Lecture 5
Machine Learning
Linear Classifier
Multiple Classes
• Linear Classifier
 • Multiple classes
 1. Use collection of 2-class classifiers
 • one vs. all
 • all pairs
 2. Design multi-class loss functions
 • Perceptron Loss Function
 • Softmax Loss Function
 • Weight Regularization
Using 2-class Case: One vs. All

- Have classes 1, 2, ..., m
- Can construct multi-class classifier based on 2-class classifiers
- One way
 - Assume each 2-class classifier also gives confidence
 - Distance from separating hyperplane
 - Higher distance, more confidence
 - Train m 2-class classifiers
 - 1 vs other classes
 - 2 vs. other classes
 - ...
 - m vs. other classes
 - Make sure number of examples is balanced during training
 - At test time, run new sample through m binary classifiers
 - highest confidence class “wins”
- Works for any type of 2-class classifier, not just linear
Using 2-class Case: All pairs

• Train 2-class classifier for each distinct pair of classes \((i,j)\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• At test time, run new example \(x\) through all binary classifiers
 • Choose most frequently occurring class
 • For example, \(x\) was classified
 • 1 time as class 1
 • 2 times as class 2
 • 0 times as class 3
 • 3 times as class 4

 decide class 4
Multiple Classes: General Case

- General multiclass case
 - not based on 2-class classifiers
- Define m linear discriminant functions
 \[g_i(x) = w_i^T x + w_{i0} \text{ for } i = 1, 2, \ldots, m \]
- Assign x to class i if
 \[g_i(x) > g_j(x) \text{ for all } j \neq i \]
- Let R_i be decision region for class i
 - all samples in R_i assigned to class i
Multiple Classes

- Can be shown that decision regions are convex
- In particular, they must be spatially contiguous
Thus applicability of linear classifiers is limited to mostly unimodal distributions, such as Gaussian.

For not unimodal data, need non-contiguous decision regions.

Linear classifier will fail.
• Assume examples \(x \) are augmented with extra feature 1, no need to write bias explicitly
 • but from now on will not change notation to \(z \)'s
• Define \(m \) discriminant functions
 \[
g_i(x) = w_i^t x \quad \text{for } i = 1, 2, \ldots, m
 \]
• Assign \(x \) to \(i \) that gives maximum \(g_i(x) \)
• Picture illustration

\[
\begin{pmatrix}
5 \\
3 \\
-9 \\
10
\end{pmatrix}
\]
pile all outputs into one vector

decide class 4
Multiclass Linear Classifier: Matrix Notation

- Could use one dimensional output $y_i \in \{1, 2, 3, \ldots, m\}$
- Convenient to use multi-dimensional outputs

\[
\begin{align*}
 y^1 &= \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\
 y^2 &= \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \\
 y^3 &= \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \\
 y^4 &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}
\end{align*}
\]

 class 1 class 2 class 3 class 4

- For training, if sample is of class i, want output vector to be 0 everywhere except position i, where it should be 1
Assign \(x \) to \(i \) that gives maximum \(g_i(x) = w_i^t x \).

In matrix notation:

\[
\begin{bmatrix}
2 & 4 & -7 \\
9 & -3 & 2 \\
4 & 5 & 2 \\
2 & -7 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
7 \\
4
\end{bmatrix}
=
\begin{bmatrix}
2 \\
-4 \\
47 \\
-43
\end{bmatrix}
\]

Assign \(x \) to the class that corresponds to the largest row of \(Wx \).
Quadratic Loss Function

- Assign sample x^i to class that corresponds to largest row of Wx^i
- Loss function?

$$
\begin{bmatrix}
2 \\
-4 \\
47 \\
-43
\end{bmatrix}
\begin{bmatrix}
Wx^i \\
y^i
\end{bmatrix}
$$

- Can use quadratic loss per sample x^i as $\frac{1}{2}||Wx^i - y^i||^2$
 - for example above, loss $(2^2 + 4^2 + 47^2 + 44^2)/2$
 - total loss on all training samples $L(W) = \frac{1}{2} \sum_i ||Wx^i - y^i||^2$
 - gradient of the loss

$$\nabla L(W) = \sum_i (Wx^i - y^i)(x^i)^t$$

- $\nabla L(W)$ has the same shape as the same shape as W
- batch gradient descent update

$$W = W - \alpha \sum_i (Wx^i - y^i)(x^i)^t$$
Consider gradient descent update, single sample x with $\alpha = 1$

$$W = W - (Wx - y)x^t$$

Suppose $x = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ and is of class 2 and $W = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix}$

$$Wx - y = \begin{bmatrix} 0 \\ 4 \\ 23 \\ -17 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 23 \\ -17 \end{bmatrix}$$

Update rule:

$$W = W - (Wx - y)x^t = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 3 & 9 & 6 \\ 23 & 69 & 46 \\ -17 & -51 & -34 \end{bmatrix} = \begin{bmatrix} 6 & -12 & -4 \\ -19 & -64 & -44 \\ 19 & 44 & 35 \end{bmatrix}$$
Quadratic Loss Function

\[Wx - y = \begin{bmatrix} -17 \\ -17 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -17 \\ -17 \end{bmatrix} \]

- With new $W = \begin{bmatrix} 2 & 4 & -7 \\ 6 & -12 & -4 \\ -19 & -64 & -44 \\ 19 & 44 & 35 \end{bmatrix}$, $Wx = \begin{bmatrix} 0 \\ -38 \\ -299 \\ 221 \end{bmatrix}$

- Already saw that quadratic loss does not work that well for classification
Generalize Perceptron loss to multiclass setting

Per-example loss: largest score minus score for the correct class

\[
\begin{bmatrix}
2 & 0 \\
-4 & 0 \\
47 & 0 \\
-43 & 1
\end{bmatrix}
\begin{bmatrix}
x_i \\
y_i
\end{bmatrix}
\]

Loss is 47-(-43)= 90

\[
\begin{bmatrix}
20 & 0 \\
40 & 1 \\
17 & 0 \\
-43 & 0
\end{bmatrix}
\begin{bmatrix}
x_i \\
y_i
\end{bmatrix}
\]

Loss is 40-40= 0

Formula for Perceptron loss on sample \(x_i\)

\[
L_i(W) = \max_k[(Wx_i)_k-(Wx_i)_c]
\]

- \((Wx_i)_k\) is the entry in row \(k\) of vector \(Wx_i\)
- \(c\) is the correct class of sample \(x_i\)
Perceptron Loss Function

• Gradient of loss on one example

 • \(c \) is the correct class row
 • \(r \) is the row where \(Wx^i \) is largest
 • if \(r = c \), \(-\nabla L_i(W) = 0 \)
 • otherwise, \(-\nabla L_i(W) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -x^i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ x^i & 0 & 0 & 0 \end{bmatrix} \)

• Example

\[
\begin{bmatrix} 2 \\ -4 \\ 47 \\ -43 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -3 & -2 \\ 1 & 3 & 2 \end{bmatrix}
\]
Perceptron Loss Function: Example Cont.

\[-\nabla L_i(W) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & -3 & -2 \\ 1 & 3 & 2 \end{bmatrix}\]

\[x^i = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}\]

\[y^i = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\]

- With \(\alpha = 1\), new \(W = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & -3 & -2 \\ 1 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 3 & 2 & 0 \\ 3 & -4 & 3 \end{bmatrix}\]

- With new weights

\[Wx^i = \begin{bmatrix} 0 \\ 4 \\ 9 \\ -3 \end{bmatrix}\]

\[W_{old}x^i = \begin{bmatrix} 0 \\ 4 \\ 23 \\ -17 \end{bmatrix}\]

- Compare to the old weights

ok too large too small
Softmax Function

- Define $\text{softmax}(\mathbf{a})$ function

\[
\begin{bmatrix}
\frac{\exp(a_1)}{\sum_{j=1}^{4} \exp(a_j)} \\
\frac{\exp(a_2)}{\sum_{j=1}^{4} \exp(a_j)} \\
\frac{\exp(a_3)}{\sum_{j=1}^{4} \exp(a_j)} \\
\frac{\exp(a_4)}{\sum_{j=1}^{4} \exp(a_j)}
\end{bmatrix}
\]

- Example

\[
\begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}
\]

\[
\text{softmax} \Rightarrow \begin{bmatrix} \frac{\exp(-3)}{\exp(-3) + \exp(2) + \exp(1)} \\ \frac{\exp(2)}{\exp(-3) + \exp(2) + \exp(1)} \\ \frac{\exp(1)}{\exp(-3) + \exp(2) + \exp(1)} \end{bmatrix}
\]

\[
\begin{bmatrix} 0.005 \\ 0.7275 \\ 0.2676 \end{bmatrix}
\]

- Softmax renormalizes a vector so that it can be interpreted as a vector of probabilities
Generalization of logistic regression to multiclass case

Instead of raw scores

\[
\begin{bmatrix}
w_1^T x \\
w_2^T x \\
w_3^T x \\
w_4^T x \\
\end{bmatrix}
= \begin{bmatrix}
2 \\
-1 \\
5 \\
-3 \\
\end{bmatrix}
\]

Use softmax scores

\[
\text{softmax} \begin{bmatrix}
w_1^T x \\
w_2^T x \\
w_3^T x \\
w_4^T x \\
\end{bmatrix}
= \text{softmax} \begin{bmatrix}
2 \\
-1 \\
5 \\
-3 \\
\end{bmatrix}
= \begin{bmatrix}
0.0473 \\
0.0024 \\
0.9500 \\
0.0003 \\
\end{bmatrix}
= \begin{bmatrix}
\Pr(\text{class1}) \\
\Pr(\text{class2}) \\
\Pr(\text{class3}) \\
\Pr(\text{class4}) \\
\end{bmatrix}
\]

Classifier output interpreted as probability for each class
Gradient Descent: Softmax Loss Function

- Optimize under $-\log \Pr(y^i)$ loss function
- Example

$$x^i = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}, \quad y^i = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad W = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix}$$

$$\text{softmax}(Wx^i) = \text{softmax} \begin{bmatrix} 0 \\ 4 \\ 23 \\ -17 \end{bmatrix} = \begin{bmatrix} 0.000000000102619 \\ 0.00000005602796 \\ 0.99999994294585 \\ 0.000000000000001 \end{bmatrix} = \begin{bmatrix} \Pr(\text{class1}) \\ \Pr(\text{class2}) \\ \Pr(\text{class3}) \\ \Pr(\text{class4}) \end{bmatrix}$$

- Loss on this example is $-\log(0.0000000000000001) = 40$
Gradient Descent: Softmax Loss Function

- Update rule for weight matrix W

$$W = W + \alpha \sum_i (y^i - \text{softmax}(Wx^i))(x^i)^t$$

- Example, single sample gradient descent with $\alpha = 0.1$

$$x^i = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}, \quad y^i = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$w = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix}, \quad w x^i = \begin{bmatrix} 0 \\ 4 \\ 23 \\ -17 \end{bmatrix}$$

- Update for W

$$w = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 4 & 5 & 2 \\ 2 & -7 & 1 \end{bmatrix} + 0.1 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \text{softmax} \begin{bmatrix} 0 \\ 4 \\ 23 \\ -17 \end{bmatrix} [1 \ 3 \ 2] = \begin{bmatrix} 2 & 4 & -7 \\ 9 & -3 & 2 \\ 3.9 & 4.7 & 1.8 \\ 2.1 & -6.7 & 1.2 \end{bmatrix}$$
Generalized Linear Classifier

- Can use other discriminant functions, like quadratics
 \[g(x) = w_0 + w_1 x_1 + w_2 x_2 + w_{12} x_1 x_2 + w_{11} x_1^2 + w_{22} x_2^2 \]

- Methodology is almost the same as in the linear case
 - \(f(x) = \text{sign}(w_0 + w_1 x_1 + w_2 x_2 + w_{12} x_1 x_2 + w_{11} x_1^2 + w_{22} x_2^2) \)
 - \(z = \begin{bmatrix} 1 & x_1 & x_2 & x_1 x_2 & x_1^2 & x_2^2 \end{bmatrix} \)
 - \(a = \begin{bmatrix} w_0 & w_1 & w_2 & w_{12} & w_{11} & w_{22} \end{bmatrix} \)
 - use gradient descent to minimize Perceptron loss function, any other loss function

- Can add any degree polynomial features
Generalized Linear Classifier

- Generalized linear classifier
 \[g(x, w) = w_0 + \sum_{i=1}^{m} w_i h_i(x) \]
- \(h(x) \) are called basis function, can be arbitrary functions
 - in strictly linear case, \(h_i(x) = x_i \)
- Linear function in its parameters \(w \)
 \[g(x, w) = w_0 + w^t h \]
 \[h = [h_1(x) \ h_2(x) \ \ldots \ h_m(x)] \]
 \[[w_1 \ \ldots \ w_m] \]
- Use the same training methods as before with new feature vector \(h \)
Generalized Linear Classifier

- Usually face severe overfitting
 - too many degrees of freedom
 - boundary can “curve” to fit to the noise in the data
- Regression example
Generalized Linear Classifier

- Helps to regularize by keeping w small
 - small w means the boundary is not as curvy
- Regression example

![Graphs and Polynomial Coefficients](image-url)
Generalized Linear Classifier

- Helps to *regularize* by keeping w small
 - small w means the boundary is not as curvy
- For example, add $\lambda||w||^2$ to the loss function
- Recall quadratic loss function
 \[L = \frac{1}{2} \sum_i ||f(x_i, w) - y_i||^2 \]
- Regularized version
 \[L = \frac{1}{2} \sum_i ||f(x_i, w) - y_i||^2 + \lambda||w||^2 \]

- Regression example, polynomial coefficients for degree $M = 9$
- With weight regularizer, gradient of loss function has a new term $-\alpha \lambda w$

<table>
<thead>
<tr>
<th></th>
<th>small λ</th>
<th>medium λ</th>
<th>large λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0^x</td>
<td>0.35</td>
<td>0.35</td>
<td>0.13</td>
</tr>
<tr>
<td>w_1^x</td>
<td>232.37</td>
<td>4.74</td>
<td>-0.05</td>
</tr>
<tr>
<td>w_2^x</td>
<td>-5321.83</td>
<td>-0.77</td>
<td>-0.06</td>
</tr>
<tr>
<td>w_3^x</td>
<td>48568.31</td>
<td>-31.97</td>
<td>-0.05</td>
</tr>
<tr>
<td>w_4^x</td>
<td>-231639.30</td>
<td>-3.89</td>
<td>-0.03</td>
</tr>
<tr>
<td>w_5^x</td>
<td>640042.26</td>
<td>55.28</td>
<td>-0.02</td>
</tr>
<tr>
<td>w_6^x</td>
<td>-1061800.52</td>
<td>41.32</td>
<td>-0.01</td>
</tr>
<tr>
<td>w_7^x</td>
<td>1042400.18</td>
<td>-45.95</td>
<td>-0.00</td>
</tr>
<tr>
<td>w_8^x</td>
<td>-557682.99</td>
<td>-91.53</td>
<td>0.00</td>
</tr>
<tr>
<td>w_9^x</td>
<td>125201.43</td>
<td>72.68</td>
<td>0.01</td>
</tr>
</tbody>
</table>
• λ is a meta-parameter, cannot tune on training data
 • use validation or cross-validation to set it to a good value
• Consider polynomial of degree M=9 regression