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Abstract

We presenta methodfor extracting densefeaturesfrom
stereoandmotionsequences.Our densefeature is defined
symmetricallywith respectto both images, and it is ex-
tractedduring the correspondenceprocess,not in a sepa-
ratepreprocessingstep.For densefeatureextractionweuse
the graph cutsalgorithm, recentlyshownto be a powerful
optimizationtool for vision. Our algorithmproducessemi-
denseanswer, with veryaccurateresultsin areaswherefea-
turesare detected,and no matchesin featurelessregions.
Unlike sparsefeature basedalgorithms,weare able to ex-
tractaccuratecorrespondencesin someuntexturedregions,
providedthat there are texture cueson the boundary. Our
algorithmis robustanddoesnot require parametertuning.

1 Intr oduction

Visual correspondenceis a key taskin many vision ap-
plications. Two imagesof the samescenearegiven, and
thetaskis to find pixels in differentimageswhich arepro-
jectionsof thesameworld point. We developanalgorithm
for stereoandmotioncorrespondence.In stereo,imagesare
takensimultaneouslyfrom differentview points,andcorre-
spondencegivesdepthcues.In motion,imagesaretakenat
differenttimes,andcorrespondencegivesmotioncues.

Therehasbeena wealthof approachesto visual corre-
spondence.Mostgivedenseestimates,thatis they establish
correspondencefor all or almostall pixels. Theseinclude
methodsbasedonopticalflow [6], correlation[4], dynamic
programming[8], graph-cuts[2], etc. While many of these
algorithmsperformwell undergoodconditions,suchaslow
noiseandreasonablytextureddata,they fail underunfavor-
ableconditions.Indeed,in many realisticscenesit maybe
impossibleto find reliablecorrespondencesin someregions
no matterwhich algorithm is used. A robust vision sys-
temneedsto disregardany correspondencesin suchregions.
Many densemethodshowever do not provide a confidence
measurein their correspondencesat all. If they do provide

a confidencemeasureit usuallysomethingsimplewhich in
essencemarkscorrespondencesneartexture asmore reli-
able. Dependingon scenetexture,sucha confidencemea-
suremaydismissmostof thecorrespondences.

Therearealsomethodswhich establishcorrespondence
only for partsof the scene,in order to gain a more reli-
ableperformance.For examplemostfeaturebasedmethods
matchsparseimagefeatures,like edgepixels [5] or edge
segments[7]. Thesemethodsaremorerobust,but canpro-
ducequitesparseresults.

Similar to the methodsin the previous paragraph,we
wantto developahighly accurate,but notnecessarilydense
algorithm.Wewantcorrespondencesonly in regionswhere
reliablecorrespondencescanbefound.To achievethisgoal,
welook for densefeatureswhichareeasyto matchreliably.
Comparedto sparsefeaturealgorithms,we producedenser
resultsandin additionfind correspondencesin someuntex-
turedregions,if thereis reliabletextureon their boundary.

Our algorithmis basedon the ideain [11]. In [11] they
introduceda notion of densefeaturesfor stereo.They de-
fine a densefeatureasa connectedsetof pixels in the left
imageandthecorrespondingsetof pixelsin theright image
suchthat intensityedgeson theboundaryof thesesetsare
strongerthan the matchingerror on the boundary(which
is the absoluteintensitydifferencebetweencorresponding
boundarypixels). They call this “the boundarycondition”.
Theideais thatevenfor untexturedregion,its boundarycan
give a cuefor correspondence.The boundarycueis good
enoughif the intensitychangeon theboundaryis stronger
thannoise,andnoiseis reflectedby thematchingerror. In
addition,the insidesof the left andright pixel setsshould
match,as checked throughthresholds.Note that a dense
featureis associatedwith a disparityequalto thedisplace-
mentbetweentheleft andright pixel sets.

Themainlimitation of [11] is thewaythey extractdense
features.They areextractedusinga local algorithmwhich
processeseachscanlineindependentlyfrom the other. As
a result,in [11] areableto enforcetheboundarycondition
only on the left andright boundary, but not on the top and
bottom,which reducesreliability. We borrow the ideaof
densefeaturesand the boundarycondition from [11], but



our overall densefeaturedefinition is different. Our main
advantageover [11] is that we use graph cuts for dense
featureextraction,which is aglobaloptimizationalgorithm
shown to bea powerful tool for vision [2]. As a resultwe
are able to enforcethe boundarycondition for the whole
boundaryof a densefeature,which significantly improves
accuracy comparedto [11]. Also usingoptimizationframe-
work weavoid hardthresholdsthatarenecessaryin [11]. In
additionweextendouralgorithmto handlemotiondata.

Ourdensefeatureshaveall of thedesirablepropertiesof
thedensefeaturesin [11]. Thatis they areextractedduring
the correspondenceprocess,not a separatepreprocessing
step,andthey aresymmetricwith respectto both images.
Unlike sparsefeatures,our densefeaturesarevery descrip-
tive, so that after all densefeaturesarecomputed,thereis
little disambiguationto bedone. That is if a pixel belongs
to morethanonedensefeature,it is likely thateitheroneof
thesedensefeaturesis dueto noiseandis verysmallin size,
or thatthepixel is in a repeatedtextureregion.

2 Optimization with Graph Cuts

Let
�

bea setof pixelsandsupposewe want to assign
a binary label to eachpixel ��� �

. Let ��� denotethe label
assignedto pixel � , andlet ���
	����� ��� ���

. In this paper
weneedto optimizethefollowing binaryfunction.��� ����� �

� � � ������� � ��� ��� �"!
# � �$�%�'& � ���)(�*���+� (1)

Here
� � � ����� is a functionwhich dependson theindividual

labelassignedto pixel � . It is usedto encodea labelprefer-
encefor pixel � . , is aneighborhoodsystemdefinedon

�
,

consistingof pairsof pixels. In thispaper, is thestandard
4-neighborhoodsystem,that is eachpixel hasits top, left,
bottomandright pixelsasneighbors.Function& �%- � is 1 if
its argumentis true,and0 otherwise.Summationis overall
orderedneighborpairs

� �/.�0+� , andfinally # � �$�%� is aconstant
dependingon theorderedpair

� �/0+� .
This type of energy is commonlyusedin vision, andit

is a balanceof two terms. Thefirst sumencourageslabel-
ings whereeachpixel is assignedthe label it likesaccord-
ing to

� � , thusencouraginglabelingsconsistentwith the
observeddata.Thesecondsumencourageslabelingswhere
mostnearbypixels have the samelabel, thusencouraging
spatialconsistency frequentlyexhibitedby visualdata.

Equation(1) canbeoptimizedexactly with a minimum
graphcut [2]. We use the new fast max-flow algorithm
in [1]. Therunningtime is nearlylinearin practice.

3 DenseFeatureMoti vation

In this sectionwe motivate our densefeatures. Our
densefeatureis associatedwith acertaindisplacementvec-

tor which is onedimensionalfor stereo(it is usuallycalled
disparity)andtwo dimensionalfor motion. That is a dense
featureis a connectedsetof pixels which arelikely to un-
dergo thesamedisplacementbetweenthetwo images.Our
goal is to find the propertiesof a connectedset of pixels
which make it a goodcandidatefor a densefeature,that is
propertiesthatallow reliablematchingof this pixel set.

Here is the overall idea. Densefeaturesexist at some
displacement,sofirst we fix a displacement.Texturegives
agoodcuefor correspondence.Usingtexturecuesfor each
pixel we decideif it is likely to undergo thefixeddisplace-
mentbetweenthe two images. If yes,thenthereis a pos-
itive cueat that pixel. We alsoevaluatewhethera pixel is
not likely to undergo thefixeddisplacement,in which case
thereis anegativecueatthatpixel. A concentrationof posi-
tivecuesindicatesapossibledensefeaturepresencein their
neighborhood.A concentrationof negative cuesindicates
thatthereshouldbenodensefeaturesin theirneighborhood.
Now we facea binary segmentationproblem,dividing all
pixels into two groups:thosewhich undergo thefixeddis-
placementandthosewhich do not. To find a suitableplace
for densefeatureboundaries,we usethe boundarycondi-
tion. Finally we convert the binary segmentationproblem
into the energy minimizationproblemin equation(1), and
wesegment(or label)all pixelsusingagraphcut.

Hereis roughly how we computepositive andnegative
cues. Let � be a pixel, �21 its left neighbor, 3 a fixed dis-
placement,and 4 � �5� , 6 � �5� the intensitiesof � in the left
andright images. Our basicmeasureof texture is simply�74 � �5�98:4 � � 1 �%� in the left imageand �76 � �5�98;6 � � 1 �%� in the
right image.In additionto texturecue,thereis alsoamatch-
ing error for � at the displacement3 . This matchingerror
is < � �/.=3>�?�@�A4 � �5�B8C6 � �D�E3>�%� . If the texture cuesof �
in the left imageandof ���:3 in theright imagearelarger
than < � �/.=3>� and < � �>1F.=3>� , then there is a positive cue (its
strengthis actuallyvariable,detailsin Section4.1). Thein-
tuition is that a texture cueis reliableonly if it is stronger
than the noisein the images,andnoiseis reflectedin the
matchingerror. For example,if 4 � �5���HG+G , 4 � �>1����JI�G ,6 � �?�:3>�K�LI+M , and 6 � �>1N�:3>�K�LI/O , thenthereis a pos-
itive cue, sincetexture cuesare 10 and 7 for the left and
right images,and < � �/.�3P�Q�RG and < � �>1F.=3>�Q�RS , which
aresmallerthanboth texture cues. If 6 � �)�T3>�U�VI+G and6 � �>1W�X3>�Y�EOZM , thenthereis nopositivecue.Definitionof
a negative cueis simpler. Roughlya negative cueis given
by any pixel whosematchingerroris too large.

We found that with our definition of positive andnega-
tive cuesthe algorithmworks quite well. It is possibleto
comeup with a totally differentdefinition of positive and
negative cues. They shouldwork well provided that it is
significantlymore likely for a pixel to give a positive cue
ratherthannegative cueat thepixel’s correctdisplacement.

Considera stereoscenewhoseleft imageis in Fig. 1(a).



Figure 1. (a) Left image; (b) positive and negative cues; (c) dense features

We fix a displacementat thedisparitysix, which is thedis-
parityof thetableleg,oneof thebottlesandpartof thetable.
ConsiderFig.1(b). Positivecuesarein white,negativecues
are in black, andgray pixels give neitherpositive no neg-
ative cues. In Fig. 1(c) arethe extracteddensefeaturesin
white. They correspond,pretty accuratelyto the tableleg,
oneof the bottlesandtableedge. The insideof the table
leg is almostcompletelytextureless,howeverweareableto
extractthewholeleg asadensefeature.

4 Extraction via Graph Cuts

In this sectionwe translatedensefeatureextractioninto
energy minimizationof theform in equation(1), whichcan
beminimizedexactlywith agraphcut [2].

Let a displacement3 befixed. We will divide all pixels
into two groups:thosewhich undergo displacement3 and
thosewhich do not. We approachthis asa labelingprob-
lem. Eachpixel � is assigneda binary label. If � haslabel
1, then� undergoesdisplacement3 , andif � haslabel0 then� doesnot undergo displacement3 . Now we needto define� � � ����� ’s and # � �$��� in equation(1).

� � � ����� ’s encodeposi-
tiveandnegativecues.Thesmaller

� � �\[ � is, themorelikely
is a label

[
for � . Thelikely placesfor densefeaturebound-

aryareencodedthrough# � �$�%� ’s. A smaller# � �$��� meansthat
adensefeatureboundaryis likely between� and 0 .

After
� � � � � � ’s and # � �$��� ’s are defined,one graphcut

labelsall pixels with 0’s and 1’s. The connectedsetsof
pixelslabeled1 areourdensefeatures.Noticethatwith one
graphcutweusuallyextractmultipledensefeatures.

4.1 Definition of
� � � ����� ’s

Recallthatweuse
� � � ����� to encodepixel � ’spreference

for labels0 and1. Label1 correspondsto a positive cueat
pixel � , andlabel0 correspondsto a negative cue. We first
describe

� � � ����� ’s for the stereocase. Let 4 � �5� , 6 � �5� be
asdefinedin Section3. Let us fix a displacement3 . First
let us considera positive cue,that is

� � �%] � . Sincewe are
minimizingtheenergy, thesmaller

� � � ] � is, themorelikely
label1 is for pixel � . Therearetwo componentsthatgo into

� � � ] � . First thereis a texturecueatpixel � , andsecondwe
makesurethatthematchingerroris not too largefor � .

Firstconsiderthetexturecue.For stereo,verticaltexture
is morereliablethanthehorizontalone,sincethedisplace-
mentis horizontal. Let �>1 be the left neighborof � . There
is a goodtexturecueif the intensitychangebetween� and�>1 is larger thantheir matchingerror. We first measurethe
intensitychangebetweenpixel � and �>1 in the left image:^ 1_�`�74 � �5�Y8a4 � �>1��%� . For symmetry, we alsomeasurein-
tensitychangebetweenthecorrespondingpixelsin theright
image:

^cb �a�A6 � �9�d3>�c8_6 � �21%�_3P�%� . Thesymmetricmeasure
of intensitychangeis

^ �Cegfih9	 ^ 1F. ^cb � . Thenwe compute
thematchingerrorfor � and�>1 : < � �5���a�A4 � �5�58Q6 � ���Q3>��� ,< � �>1\�D�j�A4 � �21\�k8V6 � �>1B�C3>�%� . Finally the texture cue isl m # <K� ] MU8on � ^ 8o< � �5� �58pn � ^ 8p< � �>1\� ��. where

n �rq �Y�
] M if

q�s M] MU8 qutv Sxw G if M�y q ypGM if
q�z G

That is
l m # <Ty{M if

^ s < � �5� or if
^ s < � �>1�� , then it

increasesquadraticallyandstopsincreasingat 10, when
^

is sufficiently largerthanboth < � �5� and < � �21\� .
Another componentfor a positive cue is the matching

error, which shouldnot be too large. We define| m # <}�~ � < � ���%�B� ~ � < � �>1�� � , where ~ �rq �g� ] M?8 qutv] I+M . Finally
wehave to convert from cuesto penalties,sincethesmaller� � � ] � is, themorelikely label1 is for pixel � :� � � ] �Y�Qeg�+�5	ZMx.%egfihN	 ] Mx. � ] Mk8 l m # <��P� �%] M�8�| m # <�� �+� w
Noticethat M�y � � �%] �Yy ] M2w

The definition of
� � � M/� is lessinvolved, sincewe just

look at the matchingerror. To make
� � � MW� slightly more

robust,in additionto lookingat thematchingerrorfor � , we
alsolook at thematchingerror for �>1 , sinceif a pixel does
notundergodisplacement3 , in mostcases,its left neighbor
alsodoesnot undergo displacement3 , andshouldhave a
largematchingerroraswell. Sowedefine� � � MW���Qeg�+�5	ZMx. ] MU8 egfih9	�< tP� ���\.�< tP� �21\� �� M

� w
With suchadesign,for

� � � M/� to below for pixel � , notonly< � �5� hasto be large,but also < � �>1�� hasto be large. Notice
that M�y � � � M/��y ] M , which is on thesamescaleas

� � � ] � .



Figure 2. (a) left image; (b) dense features at disparity 14; (c) dense features at disparity 5

Sofar we defined
� � � � � � ’s for thestereocase.Themo-

tion caseis very similar, except that we have to look not
only for vertical texturecues(for stereowe lookedfor tex-
turecuebetweenpixel � and�>1 ), but alsofor horizontaltex-
ture cue,sincein motion displacementis two dimensional
andvertical texturecuesalonearenot reliableenough.We
will notgointo detailsfor thelackof space,but for

� � � ] � to
besmallfor motion,in additionto makingsuretheintensity
differencebetween� and �>1 is larger thanthematchinger-
ror, wealsomakesurethattheintensitydifferencebetween� andits topneighboris largerthanthematchingerror.

4.2 Definition of # � �$��� ’s
We use# � �$��� ’s to enforcethesegmentationboundaryto

lie at pixels which satisfy the boundarycondition,andso# � �$��� ’s shouldbesmall for suchpixels. Theboundarycon-
dition statesthat if theintensitychangebetweentwo pixels
is larger thanthe matchingerror, thanthis is a goodplace
for theboundary, sincethetexturecuehereis strongerthan
thenoise.Dueto variousartifacts,thereis oftennocontigu-
oussetof pixelssatisfyingtheboundarycondition. Sowe
actuallyallow theboundaryto lie not necessarilyat pixels
satisfyingtheboundarycondition,but closeto suchpixels.

First for eachpixel � we computehow well the bound-
ary between� andits left neighbor�>1 satisfiesthe bound-
ary condition. Similar to computing

� � � ] � in section4.1,
first we computethe minimum intensity difference:

^ �egfih9	+�A4 � �5�58p4 � �>1��%�7."�76 � �g�o3P�58p6 � �>1u�Q3>�%� � . Then:

� 1 � �5�Y� � if
^ s < � �5�n � ^ 8p< � �5� � otherwise

Here < � ��� , n �rq � aredefinedasin section4.1. Thus
� 1 � �5�

hasa low valueif it is likely that a left densefeaturebor-
der goesbetween� and �>1 . Similarly we compute

� b � �5� ,���/� ��� , ����� �5� which have a low valueif it is likely that a
right, up,down densefeaturebordergoesbetween� andits
right, up,anddown neighbors,respectively.

Next we usethe generalizeddistancetransformon the
array

� 1 � �5� to computehow far eachpixel is from a suit-
ableplacefor a left boundary. Thatis we compute& 1 � �5�B�

|)�'� ���"� ��� 1 � 0+���
3=��� l � �/.=0+� � , where 3=�Z� l is the standard
Manhattandistance.In [3] they show how to computethe
generalizeddistancetransformin two passesoverall pixels.
Similarly wecompute& b

, & �
, & �

.
Finally, for eachorderedpair

� �/0+� , if 0 is to theleft of � ,

# � �$��� �
] � � 1 � �5� if

� 1 � �5��(� �] � � & 1 � �5� � t otherwise

Caseswhen 0 is to the right, up, down of � are handled
similarly with thecorrespondingarrays

� b
, & b

,
���

, & �
,
���

,& �
. Note that having orderedpairs

� �/0+� is importanthere,
sinceit is possiblethat the left boundarybetween� andits
left neighbor�>1 is likely andthus# � �$�"� � is low but theright
borderbetween� 1 and� is notlikely, andthus# � � � � � is high.

5 Final Step: Disambiguation

In thissectionwedescribethelaststepof ouralgorithm.
After densefeaturesfor all displacementsare computed,
eachpixel getsassigneda particulardisplacement.There
are threecases. If a pixel doesnot belongto any dense
feature,then it is left without correspondencein the final
answer. If a pixel belongsto only onedensefeature,then
it getsassignedthedisplacementof thatdensefeature.Fi-
nally if a pixel belongsto morethanonedensefeature,we
needto disambiguatebetweenthesedensefeatures.

Therearetwo mainreasonswhy a pixel canbe in more
thanonedensefeature.First therearesomesmallspurious
densefeatures,which arenot reliableandcanbe ignored.
Thuswewe ignoreall densefeaturessmallerthan10.

Secondreasonis repeatedtexture. Fig. 2(a) shows the
left image of a stereoscene,Figs. 2(b,c) show in white
densefeaturesat disparity14 and5, respectively. Consider
Fig. 2(b). The largestdensefeaturefound is the lamp,and
14 is its correctdisparity. Thenext in sizeis anerroneous
densefeatureto the left of the lamp. It is dueto repeated
textureof thebooks,andits correctdisparityis actually5.
ConsiderFig. 2(c) now. At thecorrectdisparity, thepixels
in erroneousdensefeaturebelongto a largerdensefeature.

In principle, we could detectand declareambiguous
largeoverlapsbetweendensefeatures.However we found



Figure 3. (a) Our algorithm; (b) windo w based algorithm; (c) graph-cuts algorithm

Tsukuba Sawtooth Venus Map
Algorithm error density time error density time error density time error density time
ouralgorithm 0.36 75 6 0.54 87 13 0.16 73 13 0.01 87 6
methodin [11] 0.38 66 1 1.62 76 6 1.83 68 5 0.22 87 2
methodin [9] 1.4 45 - 1.6 52 - 0.8 40 - 0.3 74 -

Figure 4. Results on Middleb ury stereo database

thattheapproachin [11] workswell. If apixel � belongsto
morethanonedensefeature,then � getsthe displacement
of the“densest”feature.Thatis � choosesthefeaturewhich
hasmorepixelsin theimmediatesurroundingof � . Hereis
how they measurethe densityof a featurearound� . Let�)����� 3�.��5� be the Manhattandistancefrom � in the north-
westdirectionto thenearestpixel 0 s.t. 0 is not in any dense
feature.

�)�+�
canbecomputedin onepassover the image

for all pixels.Similarly define
�)��� . �)�%�

, and
�)���

to bethe
Manhattandistancefromp to thenearest0 s.t. 0 isnotin any
densefeature.Let � �

bethedensefeatureat displacement3 containing� . Thenthedensityof � �
with respectto � is:3�<%�B� � l\� � �/.�� � �K� �)��� � �)��� � �)�%� � �)��� w In words,

this densitymeasureis thedimensionsof thelargestpiece-
wise rectangularregion around� which lies completelyin� �

. Soif � is in morethanonedensefeature,it choosesthe
featurewith the largestdensity. This will tendto placethe
repeatedtextureregionsa thecorrectdisplacement,sincea
the correctdisplacementthe repeatedtexture region tends
to be in a larger densefeature(at the wrong disparity, not
all repeatedtextureregionpixelsgetmatched).

6 Experimental Results

All experimentsareperformedwith parametersfixedas
in Sections4.1and4.2on600MhzPentiumIII PC.Therun-
ningtimesfor otheralgorithmsareasgivenby theirauthors.

Considera stereopair whoseleft imageis in Fig. 1(a).
This is a very challengingscenesincemostof it is untex-
tured. Figs. 3(a,b,c)show the resultsof our algorithm, a
standardfixed window algorithm, and the global method
of [2]. The pixels for which our algorithm doesnot find

ananswerarein black. Therunningtime was25 seconds.
Our algorithmfindsthedisparityfor thebottles,tableedge
and leg, and partsof the background.All the correspon-
dencesit findsareaccurate,ascheckedby hand.Wedonot
extract the texturelesstable top even thoughit hastexture
cueson the boundary. This is becausethe table overlaps
several disparitiesand partsof it are occludedby bottles.
Thelocal window algorithmproducesa lot of errors.Even
theglobalalgorithmin [2], oneof thebestaccordingto the
Middlebury evaluation� produceslarge regionswith gross
errors,suchasbetweenthe two largestbottles,for mostof
the table,andbelow the table. For thealgorithmsin (b,c),
varying the parameterschangesthe resultssomewhat, but
doesnot leadto moreaccurateanswers.

We tried severalstandardwaysto extract reliablecorre-
spondencesfrom thedenseestimates.First we take dispar-
ity estimatesonly neartexturedpixels. We tried this with
both the window and graph-cutsalgorithms. The results
are accurate,but significantly sparserthan our algorithm.
Anotherway is to take pixelswith high local scorefor the
window algorithm.This doesnot work for thesceneabove
sincein mostuntexturedareaswrongcorrespondenceshave
high local scores.Yet anotherway is to take pixelswhose
bestlocal scoreis significantlyhigherthanthesecondbest
score. This essentiallyreducesto the first approach,tak-
ing pixels neartexture. Last thing we tried is the left and
right consistency principle, that is the correspondenceis
performedfirst for the left, then for the right images,and
only correspondencesconsistentacrossthe two resultsare
retained.Wetriedthiswith boththewindow andgraph-cuts
algorithms.Theresultsimprove,but not significantly.�

http://www.middlebury.edu/stereo



Figure 6. (a) taxi sequence; (b) horizontal motion; (c) ver tical motion

Figure 5. Our algorithm

Next we evaluate our algorithm on the Middlebury
databasewith groundtruth. The resultsof our algorithm
versusthosein [11] andanothersemi-densealgorithmin [9]
arein table4. Thelast four columnsnameeachof thefour
stereopairsin thedatabase.Eachof thesecolumnsis bro-
keninto threeparts.The“error” columngivesthetotalerror
in theunoccludedregions.The“density” columngivesthe
percentageof matchedpixels,andthe“time” columnholds
the running time in seconds.Resultsin [9] areobviously
muchworsethanours. We aresignificantlybetterboth in
densityandaccuracy than[11], especiallyfor theVenusand
theSawtoothscenes.This is dueto theuseof graphcutsfor
featureextraction,ourdensefeaturesaremorereliablethan
thosein [11]. Fig. 5 shows the resultsof our algorithmon
theTsukubascene,whoseleft imageis in Fig. 2(a).Oural-
gorithmmatchessomeuntexturedregions,like partsof the
tableandstatueheadstand.This is becauseit takesadvan-
tageof the texturecueson theboundariesof theseregions
to extract them as densefeatures. Notice that we do not
find correspondencesin theoccludedareas.For thetsukuba
scene,[10] reportssemi-denseresults.At density73%,they
have4.0%errors,whichis significantlyworsethanwhatwe
have at75%density.

Fig.6 showstheresultsof ourmethodonthetaxi motion
sequence.Therunningtime was13 seconds,72%of pixels
arematched.The algorithmlocatescorrectly two moving
carsandmostof the background.For the last experiment,

wehaverunouralgorithmfor two completelyunrelatedim-
ages.As expected,nocorrespondenceswerefound.

7 Futur eWork

Our biggestlimitation is that a densefeaturecan only
overlaponedisplacement.If a texturelessregion overlaps
severaldisplacement,we cannotextract it evenif thereis a
strongtexturecueon theboundary. Anotherimprovement
is occlusionreasoning.Currentlyif someregionoccludesa
texturelessregion, we cannotextract the occludedtexture-
lessregion,evenif thereis a texturecueon its boundary.

Acknowledgments

We would like to thankDr. Birchfield,Prof. Scharstein,
Dr. Szeliski,andProf. Tomasifor providing stereoimages.

References

[1] Y. Boykov andV. Kolmogorov. An experimentalcompar-
ison of min-cut/max-flow algorithmsfor energy minimiza-
tion in vision. In EMMCVPR02, page359ff., 2002.

[2] Y. Boykov, O. Veksler, andR. Zabih. Fastapproximateen-
ergy minimizationvia graphcuts. In ICCV99, page377ff.

[3] P. Felzenszwalb andD. Huttenlocher. Efficient matchingof
pictorial structures.In CVPR00, pagesII:66–73,2000.

[4] D. Gennery. Modelling theenvironmentof anexploringve-
hicleby meansof stereovision. In Ph.D., 1980.

[5] W. Grimson.A computerimplementationof a theoryof hu-
manstereovision. Royal, B-292:217–253,1981.

[6] B. Horn and B. Schunck. Determiningoptical flow. AI,
17(1-3):185–203,August1981.

[7] N.AyacheandB. Faverjon. Efficient registrationof stereo
imagesby matchinggraphdescriptionsof edgesegments.
IJCV, 1, 1987.

[8] Y. OhtaandT. Kanade.Stereoby intra- andinter-scanline
searchusingdynamicprogramming.PAMI, 7(2):139–154.

[9] R. Sara. Finding the largestunambiguouscomponentof
stereomatching.In ECCV02, pageIII: 900ff., 2002.

[10] R. SzeliskiandD. Scharstein.Symmetricsub-pixel stereo
matching.In ECCV02, pageII: 525ff., 2002.

[11] O. Veksler. Densefeaturesfor semi-densestereocorrespon-
dence.IJCV, 47(1-3):247–260,April 2002.


