CS4442/9542b Artificial Intelligence II prof. Olga Veksler

Lecture 4
Machine Learning
Linear Classifier
2 classes

Outline

- Optimization with gradient descent
- Linear Classifier
 - Two class case
 - Loss functions
 - Perceptron
 - Batch
 - Single sample
 - Logistic Regression

Optimization

• How to minimize a function of a single variable $J(x) = (x-5)^2$

From calculus, take derivative, set it to 0

$$\frac{d}{dx}J(x)=0$$

- Solve the resulting equation
 - maybe easy or hard to solve
- Example above is easy:

$$\frac{d}{dx}J(x)=2(x-5)=0 \implies x=5$$

Optimization

How to minimize a function of many variables

$$J(\mathbf{x}) = J(\mathbf{x}_1, ..., \mathbf{x}_d)$$

From calculus, take partial derivatives, set them to 0

gradient

$$\begin{bmatrix} \frac{\partial}{\partial x_1} J(x) \\ \vdots \\ \frac{\partial}{\partial x_d} J(x) \end{bmatrix} = \nabla J(x) = 0$$

- Solve the resulting system of d equations
- It may not be possible to solve the system of equations above analytically

Optimization: Gradient Direction

- Gradient $\nabla J(x)$ points in the direction of steepest increase of function J(x)
- $-\nabla J(x)$ points in the direction of steepest decrease

Gradient Direction in 1D

- Gradient is just derivative in 1D
- Example: $J(x) = (x-5)^2$ and derivative is $\frac{d}{dx}J(x) = 2(x-5)$

- Let **x** = 3
- $\bullet \quad -\frac{d}{dx}J(3)=4$
- derivative says increase x

$$\bullet \quad -\frac{d}{dx}J(3) = -6$$

derivative says decrease x

Gradient Direction in 2D

- $J(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 5)^2 + (\mathbf{x}_2 10)^2$
- $\bullet \qquad \frac{\partial}{\partial x_1} J(x) = 2(x_1 5)$
- $\frac{\partial}{\partial \mathbf{x_2}} \mathbf{J}(\mathbf{x}) = \mathbf{2}(\mathbf{x_2} \mathbf{10})$ Let $\mathbf{a} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$ $\frac{\partial}{\partial \mathbf{x_1}} \mathbf{J}(\mathbf{a}) = 10$

- $\frac{\partial}{\partial \mathbf{x}_2} \mathbf{J}(\mathbf{a}) = -10$
- $\bullet \quad \nabla \mathbf{J}(\mathbf{a}) = \begin{bmatrix} 10 \\ -10 \end{bmatrix}$
- $\bullet \quad -\nabla J(a) = \begin{vmatrix} -10 \\ 10 \end{vmatrix}$

Gradient Descent: Step Size

- $J(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 5)^2 + (\mathbf{x}_2 10)^2$
- Which step size to take?
- Controlled by parameter α
 - called learning rate
- From previous slide

•
$$\mathbf{a} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$
, $-\nabla \mathbf{J}(\mathbf{a}) = \begin{bmatrix} -10 \\ 10 \end{bmatrix}$

• Let $\alpha = 0.2$

$$\mathbf{a} - \alpha \nabla \mathbf{J}(\mathbf{a}) = \begin{bmatrix} 10 \\ 5 \end{bmatrix} + 0.2 \begin{bmatrix} -10 \\ 10 \end{bmatrix} = \begin{bmatrix} 8 \\ 7 \end{bmatrix}$$

• J(10, 5) = 50; J(8,7) = 18

Gradient Descent Algorithm

$$\mathbf{k} = 1$$
 $\mathbf{x}^{(1)} = \text{any initial guess}$
 $\text{choose } \alpha, \epsilon$
 $\text{while } \alpha \|\nabla \mathbf{J}(\mathbf{x}^{(k)})\| > \epsilon$
 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla \mathbf{J}(\mathbf{x}^{(k)})$
 $\mathbf{k} = \mathbf{k} + 1$

Gradient Descent: Local Minimum

- Not guaranteed to find global minimum
 - gets stuck in local minimum

 Still gradient descent is very popular because it is simple and applicable to any differentiable function

How to Set Learning Rate α?

 If α too small, too many iterations to converge

 If α too large, may overshoot the local minimum and possibly never even converge

 It helps to compute J(x) as a function of iteration number, to make sure we are properly minimizing it

Variable Learning Rate

• If desired, can change learning rate α at each iteration

$$\mathbf{k} = 1$$
 $\mathbf{x}^{(1)} = \text{any initial guess}$
 $\text{choose } \alpha, \epsilon$
 $\text{while } \alpha || \nabla \mathbf{J}(\mathbf{x}^{(k)}) || > \epsilon$
 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla \mathbf{J}(\mathbf{x}^{(k)})$
 $\mathbf{k} = \mathbf{k} + 1$

```
\mathbf{k} = 1
\mathbf{x}^{(1)} = \text{any initial guess}
\text{choose } \mathbf{\epsilon}
\text{while } \alpha || \nabla \mathbf{J}(\mathbf{x}^{(k)}) || > \mathbf{\epsilon}
\text{choose } \alpha^{(k)}
\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \nabla \mathbf{J}(\mathbf{x}^{(k)})
\mathbf{k} = \mathbf{k} + 1
```

Variable Learning Rate

Usually do not keep track of all intermediate solutions

$$\mathbf{k} = 1$$
 $\mathbf{x}^{(1)} = \text{any initial guess}$
 $\text{choose } \alpha, \epsilon$
 $\text{while } \alpha || \nabla \mathbf{J}(\mathbf{x}^{(k)}) || > \epsilon$
 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla \mathbf{J}(\mathbf{x}^{(k)})$
 $\mathbf{k} = \mathbf{k} + 1$

$$\mathbf{k} = 1$$
 $\mathbf{x} = \text{any initial guess}$
 $\text{choose } \alpha, \epsilon$
 $\text{while } \alpha || \nabla J(\mathbf{x}) || > \epsilon$
 $\mathbf{x} = \mathbf{x} - \alpha || \nabla J(\mathbf{x}) ||$
 $\mathbf{k} = \mathbf{k} + 1$

Learning Rate

 Monitor learning rate by looking at how fast the objective function decreases

Learning Rate: Loss Surface Illustration

b

0.6

1.0

0.9

0.8

0.0

Advanced Optimization Methods

- There are more advanced gradient-based optimization methods
- Such as conjugate gradient
 - ullet automatically pick a good learning rate α
 - usually converge faster
 - however more complex to understand and implement
 - in Matlab, use **fminunc** for various advanced optimization methods

Supervised Machine Learning (Recap)

- Chose type of f(x,w)
 - w are tunable weights, x is the input example
 - f(x,w) should output the correct class of sample x
 - use labeled samples to tune weights w so that
 f(x,w) give the correct class y for x
 - with help of loss function L(f(x,w),y)
- How to choose type of f(x,w)?
 - many choices
 - previous lecture: kNN classifier
 - this lecture: linear classifier

Linear Classifier

 Classifier is linear if it makes a decision based on linear combination of features

$$\mathbf{g}(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \mathbf{x}_1 \mathbf{w}_1 + \dots + \mathbf{x}_d \mathbf{w}_d$$

- g(x,w) sometimes called discriminant function
- Encode 2 classes as
 - y = 1 for the first class
 - y = -1 for the second class
- One choice for linear classifier

$$f(x,w) = sign(g(x,w))$$

- 1 if g(x,w) is positive
- -1 if **g**(**x**,**w**) is negative

Linear Classifier: Decision Boundary

- $f(x,w) = sign(g(x,w)) = sign(w_0+x_1w_1+...+x_dw_d)$
- Decision boundary is linear
- Find \mathbf{w}_0 , \mathbf{w}_1 ,..., \mathbf{w}_d that gives best separation of two classes with linear boundary

More on Linear Discriminant Function (LDF)

More on Linear Discriminant Function (LDF)

- Decision boundary: $\mathbf{g}(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \mathbf{x}_1 \mathbf{w}_1 + \dots + \mathbf{x}_d \mathbf{w}_d = 0$
- This is a hyperplane, by definition
 - a point in 1D
 - a line in 2D
 - a plane in 3D
 - a hyperplane in higher dimensions

Vector Notation

- Linear discriminant function g(x,w, w₀) = w^tx + w₀
- Example in 2D

$$\mathbf{g}(\mathbf{x}, \mathbf{w}, \mathbf{w}_0) = 3\mathbf{x}_1 + 2\mathbf{x}_2 + 4 \qquad \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad \mathbf{w}_0 = 4$$

Shorter notation if add extra feature of value 1 to x

$$\mathbf{z} = \begin{bmatrix} 1 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \qquad \mathbf{g}(\mathbf{z}, \mathbf{a}) = \mathbf{z}^{\mathsf{t}} \mathbf{a} = \begin{bmatrix} 4 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

Use a^tz instead of w^tx + w₀

$$g(z,a) = z^t a = 4 + 3x_1 + 2x_2 = x^t w + w_0 = g(x, w, w_0)$$

Fitting Parameters w

Rewrite

$$g(\mathbf{x}, \mathbf{w}, \mathbf{w}_0) = \begin{bmatrix} \mathbf{w}_0 & \mathbf{w}^t \\ \mathbf{x} \end{bmatrix} = \mathbf{a}^t \mathbf{z} = \mathbf{g}(\mathbf{z}, \mathbf{a})$$
new weight
vector \mathbf{a}
new
feature
vector \mathbf{z}

- z is called augmented feature vector
- new problem equivalent to the old $g(z,a) = a^tz$

Augmented Feature Vector

- Feature augmenting simplifies notation
- Assume augmented feature vectors for the rest of lecture
 - given examples $\mathbf{x}^1,...,\mathbf{x}^n$ convert them to augmented examples $\mathbf{z}^1,...,\mathbf{z}^n$ by adding a new dimension of value 1
- $g(z,a) = a^t z$
- f(z,a) = sign(g(z,a))

Solution Region

- If there is weight vector **a** that classifies all examples correctly, it is called a **separating** or **solution** vector
 - then there are infinitely many solution vectors a
 - then the original samples $\mathbf{x}^1,...\mathbf{x}^n$ are also linearly separable

Solution Region

Solution region: the set of all solution vectors a

Loss Function

- How to find solution vector a?
 - or, if no separating a exists, a good approximate solution vector a?
- Design a non-negative loss function L(a)
 - L(a) is small if a is good
 - L(a) is large if a is bad
- Minimize L(a) with gradient descent
- Usually design of L(a) has two steps
 - 1. design per-example loss L(f(zi,a),yi)
 - penalizes for deviations of f(zⁱ,a) from yⁱ
 - 2. total loss adds up per-sample loss over all training examples

$$L(a) = \sum_{i} L(f(z^{i},a), y^{i})$$

Loss Function, First Attempt

Per-example loss function measures if error happens

$$L(f(z^{i},a),y^{i}) = \begin{cases} 0 & \text{if } f(z^{i},a) = y^{i} \\ 1 & \text{otherwise} \end{cases}$$

Example

$$\mathbf{z}^{1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \mathbf{y}^{1} = 1 \qquad \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \quad \mathbf{y}^{2} = -1$$

$$\mathbf{f}(\mathbf{z}^{1}, \mathbf{a}) = \operatorname{sign}(\mathbf{a}^{t} \mathbf{z}^{1}) \qquad \mathbf{f}(\mathbf{z}^{2}, \mathbf{a}) = \operatorname{sign}(\mathbf{a}^{t} \mathbf{z}^{2}) \qquad = \operatorname{sign}(1 \cdot 2 - 3 \cdot 4) \qquad = -1$$

$$\mathbf{L}(\mathbf{f}(\mathbf{z}^{1}, \mathbf{a}), \mathbf{y}^{1}) = 1 \qquad \mathbf{L}(\mathbf{f}(\mathbf{z}^{2}, \mathbf{a}), \mathbf{y}^{2}) = 0$$

 $L(f(z^2,a),y^2)=0$

Loss Function, First Attempt

Per-example loss function measures if error happens

$$L(f(z^{i},a),y^{i}) = \begin{cases} 0 & \text{if } f(z^{i},a) = y^{i} \\ 1 & \text{otherwise} \end{cases}$$

Total loss function

$$L(a) = \sum_{i} L(f(z^{i}, a), y^{i})$$

For previous example

$$\mathbf{a} = \begin{bmatrix} 2 \\ -3 \end{bmatrix} \quad \mathbf{L}(\mathbf{f}(\mathbf{z}^{1}, \mathbf{a}), \mathbf{y}^{1}) = 1 \\ \mathbf{L}(\mathbf{f}(\mathbf{z}^{2}, \mathbf{a}), \mathbf{y}^{2}) = 0 \qquad \mathbf{L}(\mathbf{a}) = 1 + 0 = 1$$

Thus this loss function just counts the number of errors

Loss Function: First Attempt

Per-example loss

$$L(f(z^{i},a),y^{i}) = \begin{cases} 0 & \text{if } f(z^{i},a) = y^{i} \\ 1 & \text{otherwise} \end{cases}$$

Total loss

$$L(a) = \sum_{i} L(f(z^{i},a),y^{i})$$

- Unfortunately, cannot minimize this loss function with gradient descent
 - piecewise constant, gradient zero or does not exist

Perceptron Loss Function

Different Loss Function: Perceptron Loss

$$L_{p}(f(z^{i},a),y^{i}) = \begin{cases} 0 & \text{if } f(z^{i},a) = y^{i} \\ -y^{i}(a^{t}z^{i}) & \text{otherwise} \end{cases}$$

- L_p(a) is non-negative
 - positive misclassified example zⁱ
 - $a^tz^i < 0$
 - $y^i = 1$
 - $y^i(a^tz^i) < 0$
 - negative misclassified example zⁱ
 - $a^tz^i > 0$
 - $y^i = -1$
 - $\mathbf{y}^{i}(\mathbf{a}^{t}\mathbf{z}^{i}) < 0$
 - if zi is misclassified then yi(atzi) < 0
 - if zⁱ is misclassified then -yⁱ(a^tzⁱ) > 0
- $L_p(a)$ proportional to distance of misclassified example to boundary

Perceptron Loss Function

$$L_{p}(f(z^{i},a),y^{i}) = \begin{cases} 0 & \text{if } f(z^{i},a) = y^{i} \\ -y^{i}(a^{t}z^{i}) & \text{otherwise} \end{cases}$$

Example

$$\mathbf{z}^{1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \mathbf{y}^{1} = 1$$

$$\mathbf{a} = \begin{bmatrix} 2 \\ -3 \end{bmatrix} \quad \mathbf{f}(\mathbf{z}^{1}, \mathbf{a}) = \operatorname{sign}(\mathbf{a}^{t} \mathbf{z}^{1})$$

$$= \operatorname{sign}(1 \cdot 2 - 3 \cdot 2)$$

$$= \operatorname{sign}(-4)$$

$$= -1$$

$$\mathbf{L}_{p}(\mathbf{f}(\mathbf{z}^{1}, \mathbf{a}), \mathbf{y}^{1}) = 4$$

$$\mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \quad \mathbf{y}^{2} = -1$$

$$\mathbf{f}(\mathbf{z}^{2}, \mathbf{a}) = \mathbf{sign}(\mathbf{a}^{t} \mathbf{z}^{2})$$

$$= \mathbf{sign}(1 \cdot 2 - 3 \cdot 4)$$

$$= -1$$

$$L_p(f(z^2,a),y^2)=0$$

• Total loss $L_p(a) = 4 + 0 = 4$

Perceptron Loss Function

Per-example loss

$$L_{p}(f(z^{i},a),y^{i}) = \begin{cases} 0 & \text{if } f(z^{i},a) = y^{i} \\ -y^{i}(a^{t}z^{i}) & \text{otherwise} \end{cases}$$

$$L_{p}(a) = \sum_{i} L(f(z^{i},a),y^{i})$$

Total loss

$$L_p(a) = \sum_i L(f(z^i,a),y^i)$$

• L_p(a) is piecewise linear and suitable for gradient descent

Optimizing with Gradient Descent

Per-example loss

$$L_{p} \big(f \big(z^{i} \text{, a} \big) \hspace{-0.5mm}, y^{i} \big) \hspace{-0.5mm} = \hspace{-0.5mm} \begin{cases} \hspace{-0.5mm} 0 \hspace{0.5mm} \text{if } f \big(z^{i} \text{, a} \big) \hspace{-0.5mm} = \hspace{-0.5mm} y^{i} \hspace{1.5mm} \\ \hspace{-0.5mm} - \hspace{-0.5mm} y^{i} \big(a^{t} z^{i} \hspace{0.5mm}) \hspace{0.5mm} \text{otherwise} \hspace{1.5mm} L_{p} \big(a \big) \hspace{-0.5mm} = \hspace{-0.5mm} \sum_{i} \hspace{-0.5mm} L \Big(f \Big(z^{i} \text{, a} \Big) \hspace{-0.5mm}, y^{i} \Big)$$

Total loss

$$L_p(a) = \sum_i L(f(z^i,a), y^i)$$

Recall minimization with gradient descent, main step

$$x = x - \alpha \nabla J(x)$$

• Gradient descent to minimize $L_p(a)$, main step

$$a = a - \alpha \nabla L_p(a)$$

- Need gradient vector $\nabla \mathbf{L}_{\mathbf{p}}(\mathbf{a})$
 - has as many dimensions as dimension of a
 - if **a** has 3 dimensions, gradient $\nabla \mathbf{L}_{p}(\mathbf{a})$ has 3 dimensions

$$\mathbf{J} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \qquad \nabla \mathbf{L}_{\mathbf{p}}(\mathbf{a}) = \begin{bmatrix} \frac{\partial \mathbf{L}_{\mathbf{p}}}{\partial \mathbf{a}_{1}} \\ \frac{\partial \mathbf{L}_{\mathbf{p}}}{\partial \mathbf{a}_{2}} \\ \frac{\partial \mathbf{L}_{\mathbf{p}}}{\partial \mathbf{a}_{2}} \end{bmatrix}$$

Optimizing with Gradient Descent

Per-example loss

$$\mathbf{L}_{\mathbf{p}}(\mathbf{f}(\mathbf{z}^{i},\mathbf{a}),\mathbf{y}^{i}) = \begin{cases} 0 & \text{if } \mathbf{f}(\mathbf{z}^{i},\mathbf{a}) = \mathbf{y}^{i} \\ -\mathbf{y}^{i}(\mathbf{a}^{t}\mathbf{z}^{i}) & \text{otherwise} \end{cases}$$

Total loss

$$L_p(a) = \sum_i L(f(z^i,a), y^i)$$

• Gradient descent to minimize $L_p(a)$, main step

$$a = a - \alpha \nabla L_p(a)$$

Need gradient vector ∇L_p(a)

$$\nabla L_{p}(a) = \nabla \sum_{i} L_{p}(f(z^{i}, a), y^{i}) = \sum_{i} \nabla L_{p}(f(z^{i}, a), y^{i})$$
per example gradient

Compute and add up per example gradient vectors

$$\frac{\partial L_{p}(f(z^{i},a),y^{i})}{\partial a_{1}}$$

$$\frac{\partial L_{p}(f(z^{i},a),y^{i})}{\partial a_{2}}$$

$$\frac{\partial L_{p}(f(z^{i},a),y^{i})}{\partial a_{3}}$$

Per Example Loss Gradient

Per-example loss has two cases

$$L_{p}(f(z^{i},a),y^{i}) = \begin{cases} 0 & \text{if } f(z^{i},a) = y^{i} \\ -y^{i}(a^{t}z^{i}) & \text{otherwise} \end{cases}$$

• First case,
$$f(z^i,a) = y^i$$

$$\nabla L_p(f(z^i,a),y^i) = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$
if $f(z^i,a) = y^i$

$$\nabla constant = 0$$
? otherwise

To save space, rewrite

$$\nabla L_{p}(f(z^{i},a),y^{i}) = \begin{cases} 0 & \text{if } f(z^{i},a) = y^{i} \\ ? & \text{otherwise} \end{cases}$$

Per Example Loss Gradient

Per-example loss has two cases

$$\mathbf{L}_{\mathbf{p}}(\mathbf{f}(\mathbf{z}^{\mathbf{i}},\mathbf{a}),\mathbf{y}^{\mathbf{i}}) = \begin{cases} 0 & \text{if } \mathbf{f}(\mathbf{z}^{\mathbf{i}},\mathbf{a}) = \mathbf{y}^{\mathbf{i}} \\ -\mathbf{y}^{\mathbf{i}}(\mathbf{a}^{\mathbf{t}}\mathbf{z}^{\mathbf{i}}) & \text{otherwise} \end{cases}$$

Second case, f(zⁱ,a) ≠ yⁱ

$$\nabla L_{p}(f(z^{i},a),y^{i}) = \begin{bmatrix} \frac{\partial L}{\partial a_{1}}(-y^{i}(a^{t}z^{i})) \\ \frac{\partial L}{\partial a_{2}}(-y^{i}(a^{t}z^{i})) \\ \frac{\partial L}{\partial a_{3}}(-y^{i}(a^{t}z^{i})) \end{bmatrix} = \begin{bmatrix} \frac{\partial L}{\partial a_{1}}(-y^{i}(a_{1}z_{1}^{i}+a_{2}z_{2}^{i}+a_{3}z_{3}^{i})) \\ \frac{\partial L}{\partial a_{2}}(-y^{i}(a_{1}z_{1}^{i}+a_{2}z_{2}^{i}+a_{3}z_{3}^{i})) \end{bmatrix} = \begin{bmatrix} -y^{i}z_{1}^{i} \\ -y^{i}z_{2}^{i} \\ \frac{\partial L}{\partial a_{3}}(-y^{i}(a_{1}z_{1}^{i}+a_{2}z_{2}^{i}+a_{3}z_{3}^{i})) \end{bmatrix} = \begin{bmatrix} -y^{i}z_{1}^{i} \\ -y^{i}z_{2}^{i} \\ -y^{i}z_{3}^{i} \end{bmatrix}$$
$$= -y^{i}z^{i}$$

Combining both cases, gradient for per-example loss

$$\nabla L_{p}(f(z^{i},a),y^{i}) = \begin{cases} 0 & \text{if } f(z^{i},a) = y^{i} \\ -y^{i}z^{i} & \text{otherwise} \end{cases}$$

Optimizing with Gradient Descent

Gradient for per-example loss

$$\nabla L_{p}(f(z^{i},a),y^{i}) = \begin{cases} 0 & \text{if } f(z^{i},a) = y^{i} \\ -y^{i}z^{i} & \text{otherwise} \end{cases}$$

Total gradient

$$\nabla L_{p}(a) = \sum_{i} \nabla L_{p}(f(z^{i}, a), y^{i})$$

Simpler formula

$$\nabla \mathbf{L_p}(\mathbf{a}) = \sum_{\substack{\text{misclassif ied} \\ \text{examples i}}} - \mathbf{y^i z^i}$$

Gradient decent update rule for L_p(a)

$$\mathbf{a} = \mathbf{a} + \alpha \sum_{\substack{\text{misclassified} \\ \text{examples } i}} \mathbf{y}^{i} \mathbf{z}^{i}$$

- called batch because it is based on all examples
- can be slow if number of examples is very large

Examples

$$\mathbf{x}^{1} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \mathbf{x}^{2} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \quad \mathbf{x}^{3} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \qquad \mathbf{x}^{4} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad \mathbf{x}^{5} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
class 1

$$\mathbf{x}^4 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \ \mathbf{x}^5 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
class 2

Labels

$$\mathbf{y}^1 = 1$$
 $\mathbf{y}^2 = 1$ $\mathbf{y}^3 = 1$ $\mathbf{y}^4 = -1$ $\mathbf{y}^5 = -1$

Add extra feature

$$\mathbf{z}^{1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad \mathbf{z}^{3} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad \mathbf{z}^{4} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \quad \mathbf{z}^{5} = \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$$

- Pile all examples as rows in matrix Z
- Pile all labels into column vector Y

$$\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

Examples in Z, labels in Y

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

• Initial weights
$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

• This is line
$$x_1 + x_2 + 1 = 0$$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix}$$

$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} 1\\1\\1\\-1\\-1 \end{bmatrix}$$

Perceptron Batch

$$\mathbf{a} = \mathbf{a} + \alpha \sum_{\substack{\text{misclassified} \\ \text{examples } i}} \mathbf{y}^i \mathbf{z}^i$$

• Let us use learning rate $\alpha = 0.2$

$$\mathbf{a} = \mathbf{a} + 0.2 \sum_{\substack{\text{misclassified} \\ \text{examples i}}} \mathbf{y}^{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$$

Sample misclassified if y(a^tz) < 0

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix}$$

$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

- Sample misclassified if y(a^tz) < 0
- Find all misclassified samples with one line in matlab
- Could have for loop to compute a^tz

• For
$$i = 1$$

$$y^{1}a^{1}z^{1} = 1 \cdot \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 \end{bmatrix} = 6 > 0$$

Repeat for i = 2, 3, 4, 5

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix}$$

$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

- Sample misclassified if y(a^tz) < 0
- Find all misclassified samples with one line in matlab
- Can compute **a**^t**z** for all samples

$$\begin{vmatrix} \mathbf{a}^{t} \mathbf{z}^{1} \\ \mathbf{a}^{t} \mathbf{z}^{2} \\ \mathbf{a}^{t} \mathbf{z}^{3} \\ \mathbf{a}^{t} \mathbf{z}^{4} \\ \mathbf{a}^{t} \mathbf{z}^{5} \end{vmatrix} = \mathbf{Z}^{*} \mathbf{a} = \begin{bmatrix} 6 \\ 8 \\ 9 \\ 5 \\ 12 \end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

- Sample misclassified if y(a^tz) < 0
- Can compute y(a^tz) for all samples in one line

$$\begin{bmatrix}
 v^{1}(\mathbf{a}^{t}\mathbf{z}^{1}) \\
 v^{2}(\mathbf{a}^{t}\mathbf{z}^{2}) \\
 v^{3}(\mathbf{a}^{t}\mathbf{z}^{3}) \\
 v^{4}(\mathbf{a}^{t}\mathbf{z}^{4}) \\
 v^{5}(\mathbf{a}^{t}\mathbf{z}^{5})
 \end{bmatrix}
 = \mathbf{Y}. * (\mathbf{Z} * \mathbf{a}) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}. * \begin{bmatrix} 6 \\ 8 \\ 9 \\ 5 \\ 12 \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \\ 9 \\ -5 \\ -12 \end{bmatrix} \times \text{Total loss is } \mathbf{L}(\mathbf{a}) = 5 + 12 = 17$$

• Per example loss is
$$\mathbf{L}_{p}(\mathbf{f}(\mathbf{z}^{i},\mathbf{a}),\mathbf{y}^{i}) = \begin{cases} 0 & \text{if } \mathbf{f}(\mathbf{z}^{i},\mathbf{a}) = \mathbf{y}^{i} \\ -\mathbf{y}^{i}(\mathbf{a}^{t}\mathbf{z}^{i}) & \text{otherwise} \end{cases}$$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

- Samples 4 and 5 misclassified
- Perceptron Batch rule update $\mathbf{a} = \mathbf{a} + 0.2 \sum_{\substack{\text{misclassified} \\ \text{examples i}}} \mathbf{y}^{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$

$$\mathbf{a} = \mathbf{a} + 0.2 \begin{bmatrix} 1 \\ -1 \cdot \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} - 1 \cdot \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0.2 \\ 0.2 \\ 0.6 \end{bmatrix} - \begin{bmatrix} 0.2 \\ 1 \\ 1.2 \end{bmatrix} = \begin{bmatrix} 0.6 \\ -0.2 \\ -0.8 \end{bmatrix}$$

• This is line $-0.2\mathbf{x}_1 - 0.8\mathbf{x}_2 + 0.6 = 0$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} 0.6 \\ -0.2 \\ -0.8 \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

- Sample misclassified if y(a^tz) < 0
- Find all misclassified samples $(\mathbf{Z}*\mathbf{a}).*\mathbf{Y} = \begin{bmatrix} -2.2 \\ -2.6 \\ -4.0 \\ 2 \end{bmatrix}$
- Total loss is L(a) = 2.2 + 2.6 + 4 = 8.8
 - previous loss was 17 with 2 misclassified examples

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \mathbf{a} = \begin{bmatrix} 0.6 \\ -0.2 \\ -0.8 \end{bmatrix} \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix} \quad (\mathbf{Z}^* \mathbf{a}) \cdot \mathbf{Y} = \begin{bmatrix} -2.2 \\ -2.6 \\ -4.0 \\ 2 \\ 5.2 \end{bmatrix} \mathbf{X}$$

Perceptron Batch rule update

$$\mathbf{a} = \mathbf{a} + 0.2 \sum_{\substack{\text{misclassified} \\ \text{examples i}}} \mathbf{y}^{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$$

$$\mathbf{a} = \mathbf{a} + 0.2 \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix} + 1 \cdot \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} + 1 \cdot \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 0.6 \\ -0.2 \\ -0.8 \end{bmatrix} + \begin{bmatrix} 0.2 \\ 0.4 \\ 0.6 \end{bmatrix} + \begin{bmatrix} 0.2 \\ 0.8 \\ 0.6 \end{bmatrix} + \begin{bmatrix} 0.2 \\ 0.6 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.2 \\ 1.6 \\ 1.4 \end{bmatrix}$$

• This is line $1.6\mathbf{x}_1 + 1.4\mathbf{x}_2 + 1.2 = 0$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} 1.2 \\ 1.6 \\ 1.4 \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

- Sample misclassified if y(a^tz) < 0
- Find all misclassified samples

(Z*a).*Y =
$$\begin{bmatrix} 8.6 \\ 11.8 \\ 13.0 \\ -7 \\ -17.6 \end{bmatrix}$$

- Total loss is L(a) = 7 + 17.6 = 24.6
 - previous loss was 8.8 with 3 misclassified examples
 - loss went up, means learning rate of 0.2 is too high

Perceptron Single Sample Gradient Descent

- Batch Perceptron can be slow to converge if lots of examples
- Single sample optimization
 - update weights a as soon as possible, after seeing 1 example
- One iteration (epoch)
 - go over all examples, as soon as find misclassified example, update

$$a = a + \alpha \cdot y z$$

- z is misclassified example, y is its label
- Geometric intuition
 - z misclassified by a means

$$\mathbf{a}^{\mathsf{t}}\mathbf{y}\mathbf{z} \leq 0$$

- z is on the wrong side of decision boundary
- adding α·y z moves decision boundary in the right direction
- Illustration for positive example z
- Best to go over examples in random order

Perceptron Single Sample Rule

if α is too small, z is still misclassified

if α is too large, previously correctly classified sample \mathbf{z}^i is now misclassified

Batch Size: Loss Surface Illustration

Batch Gradient Descent, one iteration

Single sample gradient descent, one iteration

Perceptron Single Sample Rule Example

		grade			
name	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	yes	yes	no	no	А
Steve	yes	yes	yes	yes	F
Mary	no	no	no	yes	F
Peter	yes	no	no	yes	Α

- class 1: students who get grade A
- class 2: students who get grade F

Perceptron Single Sample Rule Example

Convert attributes to numerical values

		У			
name	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	1	-1	-1	1
Steve	1	1	1	1	-1
Mary	-1	-1	-1	1	-1
Peter	1	-1	1	1	1

Augment Feature Vector

		features				
name	extra good tall? sleeps in chews attendance? class? gum?					
Jane	1	1	1	-1	-1	1
Steve	1	1	1	1	1	-1
Mary	1	-1	-1	-1	1	-1
Peter	1	1	-1	1	1	1

convert samples x¹,..., xⁿ to augmented samples z¹,..., zⁿ
 by adding a new dimension of value 1

		features				
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	1	1	-1	-1	1
Steve	1	1	1	1	1	-1
Mary	1	-1	-1	-1	1	-1
Peter	1	1	-1	1	1	1

- Set fixed learning rate to $\alpha = 1$
- Gradient descent with single sample rule
 - visit examples in random order
 - example misclassified if y(a^tz) < 0
 - when misclassified example z found, update a^(k+1) =a^(k) + yz

• initial weights
$$\mathbf{a}^{(1)} = \begin{bmatrix} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \end{bmatrix}$$

- for simplicity, we will visit all samples sequentially
- example misclassified if $y(a^tz) < 0$

name	У	y(a ^t z)	misclassified?
Jane	1	0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) > 0	no
Steve	-1	-1 * (0.25*1+0.25*1+0.25*1+0.25*1) < 0	yes

• new weights
$$\mathbf{a}^{(2)} = \mathbf{a}^{(1)} + \mathbf{yz} = \begin{bmatrix} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \end{bmatrix} \begin{bmatrix} 1 \\ 0.75 \\ 1 \\ 0.75 \\ 0.75 \\ 0.75 \end{bmatrix}$$

$$\mathbf{a}^{(2)} = \begin{bmatrix} 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \end{bmatrix}$$

name	У	y(a ^t z)	misclassified?
Mary	-1	-1*(-0.75*1-0.75*(-1) -0.75 *(-1) -0.75 *(-1) -0.75*1) < 0	yes

new weights
$$\mathbf{a}^{(3)} = \mathbf{a}^{(2)} + \mathbf{yz} = \begin{bmatrix} 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0.25 \\ 0.25 \\ 0.75 \end{bmatrix} = \begin{bmatrix} -1.75 \\ 0.25 \\ 0.25 \\ -1.75 \end{bmatrix}$$

$$\mathbf{a}^{(3)} = \begin{bmatrix} -1.75 \\ 0.25 \\ 0.25 \\ 0.25 \\ -1.75 \end{bmatrix}$$

name	У	y(a ^t z)	misclassified?
Peter	1	-1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 < 0	yes

• new weights
$$\mathbf{a}^{(4)} = \mathbf{a}^{(3)} + \mathbf{yz} = \begin{bmatrix} -1.75 \\ 0.25 \\ 0.25 \\ -1.75 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.75 \\ 1.25 \\ -0.75 \\ -0.75 \end{bmatrix}$$

Single Sample Rule: Convergence

$$\mathbf{a}^{(4)} = \begin{bmatrix} -0.75 \\ 1.25 \\ -0.75 \\ -0.75 \\ -0.75 \end{bmatrix}$$

name	у	y(a ^t z)	misclassified?
Jane	1	-0.75 *1 +1.25*1 -0.75*1 -0.75 *(-1) -0.75 *(-1)+0	no
Steve	-1	-1*(-0.75*1+1.25*1 -0.75*1 -0.75*1-0.75*1)>0	no
Mary	-1	-1*(-0.75 *1+1.25*(-1)-0.75*(-1) -0.75 *(-1) -0.75*1)>0	no
Peter	1	-0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0	no

Single Sample Rule: Convergence

$$\mathbf{a}^{(4)} = \begin{bmatrix} -0.75 \\ 1.25 \\ -0.75 \\ -0.75 \\ -0.75 \end{bmatrix}$$

Discriminant function is

$$\mathbf{g}(\mathbf{z}) = -0.75 \ \mathbf{z}_0 + 1.25 \mathbf{z}_1 - 0.75 \mathbf{z}_2 - 0.75 \mathbf{z}_3 - 0.75 \mathbf{z}_4$$

Converting back to the original features x

$$\mathbf{g}(\mathbf{x}) = 1.25\mathbf{x}_1 - 0.75\mathbf{x}_2 - 0.75\mathbf{x}_3 - 0.75\mathbf{x}_4 - 0.75$$

Final Classifier

- Trained LDF: $\mathbf{g}(\mathbf{x}) = 1.25x_1 0.75x_2 0.75x_3 0.75x_4 0.75$
- Leads to classifier:

$$1.25x_1 - 0.75x_2 - 0.75x_3 - 0.75x_4 > 0.75 \Rightarrow \text{grade A}$$
good tall sleeps in class chews gum
attendance

- This is just *one* possible solution vector
- With $\mathbf{a}^{(1)}=[0,0.5,\,0.5,\,0.5,\,0]$, solution is $[-1,1.5,\,-0.5,\,-1,\,-1]$ $1.5\mathbf{x}_1 - 0.5\mathbf{x}_2 - \mathbf{x}_3 - \mathbf{x}_4 > 1 \Rightarrow \text{grade } \mathbf{A}$
 - in this solution, being tall is the least important feature

Convergence under Perceptron Loss

1. Classes are linearly separable

- with fixed learning rate, both single sample and batch versions converge to a correct solution a
- can be any a in the solution space

2. Classes are not linearly separable

- with fixed learning rate, both single sample and batch do not converge
- can ensure convergence with appropriate variable learning rate
 - $\alpha \rightarrow 0$ as $k \rightarrow \infty$
 - example, inverse linear: $\alpha = c/k$, where c is any constant
 - also converges in the linearly separable case
- Practical Issue: both single sample and batch algorithms converge faster if features are roughly on the same scale
 - see kNN lecture on feature normalization

Batch vs. Single Sample Rules

Batch

- True gradient descent, full gradient computed
- Smoother gradient because all samples are used
- Takes longer to converge

Single Sample

- Only partial gradient is computed
- Noisier gradient, may concentrates more than necessary on any isolated training examples (those could be noise)
- Converges faster

Mini-Batch

- Update weights after seeing batchSize examples
- Faster convergence than the Batch rule
- Less susceptible to noisy examples than Single Sample Rule

Linear Classifier: Quadratic Loss

Other loss functions are possible for our classifier

$$f(z^i,a) = sign(z^ta^i)$$

Quadratic per-example loss

$$\mathbf{L}_{\mathbf{p}}(\mathbf{f}(\mathbf{z}^{\mathbf{i}},\mathbf{a}),\mathbf{z}^{\mathbf{i}}) = \frac{1}{2}(\mathbf{y}^{\mathbf{i}} - \mathbf{a}^{\mathbf{t}}\mathbf{z}^{\mathbf{i}})^{2}$$

- Trying to fit labels +1 and -1 to function a^tz
- This is just standard line fitting in (linear regression)
 - note that even correctly classified examples can have a large loss
- Can find optimal weight a analytically with least squares
 - expensive for large problems
- Gradient descent more efficient for a larger problem

$$\nabla L_{p}(a) = -\sum_{i} (y^{i} - a^{t}z^{i})z^{i}$$

• Batch update rule $\mathbf{a} = \mathbf{a} + \alpha \sum_{i} (\mathbf{y}^{i} - \mathbf{a}^{t} \mathbf{z}^{i}) \mathbf{z}^{i}$

Linear Classifier: Quadratic Loss

Quadratic loss is an inferior choice for classification

- Optimal classifier under quadratic loss
 - smallest squared errors
 - one sample misclassified

- Classifier found with Perceptron loss
 - huge squared errors
 - all samples classified correctly
- Idea: instead of trying to get a^tz close to y, use some differentiable function **6**(a^tz) with "squished range", and try to get **6**(a^tz) close to y

- Denote classes with 1 and 0 now
 - $y^i = 1$ for positive class, $y^i = 0$ for negative
- Use logistic sigmoid function Θ(t) for "squishing" a^tz

 Despite "regression" in the name, logistic regression is used for classification, not regression

Logistic Regression vs. Regresson

Logistic Regression: Loss Function

- Could use $(y^i$ $G(a^tz))^2$ as per-example loss function
- Instead use a different loss
 - if example z has label 1, want ᠪ(a^Tz) close to 1, define loss as -log [ᠪ(a^Tz)]
 - if example z has label 0, want $G(a^Tz)$ close to 0, define loss as $-\log [1-G(a^Tz)]$

Logistic Regression: Loss Function

- Per-example loss function
 - if example **x** has label 1, loss is

$$-\log [G(a^Tz)]$$

if example x has label 0, loss is

$$-\log [1-б(a^Tz)]$$

- Total loss is sum over per-example losses
- Convex, can be optimized exactly with gradient descent
- Gradient descent batch update rule

$$\mathbf{a} = \mathbf{a} + \alpha \sum_{i} (\mathbf{y}^{i} - \sigma(\mathbf{a}^{t}\mathbf{z}^{i})) \mathbf{z}^{i}$$

- Logistic Regression has interesting probabilistic interpretation
 - $P(class 1) = G(a^Tz)$
 - P(class 0) = 1 P(class 1)
 - Therefore loss function is -log P(y) (negative log-likelihood)
 - standard objective in statistics

Logistic Regression vs. Perceptron

- Green example classified correctly, but close to decision boundary
 - Suppose $\mathbf{w}^{\mathsf{t}}\mathbf{x} = 0.8$ for green example
 - classified correctly, no loss under Perceptron
 - loss of $-\log(6(0.8)) = 0.37$ under logistic regression
 - Logistic Regression (LR) encourages decision boundary move away from any training sample
 - may work better for new samples (better

smaller LR loss

 red classifier works better for new data

Examples in Z, labels in Y

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

- Batch Logistic Regression with learning rate $\alpha=1$
- Initial weights $\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
- This is line $\mathbf{x}_1 + \mathbf{x}_2 + 1 = 0$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

• Logistic Regression Batch rule update with $\alpha = 1$

$$\mathbf{a} = \mathbf{a} + \sum_{i} \left(\mathbf{y}^{i} - \sigma \left(\mathbf{a}^{t} \mathbf{z}^{i} \right) \right) \mathbf{z}^{i}$$

- For $\mathbf{i} = \mathbf{1}$, $(\mathbf{y}^1 \sigma(\mathbf{a}^t \mathbf{z}^1)) \mathbf{z}^1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \sigma(6) \\ 2 \\ 3 \end{pmatrix} = 0.0025 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0.0025 \\ 0.005 \\ 0.0075 \end{pmatrix}$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

• Logistic Regression Batch rule update with $\alpha = 1$

$$\mathbf{a} = \mathbf{a} + \sum_{i} \left(\mathbf{y}^{i} - \sigma \left(\mathbf{a}^{t} \mathbf{z}^{i} \right) \right) \mathbf{z}^{i}$$

- But also can compute update with a few lines in Matlab, no need for a loop
- First compute a^tzⁱ for all examples

$$\begin{bmatrix} \mathbf{a}^{t} \mathbf{z}^{1} \\ \mathbf{a}^{t} \mathbf{z}^{2} \\ \mathbf{a}^{t} \mathbf{z}^{3} \\ \mathbf{a}^{t} \mathbf{z}^{4} \\ \mathbf{a}^{t} \mathbf{z}^{5} \end{bmatrix} = \mathbf{Z} * \mathbf{a} = \begin{bmatrix} 6 \\ 8 \\ 9 \\ 5 \\ 12 \end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix}$$

$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

Batch update rule

$$a = a + \sum_{i} (y^{i} - \sigma(a^{t}z^{i}))z^{i}$$

$$\begin{vmatrix} \mathbf{a}^{t}\mathbf{z}^{1} \\ \mathbf{a}^{t}\mathbf{z}^{2} \\ \mathbf{a}^{t}\mathbf{z}^{3} \\ \mathbf{a}^{t}\mathbf{z}^{3} \end{vmatrix} = \mathbf{Z} * \mathbf{a} = \begin{bmatrix} 6 \\ 8 \\ 9 \\ 5 \\ 12 \end{vmatrix}$$

Apply sigmoid to each row

$$\begin{bmatrix} \sigma(\mathbf{a^t z^1}) \\ \sigma(\mathbf{a^t z^2}) \\ \sigma(\mathbf{a^t z^2}) \\ \sigma(\mathbf{a^t z^3}) \\ \sigma(\mathbf{a^t z^4}) \\ \sigma(\mathbf{a^t z^4}) \\ \sigma(\mathbf{a^t z^5}) \end{bmatrix} = \begin{bmatrix} \sigma(6) \\ \sigma(8) \\ \sigma(9) \\ \sigma(5) \\ \sigma(12) \end{bmatrix} = \begin{bmatrix} 0.9975 \\ 0.9997 \\ 0.9999 \\ 0.9933 \\ 1.000 \end{bmatrix}$$

- Assume you have sigmoid function **6(t)** implemented
 - takes scalar t as an input, outputs 6(t)
- To apply sigmoid to each element of column vector with one line, use arrayfun(functionPtr, A) in matlab

$$\begin{bmatrix}
\sigma(6) \\
\sigma(8)
\end{bmatrix} = \begin{bmatrix}
0.9975 \\
0.9997 \\
0.9999 \\
0.9999 \\
0.9933 \\
0.1.000
\end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Batch rule update

$$\mathbf{a} = \mathbf{a} + \sum_{i} \left(\mathbf{y}^{i} - \sigma \left(\mathbf{a}^{t} \mathbf{z}^{i} \right) \right) \mathbf{z}^{i}$$

$$\begin{bmatrix}
\sigma(\mathbf{a}^{t}\mathbf{z}^{1}) \\
\sigma(\mathbf{a}^{t}\mathbf{z}^{2})
\end{bmatrix} = \begin{bmatrix}
0.9975 \\
0.9997
\end{bmatrix}$$

$$\sigma(\mathbf{a}^{t}\mathbf{z}^{3}) = \begin{bmatrix}
0.9999 \\
0.9993
\end{bmatrix}$$

$$\sigma(\mathbf{a}^{t}\mathbf{z}^{4}) = \begin{bmatrix}
0.9933 \\
1.000
\end{bmatrix}$$

Subtract from labels Y

$$\begin{bmatrix} \mathbf{y}^{1} - \sigma(\mathbf{a}^{t}\mathbf{z}^{1}) \\ \mathbf{y}^{2} - \sigma(\mathbf{a}^{t}\mathbf{z}^{2}) \\ \mathbf{y}^{3} - \sigma(\mathbf{a}^{t}\mathbf{z}^{3}) \\ \mathbf{y}^{4} - \sigma(\mathbf{a}^{t}\mathbf{z}^{4}) \\ \mathbf{y}^{5} - \sigma(\mathbf{a}^{t}\mathbf{z}^{5}) \end{bmatrix} = \mathbf{Y} - \begin{bmatrix} 0.9975 \\ 0.9997 \\ 0.9999 \\ 0.9933 \\ 1.000 \end{bmatrix} = \begin{bmatrix} 0.0025 \\ 0.0003 \\ 0.0001 \\ -0.9933 \\ -1.000 \end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Multiply by corresponding example

Satch rule update
$$\mathbf{a} = \mathbf{a} + \sum_{\mathbf{i}} \left(\mathbf{y}^{\mathbf{i}} - \sigma(\mathbf{a}^{t}\mathbf{z}^{\mathbf{i}}) \right) \mathbf{z}^{\mathbf{i}}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{y}^{1} - \sigma(\mathbf{a}^{t}\mathbf{z}^{1}) \\ \mathbf{y}^{2} - \sigma(\mathbf{a}^{t}\mathbf{z}^{2}) \\ \mathbf{y}^{3} - \sigma(\mathbf{a}^{t}\mathbf{z}^{2}) \\ \mathbf{y}^{4} - \sigma(\mathbf{a}^{t}\mathbf{z}^{4}) \\ \mathbf{y}^{5} - \sigma(\mathbf{a}^{t}\mathbf{z}^{5}) \end{bmatrix} = \begin{bmatrix} 0.0025 \\ 0.0003 \\ 0.0001 \\ -0.9933 \\ -1.000 \end{bmatrix}$$
Sing example
$$\begin{bmatrix} 0.0025 & 0.0025 & 0.0025 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{y}^1 - \sigma(\mathbf{a}^t \mathbf{z}^1)] \mathbf{z}^1 \\ [\mathbf{y}^2 - \sigma(\mathbf{a}^t \mathbf{z}^2)] \mathbf{z}^2 \\ [\mathbf{y}^3 - \sigma(\mathbf{a}^t \mathbf{z}^3)] \mathbf{z}^3 \\ [\mathbf{y}^4 - \sigma(\mathbf{a}^t \mathbf{z}^4)] \mathbf{z}^4 \\ [\mathbf{y}^5 - \sigma(\mathbf{a}^t \mathbf{z}^5)] \mathbf{z}^5 \end{bmatrix} = \mathbf{repmat}(\mathbf{v}, \mathbf{1}, \mathbf{3}). * \mathbf{Z} = \begin{bmatrix} 0.0025 & 0.0025 & 0.0025 \\ 0.0003 & 0.0003 & 0.0003 \\ 0.0001 & 0.0001 & 0.0001 \\ -0.99 & -0.99 & -0.99 \\ -1.00 & -1.00 & -1.00 \end{bmatrix} . * \mathbf{Z}$$

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 5 \\ 1 & 1 & 3 \\ 1 & 5 & 6 \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

 Multiply by corresponding example continued

• Batch rule update
$$\mathbf{a} = \mathbf{a} + \sum_{\mathbf{i}} (\mathbf{y^i} - \sigma(\mathbf{a^t z^i})) \mathbf{z^i}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{y}^1 - \sigma(\mathbf{a^t z^1}) \\ \mathbf{y}^2 - \sigma(\mathbf{a^t z^2}) \\ \mathbf{y}^3 - \sigma(\mathbf{a^t z^3}) \\ \mathbf{y}^4 - \sigma(\mathbf{a^t z^4}) \\ \mathbf{v}^5 - \sigma(\mathbf{a^t z^5}) \end{bmatrix} = \begin{bmatrix} 0.0025 \\ 0.0003 \\ 0.0001 \\ -0.9933 \\ -1.000 \end{bmatrix}$$

$$\begin{bmatrix} 0.0025 & 0.0025 & 0.0025 \\ 0.0003 & 0.0003 & 0.0003 \\ 0.0001 & 0.0001 & 0.0001 \\ -0.99 & -0.99 & -0.99 \\ -1.00 & -1.00 & -1.00 \end{bmatrix} .*\mathbf{Z} = \begin{bmatrix} 0.0025 & 0.0049 & 0.0074 \\ 0.0003 & 0.0013 & 0.001 \\ 0.0001 & 0.0004 & 0.0006 \\ -0.99 & -0.99 & -2.98 \\ -1.00 & -5.0 & -6.0 \end{bmatrix}$$

• Batch rule update $\mathbf{a} = \mathbf{a} + \sum_{i} (\mathbf{y}^{i} - \sigma(\mathbf{a}^{t}\mathbf{z}^{i}))\mathbf{z}^{i}$

$$\begin{bmatrix} \mathbf{y}^{1} - \sigma(\mathbf{a}^{t}\mathbf{z}^{1}) \mathbf{z}^{1} \\ \mathbf{y}^{2} - \sigma(\mathbf{a}^{t}\mathbf{z}^{2}) \mathbf{z}^{2} \\ \mathbf{y}^{3} - \sigma(\mathbf{a}^{t}\mathbf{z}^{3}) \mathbf{z}^{3} \\ \mathbf{y}^{4} - \sigma(\mathbf{a}^{t}\mathbf{z}^{4}) \mathbf{z}^{4} \\ \mathbf{y}^{5} - \sigma(\mathbf{a}^{t}\mathbf{z}^{5}) \mathbf{z}^{5} \end{bmatrix} = \begin{bmatrix} 0.0025 & 0.0049 & 0.0074 \\ 0.0003 & 0.0013 & 0.001 \\ 0.0001 & 0.0004 & 0.0006 \\ -0.99 & -0.99 & -2.98 \\ -1.00 & -5.0 & -6.0 \end{bmatrix} = \mathbf{A}$$

Add up all rows

$$sum(A,1) = \begin{bmatrix} -1.99 & -5.99 & -8.97 \end{bmatrix}$$

Transpose to get the needed update

$$\begin{bmatrix} -1.99 & -5.99 & -8.97 \end{bmatrix}^{t} = \begin{bmatrix} -1.99 \\ -5.99 \\ -8.97 \end{bmatrix} = \sum_{i} (\mathbf{y}^{i} - \sigma(\mathbf{a}^{t}\mathbf{z}^{i})) \mathbf{z}^{i}$$

Batch rule update

$$\mathbf{a} = \mathbf{a} + \sum_{i} (\mathbf{y}^{i} - \sigma(\mathbf{a}^{t}\mathbf{z}^{i})) \mathbf{z}^{i}$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} -1.99 \\ -5.99 \\ -8.97 \end{bmatrix}$$

• Finally update
$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1.99 \\ -5.99 \\ -8.97 \end{bmatrix} = \begin{bmatrix} -0.99 \\ -4.99 \\ -7.97 \end{bmatrix}$$

• This is line $-4.99\mathbf{x}_1 - 7.97\mathbf{x}_2 - 0.99 = 0$

Logistic Regression vs. Regression vs. Perceptron

Assuming labels are +1 and -1

More General Discriminant Functions

- Linear discriminant functions
 - simple decision boundary
 - should try simpler models first to avoid overfitting
 - optimal for certain type of data
 - Gaussian distributions with equal covariance
 - May not be optimal for other data distributions
- Discriminant functions can be more general than linear
 - For example, polynomial discriminant functions
 - Decision boundaries more complex than linear
 - Later will look more at non-linear discriminant functions

Summary

- Linear classifier works well when examples are linearly separable, or almost separable
- Two Linear Classifiers
 - Perceptron
 - find a separating hyperplane in the linearly separable case
 - uses gradient descent for optimization
 - does not converge in the non-separable case
 - can force convergence by using a decreasing learning rate
 - Logistic Regression
 - has probabilistic interpretation
 - can be optimized exactly with gradient descent