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Multiple Classes



Outline

• Linear Classifier
• Multiple classes

1. Use collection of 2-class classifiers
• one vs. all

• all pairs

2. Design multi-class loss functions
• Perceptron Loss Function

• Softmax Loss Function

• Weight Regularization



• Have classes 1, 2, … , m

• Can construct multi-class classifier based on 2-class classifiers

• One way

• Assume each 2-class classifier also gives confidence
• Distance from separating hyperplane

• Higher distance, more confidence

• Train m 2-class classifiers
• 1 vs other classes

• 2 vs. other classes

• ….

• m vs. other classes

• Make sure number of examples is balanced during training

Using 2-class Case: One vs. All

• Works for any type of 2-class classifier, not just linear

• At test time, run new sample through m binary classifiers
• highest confidence class “wins”



Using 2-class Case: All pairs

1 2 3 4

1

2

3

4

• Train 2-class classifier for each distinct pair of classes (i,j)

• At test time, run new example x through all binary classifiers
• Choose most frequently occurring class

• For example,  x was classified 

• 1 time as class 1

• 2 times as class 2

• 0 times as class 3

• 3 times as class 4

decide class 4



• General multiclass case
• not based on 2-class classifiers

• Define m linear discriminant functions

gi(x) = wi
tx + wi0 for i = 1, 2, … m

Multiple Classes: General Case

• Assign x to class i if

gi(x)  > gj(x) for all j ≠ i

• Let Ri be decision region for class i
• all samples in Ri assigned to class i

g2(x) > g1(x)
g2(x) > g3(x)

R1
R2

R3

g1(x) > g2(x)
g1(x) > g3(x)

g3(x) > g1(x)
g3(x) > g2(x)



Multiple Classes

• Can be shown that decision regions are convex

• In particular, they must be spatially contiguous



• Thus applicability of linear classifiers is limited to 
mostly unimodal distributions, such as Gaussian

• For not unimodal data, 
need non-contiguous 
decision regions

• Linear classifier will fail

Failure Case for Linear Classifier



Multiclass Linear Classifier: Matrix Notation

• Assume examples x are augmented with extra feature 1, no need 
to write bias explicitly
• but from now on will not change notation to z’s

• Define m discriminant functions 

gi(x) = wi
tx for i = 1, 2, … m

• Assign x to i that gives maximum gi(x)

• Picture illustration
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Multiclass Linear Classifier: Matrix Notation
• Could use one dimensional output yi ∊ {1, 2, 3, …, m}

got this
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• Convenient to use multi-dimensional outputs
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x is of class 2



• Assign x to i that gives maximum gi(x)= wi
tx
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• In matrix notation
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Multiclass Linear Classifier: Matrix Notation
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• Assign sample  xi to class that corresponds to largest row of Wxi

• Loss function?
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• Can use  quadratic loss per sample xi as  ½||Wxi - yi ||2

• for  example above, loss (22 + 42 + 472 +442)/2

• total  loss on all training samples L(W) =  ½Σi|| Wxi - yi ||2

• gradient of the loss

•  L(W) has the same shape as the same shape as W

• batch gradient descent update

   ti

i

ii xyWxWW  

Quadratic Loss Function



• Consider gradient descent update, single sample x with  α = 1

  txyWxWW 

• Suppose                  and is of class 2 and 
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• update rule

Quadratic Loss Function
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Quadratic Loss Function
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• Already saw that quadratic loss does not work that well for classification
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• Generalize Perceptron loss to multiclass setting

• Per-example loss: largest score minus score for the correct class
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Perceptron Loss
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Loss is 40-40= 0 

• Formula for Perceptron loss on sample xi

Li(W) = maxk[(Wxi)k-(Wxi)c]
• (Wxi)k is the entry in row k of vector  Wxi

• c is the correct class of sample xi



  0 WL i

• Gradient of loss on one example

• c is the correct class row

• r is the row where Wxi is largest

• if r = c, 

• Example
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Perceptron Loss Function: Example Cont.
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Softmax Function

 

 

 

 

 

 

 

 
























































4

1j

4

4

1j

3

4

1j

2

4

1j

1

exp

exp

exp

exp

j

j

j

j

aexp

a

aexp

a

aexp

a

aexp

a

• Define softmax(a) function 
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• Softmax renormalizes a vector so that it can be interpreted as 
a vector of probabilities 



• Generalization of logistic regression to multiclass case

• Instead of raw scores  
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• Classifier output interpreted as probability for each class



• Optimize under   –log Pr( yi)  loss function

Gradient Descent: Softmax Loss Function

• Example

• Loss  on this example is    –log(0.000000000000001) = 40
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• Update rule for weight matrix W
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Gradient Descent: Softmax Loss Function

• Example, single sample gradient descent with α = 0.1
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• Update for W



x1

x2• Can use other discriminant functions, 
like quadratics

g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2

• Methodology is almost the same as 
in the linear case

• f(x)   = sign(w0+w1x1+w2x2+w12x1x2 +w11x1
2 + w22x2

2)

• z =        [ 1        x1 x2            x1 x2 x1
2 x2

2]

• a  =       [ w0 w1 w2         w12 w11 w22]

• use gradient descent to minimize Perceptron loss function, 
any other loss function

• Can add any degree polynomial features

Generalized Linear Classifier



• Generalized linear classifier

g(x,w) = w0+i=1…m wihi(x)
• h(x) are called basis function, can be arbitrary functions

• in strictly linear case, hi(x)= xi

• Linear function in its parameters w

g(x,w) = w0+wth

h = [h1(x) h2(x) …  hm(x)]

[w1 w2       …  wm]

• Use the same training methods as before with new 
feature vector h

Generalized Linear Classifier



• Usually face severe overfitting
• too many degrees of freedom

• boundary can “curve” to fit to the noise in the data

• Regression example

Generalized Linear Classifier



• Helps to regularize by keeping w small
• small w means the boundary is not as curvy

• Regression example

Generalized Linear Classifier



• Helps to regularize by keeping w small
• small w means the boundary is not as curvy

• For example, add  λ||w||2 to the loss function

• Recall quadratic loss function

L=½Σi|| f(xi,w) - yi ||2 

• Regularized version

L = ½Σi || f(xi,w) - yi ||2 +λ||w||2

Generalized Linear Classifier

small λ medium λ large λ

• Regression example, 
polynomial coefficients 
for degree M = 9

• With weight regularizer, 
gradient of loss function has a 
new term -αλw



• λ is a meta-parameter, cannot tune on training data

• use validation or cross-validation to set it to a good value

• Consider polynomial of degree M=9 regression

Training
Validation

Er
ro

r

Generalized Linear Classifier

medium λ


