
Fast Dynamic Programming for Labeling Problems with Ordering Constraints

Junjie Bai∗ Qi Song∗ Olga Veksler† Xiaodong Wu∗

∗Department of Electrical and Computer Engineering
The University of Iowa

junjie-bai, qi-song, xiaodong-wu@uiowa.edu

†Computer Science Department
University of Western Ontario

olga@csd.uwo.ca

Abstract

Many computer vision applications can be formulated
as labeling problems. However, multilabeling problems are
usually very challenging to solve, especially when some or-
dering constraints are enforced. We solve in this paper
a five-parts labeling problem proposed in [6, 7]. In this
model, one wants to find an optimal labeling for an image
with five possible parts: “left”, “right”, “top”, “bottom”
and “center”. The geometric ordering constraints can be
read naturally from the names. No previous method can
solve the problem with globally optimal solutions in a lin-
ear space complexity. We propose an efficient dynamic pro-
gramming based algorithm which guarantees the global op-
timal labeling for the five-parts model. The time complexity
is O(N1.5) and the space complexity is O(N), with N be-
ing the number of pixels in the image. In practice, it runs
faster than previous methods. Moreover, it works for both
4-neighborhood and 8-neighborhood settings, and can be
easily parallelized for GPU.

1. Introduction

Given an image, the multilabeling problem seeks to as-
sign a label to each pixel from a set of fixed labels, which,
in general, is NP-hard [1]. Multilabel oprimization is a very
active area of research in computer vision since a wide va-
riety of vision problems can be formulated as multilabel-
ing problems. Ishikawa developed an exact optimization
method for Markov Random Fields with convex priors [5],
which was among the first computational frameworks for
efficiently solving the multilabeling problems. Wu and
Chen’s algorithm for convex multilabeling works in a more
general setting, restricting the label transition between two
neighboring pixels in a certain range of the linearly ordered
labels [10]. For more general cost functions, Boykovet al.’s
α-expansion based graph cut approach [1] is widely used
in the vision community due to its accuracy and efficiency.
However, this method provides no optimality guarantees in

NW

SESW

NEN

EMW

S
()B

()T

()C()L ()R

(a) (b)

Figure 1. The five-parts labeling model. (a) The partition of the
image into nine regions. The letter in the parenthesis indicates
the label of each region. (b) An example labeling. Although the
person in the hall way occludes significant area of the image, our
method can correctly label the end of the hallway.

some cases, including the cases studied in this paper.
Recently, the introduction of label ordering constraints

into the multilabel optimization, which allows substan-
tially generalized cost functions, attracts noticeable atten-
tion [3, 6, 7, 8]. In [6], Liu et al. proposed a five-parts label-
ing model with the ordering constraints, in which the image
is to be labeled into five parts, namely, “left”, “right”, “top”,
“bottom” and “center”, as shown in Fig. 1. The geometric
ordering constraints can be read from the names: (1) a pixel
labeled as “left” cannot be to the right of a pixel with any
other label; (2) a pixel labeled as “right” cannot be the left
of a pixel with any other label; (3) a pixel labeled as “top”
cannot be below a pixel with any other label; (4) a pixel la-
beled as “bottom” cannot be above a pixel with any other
label; and (5) if a pixel p labeled as “center” has a neighbor
with a different label, then the neighbor pixel has to be la-
beled as “left”, “right”, “top”, or “bottom” if it is to the left,
right, above, or below p, respectively. The last constraint
indicates that the “center ” region is a rectangle. Note that
not all parts have to be present.

To solve this five-parts labeling problem, Liu et al. [6]
proposed the ordering preserving moves for the graph cut
optimization, which was demonstrated more effective than
the α-expansion method [1]. However, their method does
not guarantee to find the globally optimal solution.

1

Our main technical contribution is a dynamic program-
ming algorithm for computing a globally optimal five-parts
labeling of an N = n × n image in O(N1.5) time. This
algorithm runs quite fast in practice, taking just seconds to
compute an optimal labeling for a rather large images. In
addition, our algorithm takes only a linear O(N) memory
space.

The key idea for solving the five-parts labeling problem
in our algorithm is to guess the possible “center” rectan-
gles, and then for each rectangle, compute an optimal two-
labeling for each of those four conner regions incident to
the rectangle (Fig. 1(a)) by finding a shortest path. Note that
there are O(N2) possible rectangles, and thus a straightfor-
ward algorithm, with an efficient O(N) shortest path algo-
rithm called for each possible rectangle, would take O(N3)
time, which is too slow for practical use. Fortunately, by ju-
diciously characterizing the intrinsic structure of the prob-
lem, we are able to improve the running time by a factor of
O(N1.5).

We evaluate our algorithm on the geometric class scene
labeling problem [4], where the goal is to assign each pixel
a rough geometric label, such as “sky”, “ground”, “sur-
face above ground”, etc. Experiment shows our algorithm
runs faster and more robustly on average than the order-
preserving moves method [7]. The standard deviation of
the execution times over hundreds of test images with the
same size is almost 0 for our method, while it is compa-
rable to the mean execution time for the order-preserving
moves method. By intentionally adding Gaussian noise,
we observe little effect on the execution time of our algo-
rithm, while a big deterioration is observed for the order-
preserving moves method. The average labeling accuracy
of the two methods is highly comparable over all the test
datasets, though we do find some image datasets, for which
our algorithm obtains clearly superior labeling.

Related Work. Felzenszwalb and Veksler recently pro-
posed a tiered scene model which is more general than the
five-parts model [3]. In this model, the image is first divided
by two horizontal curves into the top, middle and bottom re-
gions, and the middle region is further subdivided vertically
into subregions. They give a dynamic programming based
algorithm which runs in O(N1.5K) time for a Potts-like
model and in O(N1.5K2) time for more general models,
in which N is the size of the image, and K is the num-
ber of possible labels in the middle region. However, the
space complexity of the algorithm is O(N1.5), which could
be problematic in practical use for a large image. For ex-
ample, for an 500× 500 image, an O(N1.5) memory algo-
rithm will require hundreds of times more memory than an
O(N) memory algorithm. In addition, only the 4-connected
neighborhood setting case is presented in [3]. Another
closely related work is Strekalovskiy and Cremers’ multi-
labeling framework with generalized ordering constraints

based on spatially continuous optimization [8]. This frame-
work includes both the five-parts model and the tiered scene
model as special cases, and can deal with even more com-
plex ordering constraints. However, this algorithm does not
guarantee global optimality and does not run fast enough in
practice. The execution time reported in [8] is 90 seconds
for solving the five-parts labeling problem on a 640 × 480
image using CUDA parallel implementation; while our al-
gorithm takes only about 17 seconds with no parallel imple-
mentation.

2. The Model
Given an image I with a set P of N = n× n pixels and

a set L of labels, the pixel labeling problem seeks a labeling
f that assigns a label fp ∈ L to each pixel p ∈ P , such that
the energy function of the following form is minimized.

E(f) = λ
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq) (1)

In Eq. (1), N is a neighboring system defined on P .
In this paper, we demonstrate our approach using a 4-
connected neighborhood. But our approach can be easily
extended to 8-connected neighborhood. Dp(fp) is the data
term, which reversely measures the likelihood of assigning
label fp to the pixel p. Vpq(fp, fq) is the smoothness term,
which is the penalty we pay for assigning labels fp and fq
to neighboring pixels p and q, respectively.

Due to the intractability of the general labeling prob-
lem, most of previous work assumes Vpq is of a particular
form (e.g, convex or metric). Here in the five-parts label-
ing problem, we make no assumptions on either Dp or Vpq .
Instead we consider the problem of minimizing E(f) over
a restricted class of labelings. Specifically, Dp and Vpq can
be arbitrary.

The label set L includes five labels, ′L′, ′R′, ′C ′, ′T ′,
′B′, which represent “left”, “right”, “center”, “top” and
“bottom”, respectively. This model enforces the ordering
constraints by letting Vpq(fp, fq) = ∞ if fp and fq are
not allowed. Because we’re minimizing the energy, such
labeling will not be feasible in a minimized energy. For
example, we set V(x,y)(x,y+1)(

′B′,′ C ′) = ∞ to prevent
a pixel (x, y) labeled as “bottom” from appearing above
a pixel (x, y + 1) labeled as “center”. If fp = fq , then
Vpq(fp, fq) = 0. Finally, if fp and fq satisfy the ordering
constraints, Vpq(fp, fq) = wpq > 0.

The complete set of ordering constraints is described in
Table.1 and 2. An example labeling satisfying the 5 label
ordering constraint model is presented in Fig. 1(a).

3. The Method
This section presents our O(N1.5) time algorithm for

solving the five-parts labeling problem by dynamic pro-

Vertical Neighbors
p = (x, y), q = (x, y + 1)

fp\fq L R C T B
L 0 ∞ ∞ ∞ wpq

R ∞ 0 ∞ ∞ wpq

C ∞ ∞ 0 ∞ wpq

T wpq wpq wpq 0 ∞
B ∞ ∞ ∞ ∞ 0

Table 1. Ordering constraints penalty table for vertical neighbors
p(x, y) and q(x, y + 1) with p being on top of q.

Horizontal Neighbors
p = (x, y), q = (x+ 1, y)

fp\fq L R C T B
L 0 ∞ wpq wpq wpq

R ∞ 0 ∞ ∞ ∞
C ∞ wpq 0 ∞ ∞
T ∞ wpq ∞ 0 ∞
B ∞ wpq ∞ ∞ 0

Table 2. Ordering constraints penalty table for horizontal neigh-
bors p(x, y) and q(x+ 1, y) with q being to the right of p.

gramming.
A key observation for our algorithm is as follows. For

a fixed center rectangle M , one can extend the four sides
of M to divide the image I into nine regions, denoted
by NW,N,NE,W,M,E, SW,S, SE, as shown in Fig-
ure 1(a). Due to the ordering constraints, the label for each
of the regions N, W, M, E, and S is determined, and each
of the four corner regions NW, NE, SW, and SE is labeled
with at most two different labels, more precisely, regions
NW, NE, SW, and SE are labeled with ‘L’ and ‘T’, ‘T’ and
‘R’, ‘L’ and ‘B’, and ‘B’ and ‘R’, respectively. Clearly, the
energy on each of the regions N, W, M, E, and S is well
defined if the center rectangle M is fixed. Thus, the prob-
lem is reduced to computing an optimal two-labeling for
each of those corner regions. We further observe that, in
each of those corner regions, the boundary between the two
labeled parts forms a monotone path with respect to both
horizontal and vertical directions (Fig. 1(a)). Our main idea
is to optimally solve the two-labeling problem for each cor-
ner region by computing a shortest monotone path, which
takes O(N) time. Note that there are O(N2) possible cen-
ter rectangles in total. It thus takes O(N3) time for solving
the five-parts labeling problem. Interestingly, we are able to
batch the computation of all O(N) shortest paths in O(N)
time. Hence, the running time of our algorithm can be re-
duced toO(N2). Furthermore, by judiciously exploring the
intrinsic structure of the problem, we can further improve
the running time to O(N1.5).

Sections 3.1 and 3.2 show that after O(N) time prepro-
cessing, the minimum energy of the five-parts labeling can
be computed in O(1) time for each possible center rectan-

gle, and the speedup of the algorithm is presented in Sec-
tion 3.3.

3.1. Computing energy for non-corner regions

Given a center rectangle M specified by its two diagonal
corner points, (x1, y1) and (x2, y2) with x1 ≤ x2, y1 ≤ y2,
we show that the energy for each of the regions N, W, M,
E and S, can be computed in O(1) time after O(N) time of
preprocessing.

The idea is to first pre-compute the integral data cost
image [9] Cldata(x, y) of each label l ∈ L for the
data term of the energy function, with Cldata(x, y) =∑

1≤i≤x,1≤j≤yDp(i,j)(fp = l). Note that Cldata(·, ·)
can be computed in O(N) time. Then we com-
pute the integral row-smoothness cost C(T,C)

row sm(x, y) =∑
1≤i≤x Vp(i,y),q(i,y−1)(fp = C, fq = T) for the la-

bel transition from ‘T’ on Row y − 1 to ‘C’ on Row
y. Similarly, we can compute C(C,B)

row sm(x, y) for the
label transition from ‘C’ to ‘B’. In addition, we de-
fine the integral column-smoothness cost C(L,C)

col sm(x, y) =∑
1≤j≤y Vp(x−1,j),q(x,j)(fp = L, fq = C) for the label

transition from ‘L’ on Column x − 1 to ‘C’ on Column
x. Similarly, C(C,R)

col sm(x, y) can be computed. Note that all
these tables can be computed in O(N) time. Now we can
compute the energy for each of the regions N, W, M, E and
S in O(1) time, as follows.

EN = CTdata(x2, y1 − 1)− CTdata(x1 − 1, y1 − 1); (2)
EW = CLdata(x1 − 1, y2)− CLdata(x1 − 1, y1 − 1); (3)
EE = CRdata(n, y2)− CRdata(x2, y2)

−CRdata(n, y1 − 1) + CRdata(x2, y1 − 1); (4)
ES = CBdata(x2, n)− CBdata(x1 − 1, n)

−CBdata(x2, y2) + CBdata(x1 − 1, y2); (5)
EM = CCdata(x2, y2)− CCdata(x1 − 1, y2)

−CCdata(x2, y1 − 1) + CCdata(x1 − 1, y1 − 1)

+C(T,C)
row sm(x2, y1)− C(T,C)

row sm(x1 − 1, y1)

+C(C,B)
row sm(x2, y2)− C(C,B)

row sm(x1 − 1, y2)

+C(L,C)
col sm(x1, y2)− C(L,C)

col sm(x1, y1 − 1)

+C(C,R)
col sm(x2, y2)− C(C,R)

col sm(x2, y1 − 1) (6)

3.2. Computing min energy for corner regions

For each of the corner regions NW, NE, SW and SE
(Fig. 1(a)), we essentially need to solve an optimal 2-
labeling problem given a fixed center rectangle M. The idea
is to compute a shortest monotone path which completely
separates the two parts with different labels. Now we il-
lustrate on the corner region NW that after O(N) prepro-
cessing, given a fixed center rectangle M, each of those 2-
labeling problem can be solved in O(1) time.

t

s

L
T

s

t
(a) (b)

Figure 2. (a) Graph construction for solving the 2-labeling prob-
lem on Region NW. The horizontal edge (green) incorporates the
data term of part of the current column (green block). The ver-
tical edge (red) incorporates the data term of part of the current
row (red block). (b) Distribution of the smoothness penalties to
the edges. The dotted double-arrows represent the smoothness
penalties between two pixels with different labels. The dotted
single-arrows shows how the smoothness penalties are assigned to
the edges. The smoothness penalties indicated by the red (green)
double-arrows are distributed to the red (green) edges.

Assume the lower-right corner of the NW region is
(x0, y0). We construct the following directed acyclic graph
(DAG) G(x0,y0) to compute a shortest path minimizing the
energy function ENW (x0, y0). The node set consists of two
dummy nodes, a source s and a sink t, and N pixel nodes
v(x,y) with each corresponding to exactly one pixel I(x, y)
in the image I.

Now we define directed edges in G(x0,y0). Note that the
boundary between the L-part (whose pixels are labeled as
“left”) and the T-part (whose pixels are labeled as “top”) of
the NW region is monotone to both horizontal and vertical
directions. Thus, for every node v(x,y) with 1 ≤ x ≤ x0

and 1 ≤ y < y0, one vertical edge to v(x,y+1) is introduced.
For every node v(x,y) with 1 ≤ x < x0 and 1 < y ≤ y0,
one horizontal edge to v(x+1,y) is introduced. We define
the boundary path in G(x0,y0) as a path whose nodes cor-
responding to the upper envelop of an L-part of the NW
region. We further notice that a boundary path could start
from any node in the first row or first column, and may end
at any node in the last row. Hence, we add one directed edge
from s to every node in the first row and the first column,
and a directed edge from each node in the last row to the
sink t (Fig. 2(a)).

We assign edge costs to encode the energy func-
tion in G(x0,y0). For notation convenience, denote by
rPreSum(L;x, y) =

∑
1≤i≤xDp(i,y)(fp = L) the to-

tal sum of the data cost of the first x pixels of Row y,
which are labeled as “left”; and by cPreSum(T ;x, y) =∑

1≤j≤yDp(x,j)(fp = T) the total sum of the data cost of

the first y pixels of Column x, which are labeled as “top”.
For any two vertically neighboring pixels p(x, y) and

r(x, y + 1), (1 ≤ x ≤ n, 1 ≤ y < n), there is a
downward edge from p to r. If both vp and vr are on the
boundary path (i.e. p and r are labeled as “left”), then pixel
q(x+1, y) is labeled as “top”. Hence, a smoothness penalty
Vpq(fp = L, fq = T) needs to be enforced. In addition, all
pixels from the leftmost pixel of Row y+1 to pixel r are la-
beled as “left”. We thus assign a cost ce(vp, vr) to the edge
e(vp, vr), with

ce(vp, vr) = Vpq(fp = L, fq = T)+rPreSum(L;x, y+1)
(7)

Specifically, the edge from s to each node in the first row
vr(x, 1) can be treated as a special case of vertical edges,
with cost:

ce(s, vr(x,1)) = rPreSum(L;x, 1) (8)

For any two horizontal neighbor pixels p(x, y) and r(x+
1, y), there is a rightward edge from p to r. If both vp and vr
are on the boundary path (i.e. p and r are labeled as “left”),
then pixel q(x + 1, y − 1) is labeled as “top”. Hence, a
smoothness penalty Vrq(fr = L, fq = T) needs to be en-
forced. In addition, all pixels in Column y starting from the
topmost pixel to pixel q are labeled as “top”, and pixel r is
labeled as “left”. Thus the cost of edge e(vp, vr) is

ce(vp, vr) =Vqr(fq = T, fr = L) +Dr(fr = L)

+ cPreSum(T ;x+ 1, y − 1) (9)

Specifically, the edge from s to each node in the first column
vr(1,y) can be treated as a special case of horizontal edges,
with cost:

ce(s, vr(1,y)) =Vq(1,y−1),r(fq = T, fr = L) +Dr(fr = L)

+ cPreSum(T ; 1, y − 1) (10)

Finally, we need to set the costs for the edges connected
to the sink t. For a pixel p(x, y0) in the last row of the NW
region, if vp is the last node on a boundary path, then p
is labeled as “left”, and each pixel q(i, y0) right after p in
the same row (i.e. x < i ≤ x0) is labeled as “top”. How-
ever, the pixel r(i, y0 + 1) immediately below q(i, y0) is
labeled as “left”, as r is in Region W. Thus, we assign a
cost ce(vp, t) to the edge e(vp, t) to enforce the smoothness
penalty for those label changes. In addition, the data cost
for those columns after Column x also need to be enforced.
Hence, we have

ce(vp, t) = Vp,q(x+1,y0)(fp = L, fq = T)

+
∑

x<i≤x0

Vq(i,y0),r(i,y0+1)(fq = T, fr = L)

+CTdata(x0, y0)− CTdata(x, y0). (11)

This completes the construction of G(x0,y0) for comput-
ing ENW (x0, y0). A shortest s-to-t path can be computed in
O(N) time using topological ordering of this DAG, which
specifies an optimal 2-labeling for the region NW. However,
this is far from good enough to achieve our goal to compute
ENW (x0, y0) in O(1) time after an O(N) preprocessing.

Observe that for x0 ≤ x′0 and y0 ≤ y′0, the induced
graph of G(x0,y0) after removing its sink is a subgraph of
the induced graph ofG(x′

0,y
′
0) after removing the sink. Thus

we can compute all ENW (x0, y0) for 1 ≤ x0 ≤ n and
1 ≤ y0 ≤ n, as follows. First, construct the graph G(n,n),
and compute a shortest path tree from the source s inO(N)
time. Then, for each node v(x0,y0), we introduce the sink
t(x0, y0) and its incident edges, as we do for the construc-
tion of G(x0,y0). Thus, it take additional O(N0.5) time
to find a shortest path from s to t(x0, y0) from the com-
puted shortest path tree, rather than from scratch. In this
way, it takes O(N1.5) time to compute all ENW (x0, y0) for
1 ≤ x0 ≤ n and 1 ≤ y0 ≤ n.

Interestingly, we can further improve our algorithm.
Consider all ENW (x, y0) (for 1 ≤ x ≤ n) in the same Row
y0. Define the ending point of ENW (x, y0) as the last node
that is on the shortest path from s to the sink t(x, y0). We
have the following lemma.

Lemma 1. If the ending point of ENW (x, y0) is v(x′,y0)

(x′ ≤ x), then the ending point of ENW (x + 1, y0) is ei-
ther v(x′,y0) or v(x+1,y0).

The proof of the lemma is in the Supplementary Mate-
rial. Based on Lemma 1, we can compute all ENW (x, y0),
(1 ≤ x ≤ n) for Row y0 in O(N0.5) time from the
computed shortest path tree. Hence, all ENW (x, y) for
1 ≤ x ≤ n and 1 ≤ y ≤ n can be computed in O(N)time.
Similarly, one can compute the table ENE(·, ·), ESW (·, ·)
and ESE(·, ·) in O(N) time.

At this point, given a center rectangle M specified by its
two diagonal corner points, (x1, y1) and (x2, y2), we can
compute an optimal five-parts labeling with minimized en-
ergy Ef (x1, y1;x2, y2) in O(1) after an O(N) preprocess-
ing. That is,

Ef (x1, y1;x2, y2) =
∑

g∈{N,W,M,E,S}

Eg

+ENW (x1 − 1, y1 − 1) + ENE(x2 + 1, y1 − 1)

+ESW (x1 − 1, y2 + 1) + ESE(x2 + 1, y2 + 1) (12)

Since there areO(N2) possible center rectangles, we are
able to optimally solve the five-parts labeling problem in
O(N2) time. During the preprocessing, we only need to
compute O(1) tables each with a size of O(N). Thus, the
space complexity is O(N).

3.3. Speedup from O(N2) to O(N1.5)

The key idea of the speedup is: given two rows y1 and y2,
y1 ≤ y2 , we return the best possible solution with its upper
leftmost corner resides in Row y1 and its lower rightmost
corner resides in Row y2, inO(N0.5) time. In another word,
find minx1,x2

Ef (x1, y1, x2, y2) in O(N0.5) time.
Applying Eqn. (12) results in Ef (x1 + 1, y1, x2, y2) −

Ef (x1, y1, x2, y2) = H(x1, y1; y2). Note H(x1, y1; y2)
is independent of x2. This property of H(·, ·; ·) is
crucial to the speedup (proof can be found in sup-
plementary materials). According to definition of
H(·, ·; ·), we have Ef (x1, y1, x2, y2) = Ef (1, y1, x2, y2) +∑x1−1

i=1 H(i, y1; y2). As a result,

argx2
min
x2≥x1

Ef (x1, y1, x2, y2) = argx2
min
x2≥x1

Ef (1, y1, x2, y2)

(13)

for fixed y1, y2. In another word, we only need to com-
pute min Ef (1, y1, ·, y2) for x1 = 1, and it could be used to
compute minx2≥x1

Ef (x1, y1, ·, y2) for x1 6= 1. Define the
following running min and running sum:

rMin(y1,y2)(x) = min
i≥x
Ef (1, y1, i, y2) (14)

hMin(y1,y2)(x) =

x−1∑
i=1

H(i, y1; y2) (15)

For fixed y1 and y2, rMin(y1,y2)(·) and hMin(y1,y2)(·) can
be computed within O(N0.5) time. Let x∗2 be the optimal
x2 that achieves optimal energy Ef (x1, y1, x

∗
2, y2) for fixed

x1, y1, y2, then

Ef (x1, y1, x
∗
2, y2) = rMin(y1,y2)(x1) + hMin(y1,y2)(x1)

(16)

Note for fixed x1, y1, y2 this only takes constant time, given
that rMin(y1,y2)(·) and hMin(y1,y2)(·) have been com-
puted.

This accomplish our goal of finding optimal solution for
fixed Row y1 and y2 in O(N0.5) time. Directly repeating
this process for all 1 ≤ y1 ≤ y2 ≤ n results in a O(N1.5)
algorithm. Note rMin(y1,y2) and hMin(y1,y2) does not
need to be remembered for different y1, y2, so memory con-
sumption for them is just O(N0.5).

Theorem 1. Given an image of N = n× n pixels, the five-
parts labeling problem can be solved in O(N1.5) time and
O(N) space.

4. Experiment–Geometric Class Labeling
We used 300 indoor images and 42 outdoor images,

which are the same as the test images used in [6]. All in-
door images are 640*480. But outdoor images have various
sizes.

Figure 3. Some labeling results. Top row: original images; second row: SVM classifier results using data term only; last row: our results

Table 3. Average accuracy rate (%)
Image sets OPM Our alg.

Indoor images 84.9 ± 14.9 85.1 ± 14.5
Outdoor images 85.7 ± 7.0 85.7 ± 6.9
OPM: the order-preserving moves method.

4.1. Cost images

We used the same data term costs as in [6]. First, the
images are partitioned into “superpixels”, which are ho-
mogeneous regions within each region and heterogeneous
between different regions, using the algorithm by Felzen-
szwalb et al. [2]. Similar to Hoeim et al.’s method [4], an
SVM classifier is then trained with a wide variety of se-
lected features, such like location, color, texture, geometry,
and edges. Finally, a probability for each “superpixel” to be
assigned a label l ∈ L = {L,R, T,B,C} is computed. All
pixels within this “superpixel” are assigned a cost accord-
ing to the probability of the “superpixel” it belongs to. This
completes the data term generation.

The smoothness term is generated simply using Sobel
operator along the horizontal and vertical directions.

4.2. Results

Example results are shown in Fig. 3.
Define the accuracy rate as the ratio of the number of

correctly labeled pixels over the total number of pixels. The
performance on the accuracy of our algorithm and the order-
preserving moves method is shown in Table.3.

Our algorithm does not show significant improvement in
the accuracy rate. The difference of minimized energy is
0.10% for indoor images and 0.16% for outdoor images on
average for both methods, although our method always ob-
tained an energy no worse than the order-preserving moves
method. The marginal difference indicates that the order-
preserving moves works pretty well in practice.

Although for most of the test cases, there are little dif-

Figure 4. Example images on which our algorithm output quite
different labeling results from the order-preserving moves. First
row: original image; second row: SVM classifier results, i.e. re-
sults using only data term; third row: results by OPM; fourth row:
results by our algorithm.

ference between the order-preserving moves and our algo-
rithm, we do observe significant difference on some cases,
as shown in Fig.4. Our algorithm captures the door in the
image in the first column (last row), and the rectangular
space between the door and the box in the second column.
The cost image for the image in the third column is poor,
from which it is very difficult to distinguish the “left” region
from the “center” region. However, our algorithm still can
produce a reasonable labeling, while the order-preserving
moves is trapped into a local minima with a long execution
time of 244.18 seconds.

Table 4. Average execution time (s)
Image sets OPM Our alg.

Indoor images 26.6±22.6 17.1±0.1
27 outdoor images with

size of 640× 480 20.6±12.5 16.4± 0.3
Overall outdoor images∗ 20.2 14.1
∗: The overall outdoor image datasets include varying

image sizes. Thus, no standard deviations are reported.

Table 5. Average execution time comparison (s)
Methods No noise σ = 0.17 σ = 0.29 σ = 0.58

OPM 20.2 43.8 40.4 81.4
Our alg. 14.1 14.7 14.5 15.0

Table 6. Max execution time comparison (s)
Methods No noise σ = 0.17 σ = 0.29 σ = 0.58

OPM 136.4 396.4 267.7 1408.8
Our alg. 33.8 35.2 35.2 41.1

Table.4 shows the average execution time of the order-
preserving moves and our algorithm. Our algorithm out-
performs the order-preserving moves significantly while
guaranteeing the global optimality. Note that our execu-
tion time is much better than that (90s) reported in [8] by
Strekalovskiy and Cremers despite their use of CUDA for
parallel implementation.

The execution time reported in [3], for tiered scene la-
beling, is 9.4 seconds on images approximately 300× 250;
while the execution time of our algorithm is 2.2 seconds on
320×240 images. Note theO(N1.5) memory consumption
of [3] might make it problematic to process large images,
which is overcome by our algorithm. In addition, our algo-
rithm can be easily parallelized for GPU, which may bring
more significant speedups. This will be discussed in Sec. 5

Moreover, the running time of our method only depends
on the image size. The standard deviation of the execution
times over hundreds of test images with the same size is
almost 0 for our method, while it is comparable to the mean
execution time for the order-preserving moves method, as
in Table. 4. By intentionally adding Gaussian noise to cost
images, we observe little effect on the execution time of
our algorithm, while a big deterioration is observed for the
order-preserving moves method, as shown in Table 5 and
Table 6. The mean value of the Gaussian noise is 0 and σ is
normalized with respect to the maximum intensity value of
the cost image.

5. Discussion
5.1. Global optimality

Global optimization is important for the labeling prob-
lems. Although the order-preserving moves method works
well for test image datasets we used, it may get trapped in

(a) Data terms C (b) Data terms L (c) Data terms R (d) Data terms T

(e) Data terms B (f) Local minima (g) Optimum

Figure 5. Illustrating the lack of global optimality for the order-
preserving moves method. All smoothness penalties are 0 in this
example. The energy of the global optimum is 0. While the energy
of the local minima is a multiple of K. Note K can be arbitrarily
large, which will make the local minima arbitrarily far away from
the optimum.

a local minima very far away from the global optimal solu-
tion, and fail to find an acceptable solution.

Consider the given costs for each label shown in Fig. 5,
and all smoothness penalties are set to be 0. Start from an
initial labeling with all pixels labeled as ‘C’ [7]. A hori-
zontal move results in a labeling of an energy of∞ , since
a vertical strip across the whole image must be labeled as
‘C’ in this horizontal move. Hence, only a vertical move is
possible to return a finite energy by labeling the horizontal
strip in which all pixels have a cost of K for label ‘C’. Un-
fortunately, the order-preserving moves method gets stuck
here. Any further order-preserving move will results in∞
energy.

However, the energy of the global optimal solution is 0.
Note the value of K could be arbitrarily large, which indi-
cates that even this strong order-preserving moves method
gets trapped in a local minima arbitrarily far from the opti-
mal solution.

5.2. Parallelization of the algorithm

The most time-consuming part of this algorithm is the
optimal center rectangle searching process. In a typical run-
ning on a 640× 480 image, this process takes about 16 sec-
onds, while the average total execution time for such an im-
ages is just about 17 seconds.

However, this process is highly parallelizable. We can
view each row pair of y1 and y2 as a unit for parallelization.
As indicated in Sec. 5.1, the computations between differ-
ent y1, y2 row pairs are totally independent of each other.
This makes our algorithm straightforward to parallelize on
multi-core CPUs and high-end GPUs. There are O(N) dif-
ferent y1, y2 pairs in total. This number of threads should
be able to saturate the current high-end CPUs, which only

have hundreds of cores.

5.3. Extension to 8-connectivity

Our method can be easily extended to the 8-
neighborhood setting. Note that the algorithm in [3] is at
least nontrivial to do the extension.

It introduces additional smoothness terms using the 8-
connectivity. The smoothness penalty between the center
region and the other four non-corner regions is easy to han-
dle. We next show how to handle the smoothness penalty
for the corner regions.

We again illustrate our idea on the NW region. In Fig. 6,
the red and green dotted double-arrows show the smooth-
ness penalties on the diagonally neighboring pixels we need
to enforce into our shortest path model. We basically want
to distribute those penalties to the edges on the bound-
ary path. Note that the smoothness penalties indicated
by the green double-arrows correspond one-by-one to the
edges on the boundary path as follows. For the downward
edge from v(x,y) to v(x,y+1), we add an additional cost of
Vp(x,y+1),q(x+1,y)(fp = L, fq = T) to the edge. While
for the rightward edge from v(x,y) to v(x+1,y), an additional
cost of Vp(x+1,y),q(x+2,y−1)(fp = L, fq = T) is added to
the edge.

Similarly, smoothness penalties indicated by the
red double-arrows can be accounted by adding fol-
lowing costs: for the downward edge from v(x,y) to
v(x,y+1), add Vp(x,y),q(x+1,y+1)(fp = L, fq = T),
and for the rightward edge from v(x,y) to v(x+1,y),
add Vp(x+1,y),q(x,y−1)(fp = L, fq = T). The only
problem is that the sum of the two brown edges
incident at (x̄, ȳ) in Fig. 6 overestimates by an
amount of Vp(x̄,ȳ−1),q(x̄+1,ȳ)(fp = L, fq = T) +
Vp(x̄+1,ȳ),q(x̄,ȳ−1)(fp = L, fq = T). To solve this problem,
we introduce a diagonal edge e(v(x̄,ȳ−1), v(x̄+1,ȳ)), whose
cost equals ce(v(x̄,ȳ−1), v(x̄,ȳ)) + ce(v(x̄,ȳ), v(x̄+1,ȳ)) −
Vp(x̄,ȳ−1),q(x̄+1,ȳ)(fp = L, fq = T) −
Vp(x̄+1,ȳ),q(x̄,ȳ−1)(fp = L, fq = T). If we assume
all smoothness penalties are nonnegative, then this edge
is always preferable than the “detour” of the two brown
edges.

6. Conclusion
In this paper, we present an algorithm optimally solving

the five-parts labeling problem, which, to the best of our
knowledge, is the first algorithm that guarantees globally
optimal solution to that labeling problem with linear space
complexity. The theoretical running time is O(N1.5), with
N being the number of pixels in the image. In practice, it
runs much faster than the method reported in [7]. Moreover,
it can easily be parallelized for GPU, and it is extensible to
the 8-neighborhood setting without affecting the theoretical
running time.

(,)x y

Figure 6. The green and red double-arrows indicate the additional
smoothness penalties we need to enforce when extended to the 8-
connectivity.

Acknowledgments
This work was supported in part by NSF grants CCF-

0830402 and CCF-0844765; and the NIH grant K25-
CA123112, as well as NSERC and ERA grants.

References
[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. IEEE Transactions on pat-
tern analysis and machine intelligence, pages 1222–1239,
2001. 1

[2] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based
image segmentation. International Journal of Computer Vi-
sion, 59(2):167181, 2004. 6

[3] P. Felzenszwalb and O. Veksler. Tiered scene labeling
with dynamic programming. In Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on, pages
3097–3104. IEEE. 1, 2, 7, 8

[4] D. Hoiem, A. Efros, and M. Hebert. Geometric context from
a single image. In Computer Vision, 2005. ICCV 2005. Tenth
IEEE International Conference on, volume 1, page 654661,
2005. 2, 6

[5] H. Ishikawa. Exact optimization for markov random fields
with convex priors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 1333–1336, 2003. 1

[6] X. Liu, O. Veksler, and J. Samarabandu. Graph cut with or-
dering constraints on labels and its applications. In IEEE
Conference on Computer Vision and Pattern Recognition,
2008. CVPR 2008, pages 1–8. IEEE, June 2008. 1, 5, 6

[7] X. Liu, O. Veksler, and J. Samarabandu. Order-Preserving
moves for Graph-Cut-Based optimization. IEEE transac-
tions on pattern analysis and machine intelligence, page
11821196, 2010. 1, 2, 7, 8

[8] E. Strekalovskiy and D. Cremers. Generalized ordering con-
straints for multilabel optimization. In IEEE International
Conference on Computer Vision (ICCV). 2011. 1, 2, 7

[9] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pat-
tern Recognition, 2001. CVPR 2001., volume 1, pages I–511.
IEEE, 2001. 3

[10] X. Wu and D. Chen. Optimal net surface problems with ap-
plications. Automata, Languages and Programming, pages
775–775, 2002. 1

