W 01 W

=repmat(v,1,3).*Z=

e Batch rule update

a= a+Z(—cr(atzi))zi

Y- o(a‘zl) ©0.0025]
y2-o(a'z?)| | 0.0003
v=|y*-ola'z®)| =| 0.0001
v'-ola'z*)| |-0.9933
y°-ola'z’)| | -1.000 |
[0.0025 0.0025 0.0025
0.0003 0.0003 0.0003
0.0001 0.0001 0.0001 |.*z
-0.99 -0.99 -0.99
100 -100 100 |

reca 11 B 1 e s e

Linear Classifier: Logistic Regression

o b W B~ DN

3

o W 01 W

1

1
1
0
0

e Multiply by corresponding
example continued

0.0025
0.0003
0.0001
-0.99

| ~1.00

0.0025 0.0025
0.0003 0.0003

0.0001 0.0001
-0.99 -0.99
100 -1.00

KL=

e Batch rule update

10.0025 0.0049 0.0074
0.0003 0.0013 0.001
0.0001 0.0004 0.0006
-0.99 -0.99 -2.98

| -1.00 -50 -6.0

0.0025 |
0.0003
0.0001

~0.9933
| ~1.000

Linear Classifier: Logistic Regression

e Batchrule update a= a+Z(y c(az))z

=y2 —c(a z
=y3 —o(a z
=y4 —o(a z

t_2

w

t

t_4

y® — O_(atZS

e Add up all rows
sum(A,1)=|-1.99 -5.99 -8.97]

)
)
)
)

:y —o(a zl)]z1

Z
Z
Z
Z

2

3

4

5

00025 0.0049 0.0074°
0.0003 0.0013 0.001
0.0001 0.0004 0.0006
-0.99 -0.99 -2.98
| -100 -50 6.0

e Transpose to get the needed update

—-1.99 |

[-1.99 -5.99 -8.97]=|-5.99| =Y(y'-ola'z'))?'

-8.97|

Linear Classifier: Logistic Regression

e Batch rule update 5 B
a:aJrZ:(yi—o(atzi))zi al om =
e .
1 [—1.99] oL
1 _5.99 f
; B S R N
—1.99 —0.99
e Finally update a=|1| +|-5.99| =|-4.99
1 | —8.97 | —7.97

e Thisis line-4.99x,-7.97 x,-0.99=0

N
qguadratic loss
istic regressiqQn
loss
perceptron
loss atz
misclassified classified correctly classified correctly
but close to and not too close
decision boundary to the decision
boundary

e Assuming labels are +1 and -1

More General Discriminant Functions

e Linear discriminant functions
e simple decision boundary
e should try simpler models first to avoid overfitting
e optimal for certain type of data
e Gaussian distributions with equal covariance
e May not be optimal for other data distributions

e Discriminant functions can be more general than linear
e For example, polynomial discriminant functions

e Decision boundaries more complex than linear
e Later will look more at non-linear discriminant functions

Summary

* Linear classifier works well when examples are
linearly separable, or almost separable

e Two Linear Classifiers

* Perceptron
* find a separating hyperplane in the linearly separable case
* uses gradient descent for optimization
* does not converge in the non-separable case
e can force convergence by using a decreasing learning rate

* Logistic Regression
* has probabilistic interpretation
* can be optimized exactly with gradient descent

