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Abstract. Image segmentation is increasingly used for object recogni-
tion. The advantages of segments are numerous: a natural spatial support
to compute features, reduction in the number of hypothesis to test, re-
gion shape itself can be a useful feature, etc. Since segmentation is brittle,
a popular remedy is to integrate results over multiple segmentations of
the scene. In previous work, usually all the regions in multiple segmenta-
tions are used. However, a typical segmentation algorithm often produces
generic regions lacking discriminating features. In this work we explore
the idea of �nding and using only the regions that are reliable for detec-
tion. The main step is to cluster feature vectors extracted from regions
and deem as unreliable any clusters that belong to di�erent classes but
have a signi�cant overlap. We use a simple nearest neighbor classi�er for
object class segmentation and show that discarding unreliable regions
results in a signi�cant improvement.

1 Introduction

Over the past couple of decades, most object recognition approaches were based
on the sliding window scanning [1�5], localizing the bounding box of an object.
While very successful for some applications, such as face and pedestrian detec-
tion [2], there are several well known issues with the sliding window approach.
First, it is mostly appropriate for object classes that are well-approximated by
a rectangle, such as cars, but not for object classes with thin parts, such as
gira�es. Another problem is that there is no precise pixel-level segmentation of
the detected object. Also, sliding window approach is expensive computationally,
since a large number of sub-windows at di�erent scales needs to be processed in
a single image.

In recent years, there has been a lot of interest in using results of a generic im-
age segmentation algorithm to help obtain pixel-precise object segmentation [6�
15]. Segmentation is used to subdivide an image into a set of regions. These re-
gions do not have prede�ned shapes like rectangular patches and their boundaries
are more likely to align with the boundaries of objects in the scene. Therefore
the shape and boundary properties of regions can be used for feature extraction.
Furthermore, it has been shown in [16] that regions from unsupervised bottom-
up segmentation can provide a better spatial support for object detection than
rectangular windows. Another advantage of using image regions is scalability
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and potential savings in computational e�ciency. Image regions provide a usu-
ally much smaller set of hypothesis to examine compared to the sliding window
approach, and at �natural" scales that are obtained through segmentation.

Ideally, a good segmentation algorithm would cleanly separate the objects or
at least the object parts. However, the state-of-the art in segmentation is still
very far from this goal. With hierarchical segmentation there is a higher chance
that a complete object or an object part is contained at some hierarchy level.
Therefore some methods use a single hierarchical segmentation algorithm [17, 14]
for object recognition. However, even hierarchical algorithms su�er from instabil-
ity, the results depends on the choice of the feature space and parameter settings.
Another strategy is to use smaller image regions, or "superpixels", as in [15], and
regularize the classi�er by aggregating histograms in the neighborhood of each
superpixel. However, if superpixels are too small, they may not have enough
spatial support for feature extraction. If superpixels are bigger, then there is a
larger chance for an error due to inaccuracies in superpixel boundaries, since
superpixels are used as indivisible units.

A more commonly used strategy is to integrate the results over multiple
di�erent segmentations of the same scene [6, 18, 13, 19]. Usually several unsuper-
vised bottom-up segmentation algorithms, each with di�erent parameters are
used. With more segments, there is a higher chance that some segments contain
whole objects or easily recognizable object parts. In support of using multiple
segmentations, in [16] they show that usually regions generated by a single seg-
mentation of a scene do not contain entire objects.

Previous work that relies on multiple segmentations either makes an assump-
tion that at least one segmentation separates the object from the background [6,
19], or uses all segments as reliable for object class recognition [13]. Clearly many
regions from multiple segmentations are rather generic blobs that do not contain
features useful for discrimination. This is because most bottom-up segmentation
algorithms are implicitly or explicitly designed to partition an image into a set of
uniform patches in some feature space. The main idea of our approach is to �nd
reliable regions and discard the ones that are not reliable for object recognition.
This should result in more stable decisions at the time of object recognition.

In the training stage, �rst multiple image segmentations are obtained by
varying the parameters in FH [20] and Mean Shift [21] segmentation algorithms.
Each segment is described by a large set of features based on color, texture, etc.
Then discriminative features are selected using the Relief-F algorithm [22]. For
robustness, we do not want to decide on reliability individually for each segment.
It is more reliable to make this decision for a whole cluster containing similar
segments. A single object class is usually segmented into di�erent possibly over-
lapping parts, each part may bear little similarity to the other parts. Therefore
we cluster each object class (separately from the other classes) using the k-means
algorithm, with the aim that each cluster contains similar segments of the object
class. Clusters from di�erent objects could have signi�cant intersection, which
makes them unreliable for recognition. The overlapping clusters contain segments
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that are generic blobs not corresponding to an easily recognizable object part.
These clusters are discarded.

In the test stage, �rst multiple image segmentations are generated from the
test image and features are extracted for each segment. Reliable segments are
found based on their distance to the reliable clusters obtained at the training
stage. Since our goal is to learn to determine unreliable segments, and not neces-
sarily to come up with the state of the art object class segmentation system, we
use a simple nearest neighbor classi�er as opposed to more sophisticated tech-
niques. Initially, each reliable segment is classi�ed independently, and the results
may not be spatially coherent. To encourage coherency and integrate the results
of multiple segmentations, we use graph-cut optimization [23] to generate the
�nal result. This leads to a signi�cant improvement in accuracy, compared to
single segmentation results.

Experimental results on MSRC database show that discarding unreliable
regions results in a signi�cant accuracy improvement. Even though the goal was
not to come up with the state-of-the art classi�er, surprisingly, a simple nearest
neighbor classi�er with reliable regions is not too far from the state-of-the art
methods.

2 Related Work

Our work is most related to the methods that use multiple segmentation for var-
ious object recognition tasks. An early work that uses segmentation for recog-
nition is [24]. Their goal is associating labels to image regions, and use multiple
segmentation algorithms to evaluate which one is better for their task.

The method introduced in [6] seeks to discover visual object categories and
their segmentation in a collection of unlabeled images starting with regions gen-
erated with several unsupervised image segmentation approaches. However, they
make an assumption that is often violated in practice. They assume that at least
one of the regions contains the full object.

Multiple segmentations were also used by [18] to label each pixel with its
rough geometric surface class. Multiple segmentations contribute to a wider set
of hypothesis to explore as compared to a single segmentation. Their work pop-
ularized the use of multiple segmentations for various computer vision tasks.

In [19], they use multiple stable segmentations to localized objects in a weakly
supervised framework. A segmentation is considered stable if small perturbations
of the image do not cause signi�cant change in segmentation results. The idea is
that stable segments might be more adequate for object recognition. However,
stable regions could still correspond to generic blobs, not necessarily be useful
for object recognition.

In [13], they classify the regions generated from multiple segmentations in
supervised manner and then integrate all segments to get the �nal result. How-
ever in their approach they have an assumption that all the regions generated
by multiple segmentations are bene�cial for object recognition, which is likely
not be true in practice.
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The importance of incorporating multiple segmentations into object recogni-
tion, as opposed to a single segmentation, is investigated in [16]. They show two
important results: good spatial support is important for recognition and multiple
segmentations provide better spatial support for objects than bounding boxes
and a single segmentation.

3 Proposed Approach

In this section, we describe our approach to the object class segmentation with
reliable regions. In the training stage, reliable regions for each object class are
determined and retained, and unreliable regions are discarded. In the test stage,
unreliable regions are discarded as well. Reliable regions are classi�ed with the
nearest neighbor classi�er using the pool of reliable regions obtained at the time
of training. Finally region classi�cations are combined and regularized using
graph cuts to get the �nal object map.

3.1 Obtaining Multiple Segmentations

To obtain multiple segmentations, we use two popular and e�cient segmenta-
tion algorithms, FH [20] and the Mean-Shift [21]. Multiple segmentations are
generated by varying the parameters of each algorithm. We obtain 18 distinct
segmentations for the FH algorithm, and 16 for the mean-shift algorithm. Fig-
ure 1 shows some examples of segmentation images that are generated for one of
the input images. This �gure illustrates the possible variation in segmentation
regions and di�erent characteristics of the segmentation algorithms.

3.2 Features from Regions

We explored features that are based on size, location, color, texture, probability
of the boundary, and edge histograms. Location, shape, color and texture features
are the same as in [18].

Probability of the boundary is based on the boundary detector introduced
in [25], which is better at detecting object boundaries than the conventional edge
detection methods because it is less distracted by texture gradients. We take the
mean value of probability of the boundary within a two pixel wide radius of the
region boundary.

Distribution of intensity gradients can be useful for shape and appearance de-
scription. Therefore two kinds of edge descriptors are used to capture edge cues:
Histogram of Oriented Gradient (HOG) [3] and Edge Orientation Histogram
(EOH) [26]. In our work HOG and EOH are computed for 8 bins for all the
pixels in each region and also for pixels around the boundary of regions within
two pixels radius. They are normalized by the size of the region or the size of
the boundary of the region, correspondingly.

The initial set of features has size 219. In order for clustering to have a
reliable performance, it is necessary to reduce dimensionality [27]. We use the
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Fig. 1. Some examples of segmentation results from FH and Mean Shift algorithms
with di�erent input parameters.

Relief-F algorithm [22] for feature selection in this work. We retain the top 15
features ranked by Relief-F. These features are based on color, location, edge
histogram and texture �lters. It is interesting to note that boundary features
were not selected.

3.3 Clustering

For robustness, we want to make a decision on the reliability of a whole group
of similar segments, rather than decide for each segment separately. Therefore
we need to perform segment clustering within each object class. A single object
class is usually segmented into several possibly overlapping parts, sometimes
bearing little similarity to each other. As illustrated in Figure 2 a cow generally
gets segmented into the head, body, and legs. Therefore segments resulting from
multiple segmentations of multiple instances of a single object class typically
consist of several distinct clusters.

To facilitate discovery of reliable segments, �rst the clustering structure re-
sulting from multiple segments of a single object class must be captured. We use
k-means [28] to cluster each object class. The number of clusters for each object
is chosen between 4 to 8 so that the resulting number of clusters maximizes the
silhouette coe�cient.

Figure 3 shows some representative samples for four out of six clusters from
the cow class and three out of �ve clusters from the car class. Each cluster
corresponds to a separate column. For cow class, the clusters tend to correspond
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Fig. 2. First column shows the original images and the second column their typical
segmentations.

Fig. 3. Left: Four clusters from the cow class, right: 3 clusters from the car class. Each
column corresponds to a separate cluster. Six representative members are shown for
each cluster.
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to bodies, heads, vertical segments, horizontal segments, respectively. For the
car class, the clusters seem to correspond to the horizontal structures, body, and
the �lights and wheels" parts.

3.4 Discarding Unreliable Segments

So far we used all regions generated from multiple segmentations in the cluster-
ing, however clusters from di�erent objects could have lots of intersection with
each other which makes them unreliable for object detection.

To get rid of unreliable clusters, those clusters that have a large amount of
intersection with clusters of di�erent object classes should be discarded. In our
work, �rst the average intersection of each of the clusters with all other clusters of
di�erent classes is calculated and then for each object class two or more clusters
with the least amount of intersection are retained. These clusters are reliable and
will lead to more certain and stable decision at the time of object recognition.

There are many di�erent ways to measure cluster overlap. Since the number
of training samples is relatively small and the dimensionality of our data is
relatively high, we avoid measuring cluster overlap in the original feature space
to avoid the problems associated with high dimensionality. Instead we project
the two clusters for which we want to measure the overlap into the best one
dimensional subspace so that the samples from each cluster stay as separated as
possible. This step is performed with Fisher linear discriminant [29]. According
to Fisher linear discriminant, two clusters should be projected on the line in the
direction V which maximizes:

J(V ) =
(µ1 − µ2)2

s21 + s22
(1)

µ is the mean and s2 is the scatter of projection. The best V for projection is
found with eigenvector analysis.

After two clusters are projected on the best line that separates them, the
value of equation (2) can be used to quantify the overlap in the projected space:

J(cli, c
k
j ) =

(µ1 − µ2)2

σ2
1 + σ2

2 ,
(2)

where cli denotes cluster i from object class l; σ2
1 and σ2

2 are the variances of
projections of two clusters. The larger is the value in equation (2), the better is
the separation between the two clusters.

To measure how reliable one cluster is, the average of equation (2) is calcu-
lated over all clusters of other classes, see equation (3):

J(cli) =

∑
j,k 6=l J(cli, c

k
j )

ι
, (3)

where ι is the number of clusters such that their object label is not equal to l.
For each object class we choose two or more clusters with the best value of J(cli).
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In Figure 3, for the cow class, the �rst and second clusters (corresponding
to the �rst and second column) are reliable, and the last two are unreliable.
For the car class, the �rst cluster is unreliable and the last two are reliable. It
can be seen from the �gure that the reliable clusters contain segments that are
more easily recognizable as parts of the object class. Unreliable clusters tend to
have segments that are more generic and shared between classes, such as blobs
of certain eccentricity and orientation.

4 Object Class Segmentation

So far the process of creating a pool of reliable clusters from training images was
discussed. Given a novel image to segment into its constituent object classes,
we �rst generate multiple segmentations using FH and mean-shift algorithms.
For each segment we extract �fteen features selected as discriminative at the
training stage. We discard unreliable segments using the following procedure. We
compute the distance from the current segment to the cluster centers obtained
at the training stage. If the current segment is closest to an unreliable cluster
center, it is itself deemed as unreliable and discarded. Otherwise it is classi�ed
using the k-nearest neighbor classi�er. We set k = 8 for the experiments.

Notice that since we discard unreliable segments for a test image, there is
a chance that a pixel does not get classi�ed because it is contained only in
unreliable segments. We found experimentally that the percentage of such pixels
is small. In most cases, if a pixel is in unreliable generic blob in one segmentation,
it often does belong to a reliable region for another segmentation, usually at a
di�erent scale. The small percentage of pixels that do not get classi�ed at this
stage do get classi�ed at the next stage, which we now describe.

Since all the segments are classi�ed independently, to improve coherence and
integrate the results of multiple segmentations, we use graph cut optimization
framework [23]. We seek a �nal labeling f that minimizes the following energy:

E(f) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

wpq · δ(fp 6= fq) (4)

The �rst term in equation (4) is called a data term and it is the penalty for
pixel p to be assigned label fp. Dp measures how well label fp suits pixel p. This
constraint ensures that the current labeling f is consistent with the observed
data.

We set the data term as follows. The more often pixel p was classi�ed as object
class l, the smaller is Dp(l), making object class l more likely for p. Speci�cally,
Dp(fp) is de�ned as the negative number of segments that contain pixel p and
get classi�ed as fp.

The second term in equation (4) is known as the smoothness term. The
smoothness term measures the extent to which f is not smooth. We use the
Potts Model. Here δ(fp 6= fq) is 0 if fp = fq and 1 otherwise. A typical choice

for wpq is λe−
(Ip−Iq)2

2σ2 , where Ip and Iq are the intensities of pixels p and q.
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Parameter σ is related to the level of variation between neighboring pixels. The
parameter λ is used to control the relative importance of the data term versus
the smoothness term. We set λ to 10 in this work. This energy function can be
approximately optimized with the alpha-expansion algorithm of [23]. The code
for alpha-expansion is taken from Boykov et al. [23, 30, 31].

Notice that if a pixel belongs only to unreliable segments, i.e. it did not get
classi�ed with any object class for any segmentation, then its data terms are
equal to zero for all classes. Such pixel gets classi�ed based only on propagation
from it surrounding context due to the smoothness term.

5 Experimental Results

We tested our approach on the MSRC 21-class data set [32]. In this data set
pixels close to object boundaries and in non-object regions are labeled void in
the ground truth images. These pixels are ignored in evaluation. Since ground
truth may contain di�erent labels for any given segment, for training, we use
only the segments that have more than 70% label consistency, that is at least
70% of pixels should belong to a single class.

Table 1 gives the quantitative results using graph cuts for integrating multiple
segmentations. The second row shows the results when only reliable regions are
used for object detection and the �rst row is the results of using all regions
generated by all of the segmentations. As it can be seen, the results are better
by 11% in pixel-averaged and class-averaged accuracy when just the reliable
regions are used. For all object classes except the sheep, sky and boat object
classes, using just the reliable regions outperform the approach where all regions
are used. This shows that lots of regions do not have informative features to
distinguish an object or an object part. Using all of these regions instead of just
the reliable ones can mislead object recognition.

We also measure the improvement graph cut integration of multiple segmen-
tations gives over single segmentation results. We compute accuracy improve-
ment of graph cut results over each of the 34 single segmentation result. On
average, the class-averaged accuracy increases by 7.8% with graph cuts, with
standard deviation of 0.03%. The smallest improvement is 4.0% and the best
improvement is 14.5%.

Figure 4 shows some successful qualitative results. Some partial successful
examples or failures are shown in Figure 5. The �rst column contains the input
images, the second column shows the ground truth segmentation. The third and
fourth columns present maps of the most likely class at each pixel using all
regions and reliable regions, respectively. The black pixels in the result images
are considered as void in ground truth images and are not considered in our
evaluation. These are the pixels for which no accurate ground truth could be
constructed by the authors of the dataset. As can be seen from Figure 4 and
Figure 5 using all regions leads to less accurate results as opposed to using only
the reliable regions.
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Fig. 4. Successful qualitative results generated using graph cuts for integrating multiple
image segmentations. a) Original images. b) Ground truth images. c) Results generated
using all the regions. d) Results generated using reliable regions. The black pixels in all
result images are not labeled in ground truth images and therefore are not considered
in our evaluation. This picture is best viewed in color.
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Table 1. Quantitative performance using multiple segmentations. In the �rst row, all
regions from multiple segmentations are used for recognition while in the second row
just reliable regions are used.
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Graph cut (all

regions)

57 44 47 81 60 23 49 96 31 46 60 41 39 65 35 22 43 24 63 30 11 33 31

Graph cut

(reliable regions)

68 55 60 90 70 50 43 87 46 87 64 54 46 71 43 26 67 25 75 39 50 37 24

Fig. 5. Partially successful or failure results generated using graph cuts for integrat-
ing multiple image segmentations. a) Original images. b) Ground truth. c) Results
generated using all the regions. d) Results generated using reliable regions. The black
pixels in all result images are not labeled in ground truth images and therefore are not
considered in our evaluation. This picture is best viewed in color.
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5.1 Comparison to Previous Work

The purpose of this work was not to come up with the state-of-the art algorithm
but to show that discarding unreliable regions from multiple segmentations gives
better results for object recognition. This was shown using a simple nearest
neighbor framework. Even though the goal was not a state of the art algorithm,
we compare the performance of the proposed system to the state-of the art
recent work [7, 8, 13]. Notice that they [7, 8, 13] use much more sophisticated
machine learning algorithms and features. Nevertheless our overall performance
is not that much worse, which is surprising, given the simplicity of our classi�er.
Furthermore, we are even able to achieve better accuracy for some classes. Our
approach is superior on �water�, �sign� , �bird� �chair�, �dog� and �boat� object
classes.

Table 2. The comparison of our approach with that of Shotton et al. [7], Verbeek and
Triggs [8] and Pantofaru et al. [13].
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Shotton et al. [7] 72 58 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 7

Verbeek and

Triggs [8]

74 64 52 87 68 73 84 94 88 73 70 68 74 89 33 19 78 34 89 46 49 54 31

Pantofaru et al.

[13]

74 60 68 92 81 58 65 95 84 81 75 65 68 53 35 23 85 16 83 48 29 48 15

reliable regions 68 55 60 90 70 50 43 87 46 87 64 54 46 71 43 26 67 25 75 39 50 37 24

The running time of our approach could be improved signi�cantly, it is cur-
rently in minutes. The most time consuming part is obtaining multiple segmen-
tations and extracting features.

6 Conclusion

We develop a novel object recognition algorithm based on selecting reliable re-
gions from multiple segmentations. We produce pixel-wise segmentation of the
objects in the image. To increase the robustness of our system to poor seg-
mentations and also in order integrate the results of multiple segmentations,
information from multiple image segmentations is integrated using graph cut
optimization framework. The main contribution of our work is a clustering ap-
proach to �nd the reliable regions for object recognition. Experiments show that
when using only the reliable regions, the results improve by approximately 11%
both in pixel-averaged and class-averaged accuracy.
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