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Linear Classifier
Multiple Classes



Outline

e Linear Classifier

e Multiple classes

1. Use collection of 2-class classifiers
J one vs. all
. all pairs

2. Design multi-class loss functions

o Perceptron Loss Function
J Softmax Loss Function

e Weight Regularization



Using 2-class Case: One vs. All

e Haveclasses 1, 2, ..., m
e Can construct multi-class classifier based on 2-class classifiers

e One way
e Assume each 2-class classifier also gives confidence
e Distance from separating hyperplane
. . | Ay o
» Higher distance, more confidence A , P
. [ ®
e Train m 2-class classifiers A = ®
e 1 vsother classes * \
e 2 vs. other classes * X \
= X x
e m vs. other classes

e Make sure number of examples is balanced during training

e At test time, run new sample through m binary classifiers
e highest confidence class “wins”

e Works for any type of 2-class classifier, not just linear



Using 2-class Case: All pairs

e Train 2-class classifier for each distinct pair of classes (i,j)

1 2 3 4

AW IN|=

e At test time, run new example x through all binary classifiers

e Choose most frequently occurring class
e For example, x was classified

—

e 1timeasclass1

e 2 times as class 2 .
e (O times as class 3 —decide class 4

e 3times as class 4



Multiple Classes: General Case

e General multiclass case
e not based on 2-class classifiers

e Define m linear discriminant functions

g(x)=wx+w, fori=1,2,.. m
e Assignxtoclassi if

gi(x) > gi(x) forall j#i
* Let R, be decision region for class i

* all samplesin R, assigned to class i
R1

g.(x) > g,(x)
g1(x) > g5(x)

R

g,(x) > g,(x)
8,(x) > g5(x)

R

g,(x) > g,(x)
go(x) > g)(x)




Multiple Classes

e Can be shown that decision regions are convex

e |n particular, they must be spatially contiguous




Failure Case for Linear Classifier

e Thus applicability of linear classifiers is limited to
mostly unimodal distributions, such as Gaussian

e For not unimodal data,
need non-contiguous
decision regions

e |inear classifier will fail




Multiclass Linear Classifier: Matrix Notation

Assume examples x are augmented with extra feature 1, no need
to write bias explicitly

e but from now on will not change notation to z’s
Define m discriminant functions
g(x)=w'x fori=1,2, .. m
Assign x to i that gives maximum g;(x)
Picture illustration

@ =3 pile all outputs
into one vector
) >s -9

@ > 10 110

decide class 4




Multiclass Linear Classifier: Matrix Notation

e Could use one dimensional outputy, €11, 2, 3, ..., m}
e Convenient to use multi-dimensional outputs

1 0 0 0

, 0 : 1 : 0 : 0

1o 1o Y Tl 1o

0 0 0 1
class 1 class 2 class 3 class 4

e For training, if ) 0
sample is of class i, 3 1
want output vector
to be 0 everywhere j> =3 0
except position i, EIFOlclass 10 0
where it should be 1 - -

got this  want this



Multiclass Linear Classifier: Matrix Notation

e Assign x to i that gives maximum g;(x)= w.'x

e |n matrix notation

=

w,

W,

2

s
i

4 -7
-8 2

5 2
-7 1

W

D

2
—4

X

47

__ 43_
WX

e Assign x to class that corresponds to largest row of Wx



Quadratic Loss Function

e Assign sample xi to class that corresponds to largest row of Wx'

e Loss function? 9] 0
—4 0

47 0

—43 Kl

Wx! Yy

e Canuse quadratic loss per sample x' as %||Wx' - y'||?

e for example above, loss (22 + 4% + 472 +442)/2

e total loss on all training samples L(W) = 22| Wx'- y'||?

e gradient of the loss
VL(W)= Z:(Wxi —y' Xxi )t

|
V L(W) has the same shape as the same shape as W

batch gradient descent update
W = W—OLZ(WXi —yi) (xi)t
i



Suppose x=
update rule
2 4 -T]
9 -3 2
4 5 2
2 -7 1

Quadratic Loss Function

Consider gradient descent update, single sample x with a=1

W =W —(Wx—y)x"

ok —

too large

too small ———

- 3[1 3 2|=

23
-17

2
9
4
2

3| andis of class 2 and W =

Wx—-y=

4 7]
-3 2
5 2
-7 1

2 4 -7
9 -3 2
4 5 2
2 -7 1

[ 0] [O]
—>4| |1
23| |o|”

-17] |0
00

3 9
23 69
17 -5l

23
-17

- 34

[ 2

6
-19
19

A
-12
—64

44

—7 ]

4
44
35




Quadratic Loss Function

[ ,0] [0
I
°k| v >4 |1
t —Y= - =
00 large Y7 23170 23
toosmall ————
1-17] |0] |—17]
[ 2 4 -7 [ 0]
_ 6 -12 -4 —38
e Withnew W= ,  Wx=
-19 -64 -44 —299
119 44 35 | 221

e Already saw that quadratic loss does not work that well for classification



Perceptron Loss

e Generalize Perceptron loss to multiclass setting
e Per-example loss: largest score minus score for the correct class

2 0 20 0

_4 0 40 1

47 0 17 0

| —43 | |4 | —43] 0]

Wx! yi Wx! yl
Loss is 47-(-43)= 90 Loss is 40-40=0

* Formula for Perceptron loss on sample x
L(W) = max, [(Wx!), -(Wx!) ]
e (Wxi), isthe entryin row k of vector Wx
e cisthe correct class of sample x’



Perceptron Loss Function

e Gradient of loss on one example
e cisthe correct class row
e risthe row where Wx' is largest

o ifr=c, —VLi(W)ZO
0 0 0 0]
row r
e otherwise, —VL,(W)=
O 0 0 O
| row c
e Example
2] |0 0 0
—4 0
3 0] 0
— VL. —
47 ,| [0 VL. (W) 1 a3
-43] - |1 L 3




Perceptron Loss Function: Example Cont.

"0 0 0] nel
0 0 0| x=|3] |0
—VL(W )=
1 3 2 L&
yl
(2 4 -7 [ 0 O 0] [2 4 —7]
. 9 -3 2 O O 0 9 -3 2
e Witha=1, new w= + =
4 5 2 -1 -3 -2 3 2 0
2 -7 1/ |1 3 2| |3 -4 3
* With new weights e Compare to the old weights
[ 0 [ 0]
 /)
: ok —
Wx' = 9 too large WX = 53
too small — 1
=] 7




Define softmax(a) function

Softmax Function

exp(a,)

5 el

exp(a, )

> exela)

exp(a,)

3 enla)

exp(a, )

> exela)

Example

softmax

exp(-3)
exp(—3)+exp(2)+exp(l)
exp(2)
exp(—3)+exp(2)+exp(l)
exp(1)
exp(—3)+exp(2)+exp(l) |

- 0.005 |
0.7275

0.2676

Softmax renormalizes a vector so that it can be interpreted as

a vector of probabilities



Softmax Loss Function

e Generalization of logistic regression to multiclass case

T | 2
e Instead of raw scores Wi X
W, X -1
W, X -
_WIX_ | -3]
e Use softmax scores
_WIX_ ~ 9] [0.0473] _Pr(classl)_
W, X —1| 0.0024 Pr(class2)
softmax . = softmax = _
W3 X S U0t Pr(class3)
W' X _ 0.0003
- AT L ) ) _Pr(class4)_

e (lassifier output interpreted as probability for each class



Gradient Descent: Softmax Loss Function

e Optimize under —log Pr(y') loss function

e Example

17 0 (2 4 —7]
0 9 -3 2
x'=3 W =
0 4 5 2
2] 1] 2 -7 1]
yl
- o7\ [0.0000000001026197 | Priclassl)
| 4 0.000000005602796 Pr(class?2)
softmax(Wx'): softmax — —
23 0.999999994294585 Pr(class3)
-17 | 0.000000000000001 pr(classd)
e Loss on this exampleis —log(0.000000000000001) =40



Gradient Descent: Softmax Loss Function

e Update rule for weight matrix W

W=W+ oczi:(yi — softmax(Wxi )) (xi )t

e Example, single sample gradient descent with aa = 0.1

17 |0 (2 4 -7 °
| 0 9 -3 2 . 4
' — W = WXI:
=131 o 4 5 2 23
_2_ L] 12 =7 1] 17
y -
e Update for W
(2 4 7] (0] 0 [ 2 4 7]
9 -3 2 0 4 9 -3 2
W = +0.1 —softmax b1 3 2] =
4 5 2 0 23 39 4.7 1.8
2 -7 1 | ~17 2.1 -6.7 1.2]




Generalized Linear Classifier

Can use other discriminant functions, | o
like quadratics 00 /«\ o
8(X) = Wo+tW X, +HWoXy+ WoHX X, +W o X2 +W5)X,° O X K\ O
(o) % ¥ \O

Methodology is almost the same as
in the linear case

e f(x) =sign(wy+w X;+W,X,+W ,X X, +W X% + W,,X,?)
. z =  [1 x; %X XX X’ X,?]
° a = [w, w w, wy, W11 W]

e use gradient descent to minimize Perceptron loss function,
any other loss function

e (Can add any degree polynomial features



Generalized Linear Classifier

Generalized linear classifier
g(x,w) =wy+X,_; . wh(x)
h(x) are called basis function, can be arbitrary functions

e in strictly linear case, h,(x)= x.

Linear function in its parameters w
g(x,w) = wy+w'h
h =[h,(x) hy(x) ... h_(x)]
w, w, .. w_]

Use the same training methods as before with new
feature vector h



e Usually face severe overfitting

e too many degrees of freedom
e boundary can “curve” to fit to the noise in the data

e Regression example

from Bishop

It M=0 1

1 M=3

over fitting r !



Generalized Linear Classifier

Helps to regularize by keeping w small

e small w means the boundary is not as curvy

Regression example

from Bishop

Polynomial Coefficients

=

-
|

-557682.99
125201.43

M=0 M=1 M=3 M=9
w 0.31 0.35
w} 7.99 232.37
wh -25.43 -5321.83
wh 17.37  48568.31
wh -231639.30
wk 640042.26
wh -1061800.52
w 1042400.18

3

9



Generalized Linear Classifier

Helps to regularize by keeping w small

e small w means the boundary is not as curvy
For example, add Al|w/||? to the loss function
Recall quadratic loss function
L=2%% || f(x',w) - y' |2
Regularized version

L =73, || f(x',w) - y' ||* +A||w][?

small A mediumA  large A

Regression example, wo 50 é:on U:lo
_ = w} 232.37 474  -0.05
polynomial coefficients wh -5321.83 0.77  -0.06
_ w3 48568.31 -31.97 -0.05

for degree M = 9 wj -231639.30 -3.89 -0.03
With weight regularizer, wg | DAUBASZ0 90.a0, =02
. ] wg | -1061800.52 41.32 -0.01
gradient of loss function has a wk | 1042400.18 -45.95  -0.00
_ wg -557682.99 -91.53 0.00

new term -aAw wy | 125201.43 72.68 0.0l



Generalized Linear Classifier

e A is a meta-parameter, cannot tune on training data
e use validation or cross-validation to set it to a good value

e Consider polynomial of degree M=9 regression

== Training
—— Validation

medium A -

Error

St

.
&~

i,



