
CS4442/9542b
Artificial Intelligence II

prof. Olga Veksler

Lecture 5
Machine Learning

Linear Classifier

Multiple Classes

Outline

• Linear Classifier
• Multiple classes

1. Use collection of 2-class classifiers
• one vs. all

• all pairs

2. Design multi-class loss functions
• Perceptron Loss Function

• Softmax Loss Function

• Weight Regularization

• Have classes 1, 2, … , m

• Can construct multi-class classifier based on 2-class classifiers

• One way

• Assume each 2-class classifier also gives confidence
• Distance from separating hyperplane

• Higher distance, more confidence

• Train m 2-class classifiers
• 1 vs other classes

• 2 vs. other classes

• ….

• m vs. other classes

• Make sure number of examples is balanced during training

Using 2-class Case: One vs. All

• Works for any type of 2-class classifier, not just linear

• At test time, run new sample through m binary classifiers
• highest confidence class “wins”

Using 2-class Case: All pairs

1 2 3 4

1

2

3

4

• Train 2-class classifier for each distinct pair of classes (i,j)

• At test time, run new example x through all binary classifiers
• Choose most frequently occurring class

• For example, x was classified

• 1 time as class 1

• 2 times as class 2

• 0 times as class 3

• 3 times as class 4

decide class 4

• General multiclass case
• not based on 2-class classifiers

• Define m linear discriminant functions

gi(x) = wi
tx + wi0 for i = 1, 2, … m

Multiple Classes: General Case

• Assign x to class i if

gi(x) > gj(x) for all j ≠ i

• Let Ri be decision region for class i
• all samples in Ri assigned to class i

g2(x) > g1(x)
g2(x) > g3(x)

R1
R2

R3

g1(x) > g2(x)
g1(x) > g3(x)

g3(x) > g1(x)
g3(x) > g2(x)

Multiple Classes

• Can be shown that decision regions are convex

• In particular, they must be spatially contiguous

• Thus applicability of linear classifiers is limited to
mostly unimodal distributions, such as Gaussian

• For not unimodal data,
need non-contiguous
decision regions

• Linear classifier will fail

Failure Case for Linear Classifier

Multiclass Linear Classifier: Matrix Notation

• Assume examples x are augmented with extra feature 1, no need
to write bias explicitly
• but from now on will not change notation to z’s

• Define m discriminant functions

gi(x) = wi
tx for i = 1, 2, … m

• Assign x to i that gives maximum gi(x)

• Picture illustration

x

g1(x)

g2(x)

g3(x)

g4(x)




















10

9

3

5→ 5

→ 3

→ -9

→ 10

pile all outputs
into one vector

decide class 4

Multiclass Linear Classifier: Matrix Notation
• Could use one dimensional output yi ∊ {1, 2, 3, …, m}

got this



















0

0

1

0

want this

• Convenient to use multi-dimensional outputs





















0

0

0

1

jy

class 1





















0

0

1

0

jy

class 2





















0

1

0

0

jy

class 3





















1

0

0

0

jy

class 4

x

g1(x)

g2(x)

g3(x)

g4(x)





















10

9

3

5• For training, if
sample is of class i,
want output vector
to be 0 everywhere
except position i,
where it should be 1

x is of class 2

• Assign x to i that gives maximum gi(x)= wi
tx

x

g1(x)

g2(x)

g3(x)

g4(x)

w2
tx

w3
tx

w4
tx

w1
tx

x

• In matrix notation

























172

254

239

742

















4

7

1
























43

47

4

2w1

w2

w3

w4

xW Wx
• Assign x to class that corresponds to largest row of Wx

Multiclass Linear Classifier: Matrix Notation

 742 

x

x

x

x

x

 239 

 254

 172 

• Assign sample xi to class that corresponds to largest row of Wxi

• Loss function?























43

47

4

2

Wxi



















1

0

0

0

yi

     
i

tiii xyWxWL

• Can use quadratic loss per sample xi as ½||Wxi - yi ||2

• for example above, loss (22 + 42 + 472 +442)/2

• total loss on all training samples L(W) = ½Σi|| Wxi - yi ||2

• gradient of the loss

•  L(W) has the same shape as the same shape as W

• batch gradient descent update

   ti

i

ii xyWxWW  

Quadratic Loss Function

• Consider gradient descent update, single sample x with α = 1

  txyWxWW 

• Suppose and is of class 2 and



















2

3

1

x



























172

254

239

742

W

































































17

23

3

0

0

0

1

0

17

23

4

0

yWx
ok

too small
too large

 

































































































345117

466923

693

000

172

254

239

742

231

17

23

3

0

172

254

239

742

W

• update rule

Quadratic Loss Function



























354419

446419

4126

742

Quadratic Loss Function



























354419

446419

4126

742

W
























221

299

38

0

Wx• With new ,

• Already saw that quadratic loss does not work that well for classification

































































17

23

3

0

0

0

1

0

17

23

4

0

yWx
ok

too small
too large

• Generalize Perceptron loss to multiclass setting

• Per-example loss: largest score minus score for the correct class























43

47

4

2

Wxi



















1

0

0

0

yi

Loss is 47-(-43)= 90

Perceptron Loss



















 43

17

40

20

Wxi



















0

0

1

0

yi

Loss is 40-40= 0

• Formula for Perceptron loss on sample xi

Li(W) = maxk[(Wxi)k-(Wxi)c]
• (Wxi)k is the entry in row k of vector Wxi

• c is the correct class of sample xi

  0 WL i

• Gradient of loss on one example

• c is the correct class row

• r is the row where Wxi is largest

• if r = c,

• Example

 






















231

231

000

000

WL i

• otherwise,  




















0000

0000

WL i

-xi

xi

row r

row c

Perceptron Loss Function

Wxi























43

47

4

2



















1

0

0

0

yi

















2

3

1

xi

 






















231

231

000

000

WL i























3

9

4

0

iWx










































































343

023

239

742

231

231

000

000

172

254

239

742

W• With α = 1, new

• With new weights



















1

0

0

0

yi



















2

3

1
ix

Perceptron Loss Function: Example Cont.























17

23

4

0

i
oldxW

• Compare to the old weights

ok

too small
too large

Softmax Function

 

 

 

 

 

 

 

 
























































4

1j

4

4

1j

3

4

1j

2

4

1j

1

exp

exp

exp

exp

j

j

j

j

aexp

a

aexp

a

aexp

a

aexp

a

• Define softmax(a) function



















4

3

2

1

a

a

a

a





















26760

72750

0050

.

.

.

softmax

• Example

 
     

 
     

 
     

































123

1exp

123

2exp

123

3exp

expexpexp

expexpexp

expexpexp























1

2

3

softmax

• Softmax renormalizes a vector so that it can be interpreted as
a vector of probabilities

• Generalization of logistic regression to multiclass case

• Instead of raw scores























xw

xw

xw

xw

T

4

T

3

T

2

T

1




























3

5

1

2

• Use softmax scores















































xw

xw

xw

xw

T

4

T

3

T

2

T

1

maxsoft

 

 

 

 



























4

3

2

1

classPr

classPr

classPr

classPr

























00030

95000

00240

04730

.

.

.

.

Softmax Loss Function

















































3

5

1

2

maxsoft

• Classifier output interpreted as probability for each class

• Optimize under –log Pr(yi) loss function

Gradient Descent: Softmax Loss Function

• Example

• Loss on this example is –log(0.000000000000001) = 40





















2

3

1

ix



























172

254

239

742

W



















1

0

0

0

yi

 iWxmaxsoft

 

 

 

 



























4

3

2

1

classPr

classPr

classPr

classPr















































17

23

4

0

maxsoft























00000010.00000000

42945850.99999999

56027960.00000000

01026190.00000000

• Update rule for weight matrix W

     
i

tiii xWxmaxsoftyWW

Gradient Descent: Softmax Loss Function

• Example, single sample gradient descent with α = 0.1

 231

17

23

4

0

1

0

0

0

10

172

254

239

742





































































































 maxsoft.W





















2

3

1

ix



























172

254

239

742

W



















1

0

0

0

yi


























17

23

4

0

iWx































217612

817493

239

742

...

...

• Update for W

x1

x2• Can use other discriminant functions,
like quadratics

g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2

• Methodology is almost the same as
in the linear case

• f(x) = sign(w0+w1x1+w2x2+w12x1x2 +w11x1
2 + w22x2

2)

• z = [1 x1 x2 x1 x2 x1
2 x2

2]

• a = [w0 w1 w2 w12 w11 w22]

• use gradient descent to minimize Perceptron loss function,
any other loss function

• Can add any degree polynomial features

Generalized Linear Classifier

• Generalized linear classifier

g(x,w) = w0+i=1…m wihi(x)
• h(x) are called basis function, can be arbitrary functions

• in strictly linear case, hi(x)= xi

• Linear function in its parameters w

g(x,w) = w0+wth

h = [h1(x) h2(x) … hm(x)]

[w1 w2 … wm]

• Use the same training methods as before with new
feature vector h

Generalized Linear Classifier

• Usually face severe overfitting
• too many degrees of freedom

• boundary can “curve” to fit to the noise in the data

• Regression example

Generalized Linear Classifier

• Helps to regularize by keeping w small
• small w means the boundary is not as curvy

• Regression example

Generalized Linear Classifier

• Helps to regularize by keeping w small
• small w means the boundary is not as curvy

• For example, add λ||w||2 to the loss function

• Recall quadratic loss function

L=½Σi|| f(xi,w) - yi ||2

• Regularized version

L = ½Σi || f(xi,w) - yi ||2 +λ||w||2

Generalized Linear Classifier

small λ medium λ large λ

• Regression example,
polynomial coefficients
for degree M = 9

• With weight regularizer,
gradient of loss function has a
new term -αλw

• λ is a meta-parameter, cannot tune on training data

• use validation or cross-validation to set it to a good value

• Consider polynomial of degree M=9 regression

Training
Validation

Er
ro

r

Generalized Linear Classifier

medium λ

