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Abstract. This paper addresses the problem of minimizing multilabel
energies with truncated convex priors. Such priors are known to be use-
ful but difficult and slow to optimize because they are not convex. We
propose two novel classes of binary Graph-Cuts (GC) moves, namely the
convex move and the quantized move. The moves are complementary. To
significantly improve efficiency, the label range is divided into even in-
tervals. The quantized move tends to efficiently put pixel labels into the
correct intervals for the energy with truncated convex prior. Then the
convex move assigns the labels more precisely within these intervals for
the same energy. The quantized move is a modified α-expansion move,
adapted to handle a generalized Potts prior, which assigns a constant
penalty to arguments above some threshold. Our convex move is a GC
representation of the efficient Murota’s algorithm. We assume that the
data terms are convex, since this is a requirement for Murota’s algorithm.
We introduce Quantized-Convex Split Moves algorithm which minimizes
energies with truncated priors by alternating both moves. This algorithm
is a fast solver for labeling problems with a high number of labels and
convex data terms. We illustrate its performance on image restoration.

Key words: Graph cuts, image restoration, non-convex prior, Potts
model, Murota’s algorithm.

1 Introduction

We consider the well-known combinatorial optimization problem defined as fol-
lows. Let G(V, E) be an undirected graph with a set of edges E and a set of
vertices V. The goal of our optimization problem is to restore an unknown x∗

based on observations x, under the condition that x takes values over a finite
set of labels L, representing e.g. grey level values in an image. Here we define L
as an ordered discrete set of labels {0, 1, . . . , L} and xu as the label assigned to
node u ∈ V. The unknown x∗ is a minimum argument of the energy function:

E(x) =
∑
u∈V
D(xu) + λ

∑
(u,v)∈E

R(xu, xv), (1)
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where λ is a positive real value. D(xu) is often called the data fidelity term and
R(xu, xv) the regularization or smoothness term. A common choice of data term
D is a pixelwise distance D = |xu − xu|p between the desired labeling x and a
reference x, representing noisy acquired data, where p is a small positive integer,
e.g. 1 or 2.

Many choices of R lead to useful algorithms and results. A common model is
the so-called Potts model, where R(xu, xv) = wuv min(1, |xu−xv|), and wuv are
spatially variant positive pairwise weights. This model corresponds to a piecewise
constant prior. Other choices for R include R = wuv|xu − xv|q, where q is typi-
cally 1 or 2 for linear and quadratic priors respectively. The latter represents an
“everywhere smooth” prior with good denoising properties and lack of staircase
effect in the result, but with blurred boundaries. Better preservation of bound-
aries can be achieved with regularization term R = wuv min(T q, |xu − xv|q),
where for q = 1 or q = 2 it is respectively called truncated linear or truncated
quadratic [1]. More generally, a pairwise truncated convex prior can be formu-
lated as:

R(xv, xu) =

{
f(xu − xv) if |xu − xv| < T

f(T ) if |xu − xv| ≥ T
(2)

where f is a convex function with f(0) = 0. Discrete random field models charac-
terized by such a prior are well known and extensively discussed in the literature.
Their popularity in low level vision is due to their ability to capture natural im-
age statistics [2]. Indeed, Nikolova [3] shows that the robustness of regularization
terms depends on their characteristics at ±∞, and their differentiability at zero.
Non-differentiable terms at zero reconstruct sharp edges well but lead to unde-
sirable staircase effects. As a result, for the case of image restoration problems in
the pixel domain, truncated regularization terms are more robust. In this way,
truncated models may combine noise suppression with edge preservation. In gen-
eral, depending on the application, a sharp (e.g truncated linear) or smooth (e.g.
truncated quadratic) term might be desirable.

In the following, we introduce new GC algorithm solving optimization prob-
lem characterized by energy (1) and prior (2). In recent years, energy-based
optimization methods using GC have become very popular in computer vision
applications [4–6]. GC optimization has, for example, been applied to stereo-
vision [7], multiview reconstruction [8], motion analysis [9], segmentation [10]
and image restoration [11]. GC methods tend to provide optimal or near-optimal
solutions to classical Markov Random Fields (MRF) problems, with some guar-
antees and in reasonable time, unlike earlier methods like Simulated Annealing
(SA) [12] or Iterated Conditional Modes (ICM) [13]. From the algorithmic point
of view, GC problems can be solved exactly when the energy is submodular,
which was shown for the binary case (binary L) in [14, 15] and for multilabel
case in [16]. When energy E is not submodular, some GC methods can still be
used, for instance the move algorithms [6, 17–19]

GC move algorithms have typically good theoretical guarantees for quality
for certain sets of regularization terms containing truncated convex functions
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considered in this paper. Classical move algorithms include expansion and swap
moves [6]. More recently, improved moves have been proposed e.g. range moves
and fusion moves [17, 18, 20, 19]. All are geared towards improving the quality
of the solution and the speed of the algorithm. The time complexity of move
algorithms usually increases steeply with the number of labels. For example,
the worst-case complexity of swap moves is quadratic in the number of labels
while range-moves perform even poorer. However, for problems where the num-
ber of labels is relatively low, these methods can be fast enough. Hence, move
algorithms scale well with connectivity, are flexible with respect to data fidelity
terms, but do not scale well with the number of labels.

It is worth noting that when R is convex, e.g. in the non-truncated linear or
quadratic cases, the energy E of (1) may be optimized exactly and efficiently [5,
11]. Moreover, Szeliski et al. [21] have shown that expansion and swap moves
work well in practice for the Potts model.. Conversely, in the truncated linear or
quadratic cases, due to non-convexity and non-differentiability (at the truncation
and also at zero for truncated linear regularization term), such optimization
problems remain challenging. In the multilabel case, e.g. when the set of labels
L is not binary, the minimization problem of (1) is NP-hard.

The GC algorithms dedicated for energies with truncated convex priors e.g [17,
18, 22] have been developed to meet this challenge. We discuss them in detail in
section 2. This group of algorithms can be extended with our Quantized-Convex
Split Moves. This two-step approach produces results comparable to the current
state-of-the-art move based algorithms, and yet outperforms them by a large
factor in terms of time efficiency, especially when the number of labels is large.
As these convex priors and the Potts model can be optimized efficiently with
move methods, we split the label set into two parts, a regular quantized one
that we optimize using a modified Potts model, and a remainder part, which we
optimize using a convex framework. We propose two types of moves, which are
complementary, namely the convex move and the quantized move. Our quantized
move is a modified α-expansion move, adapted to cope with a generalized Potts
prior taking zero value for arguments in the range (−T,+T ). Thus, it tends to
efficiently put pixel labels into the right intervals. These approximate results are
corrected by the convex move, which performs finer changes with respect to the
previously chosen label. A new, more precise label is found within previously
chosen interval. The convex move is a GC representation of an efficient Murota
gradient descent algorithm [14, 23].

The rest of the paper is organized as follows. The description of our method in
the context of mostly related work is given in section 2. We present our Quantized
and Convex moves in section 3, and the Quantized-convex split moves algorithm
in section 4. Then we provide experimental comparison of the different energy
minimization methods in section 5, and conclude with section 6.
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2 Related work

In recent years, many algorithms utilizing truncated regularization terms have
been proposed. Apart from GC move algorithms, the sequential tree reweighted
message passing (TRW-S) [24] has currently the most accurate results and
provides a Lagrangian approximation of the dual energy, e.g. estimates the
gap between current and globally optimal energies. However, it is relatively
slow [25] and is not well suited to highly-connected graphs [26]. Belief prop-
agation (BP) [27] methods, though fast, are not guaranteed to converge. GC
methods were shown to outperform BP in several cases examined in [21]. En-
ergies with truncated linear priors (truncated `1) may be optimized e.g. using
α-expansions [6] or Gupta and Tardos [28] algorithm. The latter offers good
theoretical properties, but it is not practical.

Veksler proposed in [17] to minimize energies with truncated convex priors by
splitting the problem into several subproblems that are all convex with respect
to the prior. Each subproblem is defined for subsets of pixels û, v̂ ∈ V with
labels xû ∈ T such that T ⊂ L and |xû − xv̂| ≤ T . Note that there exist many
T ⊂ L satisfying conditions |xû − xv̂| ≤ T . Moreover, assuming that labels in
T = {. . . , ti−1, ti, ti+1, . . .} form a convex cone defined as ti + 1 = ti+1, one
can assign T different T ⊂ L to each xu. According to the theorem presented
in [17], the original energy with labeling L is minimized with each subenergy
having sublabeling T . An algorithm that takes advantage of this property is
the range move. Range move solves different subproblems for different choices
of T iteratively using an Ishikawa-like approach [5]. In this article, we show
that using what we call a convex move instead of the Ishikawa approach, it
is possible to consider all possible choices of T ⊂ L such that dT = T − 1
simultaneously, where dT = max {|xû − xv̂| , {xû, xv̂} ∈ T } . This allows us to
improve the time efficiency of the overall algorithm considerably. Additionally, we
propose a quantized move, allowing for changes of xu between T1 ⊂ L and T2 ⊂ L
such that T1∩T2 = ∅. This further improves the time efficiency of our algorithm
upon the range move. The proposed algorithm alternates iteratively between
quantized and convex moves. Note that if T1∩T2 = ∅, the energy (1) is no longer
convex with respect to the prior term. The advantage of the Ishikawa approach is
that it guarantees a global minimum even with a non-convex data fidelity term,
provided the prior is convex. This is particularly important for stereo vision. For
the convex move introduced in this paper, the energy is guaranteed to decrease
but the optimal solution is not secured.

More recent work by Kumar and Torr [18] is better grounded theoretically
than Veksler’s range move. The quality of the solution is guaranteed by bounds
on the converged energy for truncated `1 and `2, which are calculated with
respect to dT , and equal 2 +

√
2 if dT = 2

√
T and O(

√
T ) if dT =

√
T , for

truncated `1 and `2, respectively. However, according to the results presented
in [18] the practical performance of both algorithms is similar for truncated `2
prior, although the greatest improvement is achieved for the truncated `1 prior.
In terms of time efficiency, range move outperforms the approach proposed by
Kumar and Torr, but not significantly. Similarly to the range move, authors use
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the graph construction proposed by Ishikawa, but they introduce small modifica-
tions. Namely, they adopt the Ishikawa approach to deal with non-convex priors
at the cost of not representing the energy exactly. Here we will not analyze our
algorithm as a function of dT . The convex move in our quantized-convex split
moves algorithm is associated with two sets: (1) the set of all possible T ⊂ L
with dT = T − 1 and (2) the set of all possible T ⊂ L with dT = T .

In [22], authors proposed a hierarchical approach. The original problem was
replaced by a series of r-HST metric labeling subproblems and obtained solutions
were combined with α-expansion algorithm. The previously presented approxi-
mation bounds were improved. They are equal toO(ln(L)) andO((γ ln(L))2), γ ≥
1 for truncated `1 and `2, respectively. However, this approach is computation-
ally expensive.

3 Move algorithms

Move algorithms have been developed to solve multilabeling problems. According
to the definition given in [17], a move algorithm is an iterative algorithm where
xn+1 ∈ M(xn) and M(x) is a “moves” space of x. The local minimum with
respect to a set of moves is at x if E(x′) > E(x) for any x′ ∈M(x). Each move
algorithm is characterized by its space of “moves” M(x).

In this section we describe two moves that we develop. The quantized move
is closely related to α-expansion and convex move to Murota’s gradient descent
algorithm. In section 4, we explain why linking these moves together leads to
improvement of efficiency in the context of minimization of energy functions
with truncated convex prior.

3.1 Quantized move

The main idea behind the quantized move is to divide the label range into equal
subintervals of length T and, ideally, put pixel labels into the correct intervals,
thus reducing the number of categories from the original range L to L/T . This
greatly accelerates the execution time of the algorithm.

The proposed move algorithm minimizes the energy Ep with an arbitrary
data fidelity term Dp and a pairwise term defined as:

Rp(xv, xu) =

{
0 if |xu − xv| < T

f(T ) if |xu − xv| ≥ T,
(3)

where T is a positive integer value. This prior is potentially interesting for other
applications, but here we will use it as an intermediate step for minimizing
truncated convex priors.

A quantized move is a new labeling where xu is either left as xu or moved to
a new value according to the following transformation:

α(xu, k) =

{
tk1 if xu ≤ tk1
tkT if xu ≥ tkT ,

(4)
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where k is an integer belonging to a regular quantization of the label set L, i.e,:
k ∈ K = {k0, k1, . . . , kK} such that k0 = 0, ki = iT , i ∈ N+, KT ≥ L and
(K−1)T < L. Recall that L is the maximum label in L. T k =

{
tk1 , . . . , t

k
T

}
is an

ordered label set, such that tki+1 = tki +1. The values in T k change from k− T
2 +1

to k+ T
2 and from k− T

2 + 1
2 to k+ T

2 −
1
2 for odd and even T , respectively. The

tk1 and the tkT is a first and last element of set T k, respectively. The acceptable
moves for a label depending on its current position are illustrated in Fig. 1.

(a) (b) (c)

Fig. 1. (a,b,c) illustrate the label moves when its current value is below, above and
inside the considered interval T k (denoted by square brackets), respectively.

The set of quantized moves MQ(x) is then defined as the collection of moves
for all k ∈ K. Quantized moves act much like expansion moves in the case of a
Potts model on a quantized subset of labels. We now prove that quantized moves
are graph-representable and can be optimized by GC.

Proposition 1 For the energy in (1) with a regularization term given by (3),
the optimal quantized move (i.e. giving the maximum decrease in energy) can be
computed with a graph cut.

Proof: We show that quantized move satisfies all conditions specified in [15]. Let
b = {bu,∀u ∈ V} be a binary vector coding a quantized move. Then the move
can be described by a transformation function B(x(n), b) returning a new labeling
x(n+1), based on b and x(n). Here (n) is the iteration number. The transformation
function Bq(x(n), b) for a quantized move is given by:

x(n+1)
u = Bq(x(n)u , bu) =

{
α(x

(n)
u , k) if bu = 1

x
(n)
u if bu = 0

(5)

The considered move finds b∗ = ArgminbE(Bq(x(n), b)), where E(Bq(x(n), b)) is

a pseudo-boolean energy, defined as
∑
u∈V D(Bq(x(n)u , bu))+∑

(u,v)∈E R(Bq(x(n)u , bu),Bq(x(n)v , bv)). Let us denote the pairwise term of the

binary quantized move energy by B(bu, bv), omitting x(n) from the notation for
simplification. Then:

B(bu, bv) =


Rp(x(n)u , x

(n)
v ) if bu = 0, bv = 0

Rp(x(n)u , α(x
(n)
v , k)) if bu = 0, bv = 1

Rp(α(x
(n)
u , k), x

(n)
v ) if bu = 1, bv = 0

Rp(α(x
(n)
u , k), α(x

(n)
v , k)) if bu = 1, bv = 1.

(6)
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The pairwise term B needs to be submodular i.e.: B(0, 0) +B(1, 1) ≤ B(1, 0) +

B(0, 1). Since for all n and k we have that Rp(α(x
(n)
u , k), α(x

(n)
v , k)) = 0, the

submodularity inequality takes the form:

Rp(x(n)u , α(x(n)v , k)) +Rp(α(x(n)u , k), x(n)v ) ≥ Rp(x(n)u , x(n)v ), (7)

or equivalently

B(0, 1) +B(1, 0) ≥ B(0, 0). (8)

The only case when B(0, 0) is not 0 is when neighbors xu and xv are at least
T apart, i.e. |xu − xv| ≥ T , in which case we have B(0, 0) = f(T ). However, in
this case either B(0, 1) or B(1, 0) or both are equal to f(T ), so the inequality is
verified.

The problem of minimizing energy E(Bq(x(n), b)) can be solved globally with
respect to b using discrete maxflow-mincut methods [29]. Note that when T = 1
our quantized move reduces to the α-expansion move.

3.2 Convex moves

In the previous section, we showed how to assign the pixel values into the correct
intervals, and now we propose a convex algorithm to optimize these values within
these intervals. To achieve this, we view the steepest descent algorithm of Murota
[14, 23] as a special case of GC move. The primal and a primal-dual algorithms
proposed in [30] are also related to Murota’s approach. Their convergence prop-
erties in the case of L\-convex functions have been proved. However, the case
of non-convex data fidelity was not examined. This limitation can be viewed as
disadvantage compared to Ishikawa approach [5], which guaranties a global min-
imum even for non-convex data fidelity. In contrast, both primal and primal-dual
algorithms are more memory and time efficient than the non-iterative Ishikawa’s
method. We note that a function Ec with a non-convex data fidelity term and a
convex pairwise regularization term Rc (xu, xv) = f (|xu − xv|) can still be min-
imized with the GC primal algorithm of [30]. The convex move is conceptually
similar to the jump move [1]. However, the jump move processes pixels with odd
and even values differently. As a consequence, Potts functions can be represented
on jump-move graphs, whereas convex functions generally cannot.

As in the previous case (section 3.1), a convex move is described by a binary
vector b and the transformation function Bc(x(n), b) defined as:

x(n+1)
u = Bc(x(n)u , bu) =

{
x
(n)
u + s if bu = 1

x
(n)
u if bu = 0,

(9)

where s ∈ S and S is a set of discrete values from Z. The convex move space
MC(x) is then defined as the collection of convex moves for all s ∈ S. We call
the algorithm finding b∗ = ArgminbE(Bc(x(n), b)) the convex move algorithm.
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The pseudo-boolean prior term representation is given by:

R(Bc(x(n)u , bu),Bc(x(n)v , bv)) =


Rc(x(n)u , x

(n)
v ) if bu = 0, bv = 0

Rc(x(n)u , x
(n)
v + s) if bu = 0, bv = 1

Rc(x(n)u + s, x
(n)
v ) if bu = 1, bv = 0

Rc(x(n)u + s, x
(n)
v + s) if bu = 1, bv = 1

(10)
(10) is submodular as Rc (xu, xv) is a L\-convex function (since f is convex, its
submodularity inequality f (|xu + s− xv|)+f (|xu − xv − s|) ≥ 2f (|xu − xv|) is
always satisfied). The optimal convex move can be found with Murota’s gradient
descent algorithm [23]. It is worth noting that GC formulation does not impose
any requirements on data fidelity term thus guaranteeing that the energy de-
creases. Hence, in this case the energy (1) is minimized but the optimal solution
of multilabel problem is not secured.

4 Truncated convex prior algorithm

In this section, we present an effective method combining both moves introduced
in Section 3 for minimizing energies with truncated convex prior functionals (2).

The convex move submodularity inequality is a function of (xu, xv) s.t. u, v ∈
N and s ∈ S. The choice of S influences the number of pairs of neighboring pixels
u ∈ V which satisfies the convex move submodularity inequality. We examine
the case where S = {−1,+1} and f(xu, xv) is defined as in (2). To specify the
sets of pixels the convex move applies to, we define Ti for 0 ≤ i ≤ L to be
the collection of all subsets SVi of V such that ∀û, v̂ ∈ SVi , |û − v̂| ≤ i. We note
that all xu belong to at least one SVi irrespective of i, and so the entire image is
covered by Ti. A convex move characterized by S = {−1,+1} is a function which
maps TT−1 onto TT , guaranteeing that the energy defined as (2) decreases with
each move. This comes from the fact that the energy for the TT−1 is represented
exactly using our convex graph and as s is equal to either 1 or −1, the solution
belongs to TT .

Following [15], we define the edge capacities of graph G(V, E). The cost c(u, v)
between (u, v) ∈ N is set to f (|xu + s− xv|) + f (|xu − xv − s|)−2f (|xu − xv|)
if |xu − xv| < T and 0 otherwise. Because of the many such null connections, the
final MRF is sparser which improves the time efficiency of the algorithm. The
energy is guaranteed to go down, but the resulting labeling and corresponding
energy are not as good as obtained by other minimizers. To improve our results,
we combine this convex move with our proposed quantized move.

An arbitrary new labeling set by the quantized move part is not guaranteed
to improve the energy with respect to the truncated convex prior energy (only a
Potts-like energy is guaranteed to be minimized). However, we can easily impose
this extra condition: the new labeling is accepted only if the proposed energy
is better with respect to truncated convex prior energy, and rejected otherwise,
which yields the desired effect. Since quantized move regularizes distant outliers,
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it is a powerful complement method for convex moves, for which S = {−1,+1}
regularizes close outliers. Now, we present our two-step algorithm alternating
convex and quantized move. Here, Q(x, k) denotes the quantized move of image
x and interval k. We also denote the convex move by C(x, s), where s is the
considered step and x the input image. Note that the loops indexed by n and m
are repeated until convergence.

Algorithm 1 (Quantized-convex split moves algorithm)
Fix x(0),S = {−1, 1}
For j = 0, 1, . . .

x(0) = x(j)

For n = 0, 1, . . .
Assign to K a set of randomly ordered elements from K
For i = 0, 1, . . . ,K Set ki to be the i-th element of K
x = Q(x(n), ki)
if (E(x) ≤ E(x(n))) then x(n+1) = x

x(0) = x(n)

For m = 0, 1 . . .
Assign to S a set of randomly ordered elements from S
For i = 0, 1⌊

Set si to be the i-th element of S
x(m+1) = C(x(m), si)

x(j+1) = x(m)

We now have our main result:

Proposition 2 Algorithm 1 iteratively decreases the energy (1), with R defined
as a truncated convex function.

Proof: This result comes straightforwardly from the previous discussion, where
it was shown that all steps reduce the energy E(x).

As this algorithm combines quantized and convex moves, it is important to
understand what happens at the boundary between them. A difficulty is that
neighboring pairs u, v ∈ N with labels |xu − xv| = T cannot be represented ex-
actly on the convex graph. This comes from the fact that the convex move cannot
map TT to TT−1. We cope with this problem in a similar way as in [31], where
α-expansions were shown to be able to minimize energies involving a truncated
prior, as long as the number of pairs xu, xv not satisfying the submodularity in-
equality is relatively small. This is the reason why we limited the convex moves
to S = {−1,+1}. We represent truncated priors on convex move graph in a
similar spirit.
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5 Results

We implemented our proposed algorithm in the framework of the Middlebury
MRF vision code (http://vision.middlebury.edu/MRF/code/), based on [21],
so we could compare our approach with the following methods: ICM [13], α-
expansion and swap moves [32, 6], MaxProdBP, BP-S (using software provided
by Marshall Tappen [33]) and TRW-S [25, 24]. We also endeavoured to compare
it with the range move, but range move did not work for our test because the
value of T was too large. The tests were performed single-threaded on an Intel
Xeon 2.5GHz with 32GB of RAM running RedHat Enterprise Linux 5.5. All
algorithms were run either until full convergence for GC algorithms, ICM, and
ours, or until the first oscillation for the other algorithms.

We evaluate our proposed algorithm only in the context of image restoration
for different prior functions, namely truncated `2 and truncated `1-`2, defined as√
ε+ x2. In each case, we also examine the influence of parameter T . The grey

scale images (L = 255) of size 512 × 512 (for `2) or 256 × 256 (for `1-`2) were
corrupted with additive zero mean Gaussian noise with standard deviation 25.3
corresponding to initial SNR values 13.75 dB, 15.09 dB, and 14.26 dB for images
“gold rec”, “elaine”, and “barbara”, respectively. Consequently all experiments
were performed with an `2 data fidelity term, which is most appropriate for
this noise distribution. All the algorithms were initialized with an empty zero
image. The algorithm accuracy is evaluated in terms of absolute error defined
as err = (E(x∗)−E(xTRW−Sl

))/E(xTRW−Sl
), where E(xTRW−Sl

) is the lower
bound value reported by TRW-S and E(x∗) is an energy corresponding to the
solution obtained by the algorithm. The restoration quality is evaluated in terms
of SNR. The mean time, the energy, SNR, and the error presented in Table 1
and Table 2 are computed from 3 different realizations of the noise added to
3 considered images. The performance of our algorithm is also illustrated by
energy vs. time plots (Fig. 2).

In Table 2, our quantized-convex split moves algorithm outperforms all other
GC based algorithms in terms of minimum energy and time efficiency for trun-
cated `2 prior. However, the best final energy is obtained by the BP (contrary to
what was found in [21]) and TRW-S algorithms, the latter converging faster than
the former. One can observe in Fig. 2 (a) that in the case of truncated `2, TRW-
S offers a speed/energy compromise comparable with our quantized-convex split
moves algorithm when it is stopped early, for instance after two iterations. How-
ever, for truncated `1-`2 prior, our algorithm is significantly faster (Fig. 2 (b)),
while still achieving energies comparable with other algorithms (Table 2).

The quality of the results is also verified by inspecting the mean SNR value,
which is not further improved by other algorithms in comparison to ours. In-
deed, our algorithm appears to perform better at removing isolated noisy pixels
compared with other algorithms (see Fig. 3(i)). Since our Quantized-convex split
moves algorithm leads to very good results (Fig.3), is fast and less memory ex-
pensive than other algorithms, it appears to be well suited for image restoration
application.
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T = 25 , λ = 2 T = 35, λ = 2 T = 50, λ = 1

time err SNR time err SNR time err SNR

ICM 39.8 3.02× 10−2 20.11 39.06 1.71× 10−2 21.70 25.4 5.25× 10−3 21.53

BP-S 1807.8 8.29× 10−4 20.82 1658.7 5.10× 10−4 21.74 1641.8 7.21× 10−5 21.52

BP 153.0 1.05× 10−3 20.80 154.5 7.21× 10−4 21.76 153.3 1.17× 10−4 21.52

TRW-S 154.9 1.36× 10−3 20.85 154.6 7.55× 10−4 21.72 172.2 8.53× 10−3 21.54
α-exp 307.6 1.98× 10−2 20.53 294.6 2.01× 10−2 21.61 240.3 1.98× 10−2 21.28

αβ swap 360.1 2.57× 10−2 20.33 362.3 1.48× 10−2 21.75 359.5 4.26× 10−3 21.53

Proposed 27.1 1.57× 10−2 21.53 28.6 6.30× 10−3 21.71 29.2 3.28× 10−3 21.51

Table 1. Truncated `2 prior results on 512× 512 images. The SNR is given in dB, and
the time in seconds. Best results are in bold. TRW-S and BP were stopped after 15
iterations (after this, the energy did not improve significantly).

T = 35, λ = 55 T = 50, λ = 45 T = 60, λ = 30

time err SNR time] err SNR time err SNR

ICM 104.4 2.69× 10−2 19.51 84.4 8.67× 10−3 20.57 46.8 2.39× 10−3 20.88

BP-S 4871.9 7.28× 10−4 20.08 5069.9 1.34× 10−4 20.68 3866.7 1.42× 10−5 20.97

BP 13950.0 9.40× 10−4 20.12 16048.7 2.10× 10−4 20.69 14902.3 4.31× 10−5 20.97

TRW-S 2508.9 2.54× 10−4 20.06 2259.0.4 4.30× 10−5 20.66 2852.2 5.08× 10−6 20.97

α-exp 61.8 7.96× 10−3 20.10 50.3 7.36× 10−3 20.72 50.9 7.37× 10−3 20.80

αβ swap 200.4 1.12× 10−2 19.94 178.9 4.31× 10−3 20.63 112.7 1.19× 10−3 20.95

Proposed 9.4 1.16× 10−2 20.37 9.3 4.00× 10−3 20.86 7.9 1.51× 10−3 21.19

Table 2. Truncated `1-`2 prior results with ε = 10 on 256 × 256 images. The SNR is
given in dB, and the time in seconds. Best results are in bold.

6 Conclusion and future work

In this paper, we have presented a novel move-based algorithm to solve GC
problems with truncated convex priors in the context of image denoising. Our
move is split in two parts, a first Potts-like move that denoises a quantized
version of the image, and a second move that processes the result of the first
move according to a fully convex prior. We have shown that combining these
moves corresponds to denoising with a truncated convex prior. For a convex
prior truncated at threshold T and for an image with L labels, the Potts-like
denoising operates on L/T labels and the convex part on T labels only. This
results in two optimizations over a much reduced set of labels for most useful
values of T , and therefore it translates into large savings in computing time.
Because only submodular moves are effected, the algorithm is guaranteed to
converge in finite time. The result of these moves appears better in terms of
energy than all moves, and depending on the problems, our algorithm is at least
5 times and up to several orders of magnitude faster than current state-of-the-
art algorithms. We believe this constitutes an interesting compromise between
efficiency and precision.

Since we use barely modified versions of Potts optimization and discrete
convex optimization methods, future progress in this area will also translate into
improvements for the proposed method. In particular, future work will include
analyzing primal-dual methods for convex optimization. Precision can also be
improved by using more sophisticated Potts-like moves. We will also explore
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(a) (b)

Fig. 2. Energy versus log time characteristics of convergence for algorithm comparison:
ICM (yellow), BP-S (red), BP (green), TRW-S (cyan), αβ swap (magenta), α-exp
(blue), ours (black). (a,b) illustrates the case of `2 and `1-`2 prior, respectively.

the behaviour of our algorithm with non-convex data terms and consider other
applications, such as stereo-vision.
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