
Noname manuscript No.
(will be inserted by the editor)

Multi-label Moves for MRFs with Truncated Convex
Priors

Olga Veksler

Received: date / Accepted: date

Abstract Optimization with graph cuts became very
popular in recent years. While exact optimization is
possible in a few cases, many useful energy functions
are NP hard to optimize. One approach to approximate
optimization is the so-called move making algorithms.
At each iteration, a move-making algorithm makes a
proposal (move) for a pixel p to either keep its old label
or switch to a new label. Two move-making algorithms
based on graph cuts are in wide use, namely the swap
and expansion. Both of these moves are binary in na-
ture, that is they give each pixel a choice of only two
labels. An evaluation of optimization techniques shows
that the expansion and swap algorithms perform very
well for energies where the underlying MRF has the
Potts prior. However for more general priors, the swap
and expansion algorithms do not perform as well. The
main contribution of this paper is to develop multi-label
moves. A multi-label move, unlike expansion and swap,
gives each pixel has a choice of more than two labels
to switch to. In particular, we develop several multi-
label moves for truncated convex priors. We evaluate
our moves on image restoration, inpainting, and stereo
correspondence. We get better results than expansion
and swap algorithms, both in terms of the energy value
and accuracy.

Keywords discrete optimization · Markov random
fields (MRF) · graph cuts · truncated convex priors

This research was supported in part by NSERC, CFI, ERA.

Computer Science Department
University of Western Ontario, London, Canada
Tel.: +1-519-6612111
Fax: +11-519-6613515
E-mail: olga@csd.uwo.ca

1 Introduction

Energy optimization with graph cuts [8,15,9,22] is very
popular in computer vision and graphics. It has been
used for such diverse applications as image restora-
tion [9], stereo and multi-view reconstruction [8,20,9,
21], motion [40], texture synthesis [25], segmentation [6,
5,31,17], digital photomontage [2], digital tapestry [30],
image generation [28], computational photography [26],
image completion [13], digital panoramas [1].

Optimization with graph cuts is successful, largely,
because either an exact minimum or an approximate
minimum with certain quality guarantees is found, un-
like the older optimization techniques, such as Simu-
lated Annealing [11] or ICM [4]. It is important, there-
fore, to continue seeking better optimization methods
for computer vision problems. This paper is about im-
proved optimization methods for a subclass of energy
functions that is useful for computer vision.

Typically an energy minimization problem is formu-
lated in a pixel labeling framework as follows. We have
a set of sites P, and a set of labels L. P is often the set
of all image pixels, and L is a finite set that represents
the property that needs to be estimated at each site,
such as intensity, color, etc. The task is to assign a la-
bel fp to each site p so that some energy function E(f)
is minimized. Here f is the collection of all pixel-label
assignments.

If L has size two and E(f) is submodular [22], then
E(f) can be optimized exactly by finding a minimum
cut on a certain graph. All algorithms presented in this
paper ultimately rely on binary (or pseudo-boolean)
submodular energy optimization. While there are other
methods for pseudo-boolean minimization, and we could
certainly use them. However in [36] they show that

2

the graph-cut based ones have the best performance
in terms of running time for computer vision problems.

Many vision problems require a multi-label L. The
condition of submodularity can be generalized to the
multi-label case [35], and a submodular pairwise multi-
label E(f) can be, again, optimized exactly with a mini-
mum graph cut. Unfortunately, the class of submodular
multi-label energies is not that widely useful for vision
problems, see the discussion in section 2.3.

Optimizing many important multi-label energy func-
tions is NP-hard [9]. Interestingly, there are so called
move making algorithms for approximation that are
based on pseudo-boolean optimization. Two most pop-
ular such algorithms are expansion and swap [9]. A
move making algorithm performs iterative optimization
starting with an initial guess f̂ . At each move, each
site p has a choice restricted to only two labels, one of
them is usually the initial label f̂p. The best move (or
switch) to a new labeling f ′ is found with restriction
to only two labels per site. This is a pseudo-boolean
optimization problem, solvable with graph cuts in the
submodular case. The swap and expansion algorithms
differ in the choice of two particular labels allowed for
a pixel. These move making algorithms are powerful
because they search efficiently a combinatorially large
space.

Recently, Szeliski et.al. [36] performed an experi-
mental evaluation of energy minimization methods com-
mon in vision: the expansion and swap algorithms [9],
loopy belief propagation (LBP) [29], and sequential tree-
reweighted message passing (TRW-S) [16]. Their results
show that for energies based on the Potts model (see
section 2.1) both expansion and swap algorithms per-
form very well, getting an answer within a small per-
centage of the global minimum. TRW-S performs as
well as graph cuts, but takes significantly longer to con-
verge.

For other useful energies, such as those arising from
truncated convex priors (see section 2.1) the expansion
and swap algorithms do not perform as well. In this pa-
per, we develop several new move making algorithms for
truncated convex priors that work better than expan-
sion or swap moves. To get better optimization, we de-
velop moves that are multi-label in nature, unlike swap
and expansion. That is our moves give each pixels a
choice of more than two labels to switch to. All of the
new moves are based on the well known methods for ex-
act optimization of multi-label submodular energies [14,
35]. However instead of exact optimization, these meth-
ods form a basis for our new multi-label moves for ap-
proximate optimization.

There are several move types that we develop. One
type can be seen as multi-label generalization of the

expansion, and another as multi-label generalization
of the swap algorithms, so we call them, respectively,
multi-label expansion and multi-label swap. Note that
the optimal multi-label expansion move can be found
only approximately. Another interesting move that we
explore and that is distinct from multi-label expansion
and swap is a multi-label smooth swap.

We also develop a multi-label move for the Potts
model that we call a double expansion. We show that it
is more powerful (namely the set of expansion moves is
strictly contained in the set of double expansion moves)
than the expansion algorithm. We show an artificial
example where it escapes a local minimum an expansion
algorithm gets stuck in, and point out some practical
applications where it may be useful.

The main idea of our approach (preliminary ver-
sions in [38,39]) is to design multi-label moves (as op-
posed to binary moves) in order to improve optimiza-
tion. Since our original work, there were several related
developments that further explore the idea of multi-
label moves. The authors of [27] develop multi-label
moves for a very specific energy function with strong
ordering constraints on labels. In [23], simultaneously
but independently [37], they develop a move similar
to our multi-label expansion, and prove approximation
bounds. Their graph construction is very similar, with
some minor differences in the edge weights. An ex-
tended version of their work appears in [24]. The ap-
proach in [10] is similar in spirit to our multi-label swap
moves, but they apply it for approximate optimization
of a multi-label submodular E(f) in order to reduce
the time and space complexity of the exact optimiza-
tion algorithm [35]. Interestingly, the set of labels can
be different for each pixel. In [12] they develop approxi-
mation algorithms that are based on multi-label moves
for very general energy functions. Their moves are also
called expansion moves, with the range of labels to ex-
pand on chosen, possibly dynamically, for each pixel
individually. They cannot guarantee that the optimal
move can be found. However, in cases when it can be
found, they prove certain optimality guarantees. They
use an LP-based solver for approximating the best ex-
pansion move. In comparison, in our work, due to our
restriction to the truncated-convex priors, we can find
the optimal move in most cases.

We evaluate our method on problems of image restora-
tion, inpainting, and stereo correspondence. Our results
show that we are able to get more accurate answers,
both in terms of energy value and accuracy of the la-
beling.

3

2 Energy Optimization with Graph Cuts

In this section, we briefly explain the relevant prior
work on optimization with graph cuts.

2.1 Energy Function

We first formulate the energy function to be optimized.
Recall that P is the set of pixels, L is the set of labels,
fp ∈ L is the label assigned to pixel p, and f is the
collection of all pixel-label assignments. In the energy
optimization framework, usually the following energy is
minimized:

E(f) =
∑

p∈P
Dp(fp) +

∑

(p,q)∈N
Vpq(fp, fq). (1)

The first sum in Eq. (1) is called the data term, because
it is usually modeled from the observed data. Individual
pixel-label preferences are given by Dp(fp). The second
sum in Eq. (1) is called the smoothness term, and it
represents the prior knowledge about the likely label-
ings f . The name smoothness comes from the fact that
the prior knowledge frequently encodes smoothness as-
sumptions about f . The second term is the sum over
ordered pixel pairs (p, q) ∈ N . Usually N is the 4 or
8 connected grid, however longer range interactions are
also useful [20]. Without loss of generality, we assume
that if (p, q) ∈ N then p < q. The energy function in
Eq. (1) arises in Maximum A Posteriori (MAP) estima-
tion in Markov Random Fields (MRF).

Usually the difficulty of optimizing the energy in
Eq. (1) is determined by the form of Vpq’s, whereas the
form of Dp’s is often inconsequential. Different choices
of Vpq’s correspond to different smoothness assump-
tions. A common choice is the Potts model which is
Vpq(fp, fq) = wpq · min {1, |fp − fq|}. Intuitively, Potts
model assumes that f is piecewise constant, that is f

consists of several pieces where pixels inside the same
piece share the same label.

Other common choices for Vpq are

Vpq(fp, fq) = wpq ·min {T, |fp − fq|}
and

Vpq(fp, fq) = wpq ·min {T 2, (fp − fq)2},
the truncated linear and truncated quadratic, respec-
tively. These Vpq’s correspond to the piecewise smooth
assumption on f , that is f is expected to consist of
several pieces, where the labels inside each piece vary
“smoothly”1. It is important to limit the penalty from

1 The term “smoothly” is used informally here.

above by a truncation constant T . Otherwise |l1 − l2|
or (l1 − l2)2 might be prohibitively large, and assign-
ing labels l1 and l2 to neighboring pixels will be too
costly, resulting in an oversmoothed labeling f . With-
out the truncation, that is if Vpq is the absolute linear
or quadratic difference, the energy in Eq. (1) can be op-
timized exactly with a graph cut [14]. Energy in Eq. (1)
is NP-hard to optimize for truncated linear or quadratic
Vpq’s, as well as for the Potts Vpq [9].

2.2 Assumptions on the Label Set

For the rest of the paper we assume that the labels
can be represented as integers in the range {0, 1, ..., k},
which is necessary since we base our method on the
construction in [14]. Assuming integer labels rules out
directly using our methods for motion estimation, since
in motion, labels are two dimensional. However, there
are indirect ways to apply our methods to motion, by
fixing one component of a motion vector and letting the
other one vary [32].

2.3 Convex Priors

Ishikawa [14] develops a method to find the exact mini-
mum of the energy function in Eq. (1) in the case when
the terms Vpq are convex functions of the label differ-
ences. We say that Vpq(l1, l2) = wpq ·g(l1− l2) is convex
if for any integer x, g(x + 1)− 2g(x) + g(x− 1) ≥ 0. It
is assumed that g(x) is symmetric and non-negative.

Convex Vpq include the absolute and squared dif-
ference functions as a special case. While the energy
arising from convex priors may oversmooth the answer,
Ishikawa’s construction gives us an important tool for
energy optimization with truncated convex priors, which
correspond to energies that are less likely to oversmooth.
To explain Ishikawa’s construction, we could define a
pseudo boolean submodular energy that encodes the
original multi-label problem. However, the original pre-
sentation [14] in terms of the graph construction is eas-
ier to understand, so we choose to follow it. Note that
the construction we give in this section slightly differs
in the edge weights from that in [14].

Ishikawa’s method is based on computing a mini-
mum cut on a particular graph. The reader unfamiliar
with minimum cuts can review this topic in [7]. There
are two special nodes in the graph, the source s and
the sink t. For each p ∈ P, we create a set of nodes
p0, p1, ..., pk+1. We identify p0 with the source s, and
we identify pk+1 with the sink t. We connect node pi

to node pi+1 with a directed edge ep
i for i = 0, 1, ..., k.

In addition, for i = 0, 1, ..., k, node pi+1 is connected
to node pi with a directed edge of infinite weight. This

4

Fig. 1 Sketch of the graph construction from [14].

ensures that for each p, only one of the edges of type
ep
i will be in the minimum cut, see [14]. If an edge ep

i

is cut, then pixel p is assigned label i. Thus a cut C

of finite cost corresponds to a labeling fC in a unique
way.

Furthermore, for any (p, q) ∈ N , an edge epq
ij which

connects node pi to node qj is created for i = 0, ..., k+1
and j = 0, ..., k + 1. The weight of this edge is

w(epq
ij) =

wpq

2
[g(i− j +1)−2g(i− j)+ g(i− j−1)]. (2)

The edge weight defined by Eq. (2) is non-negative,
since g(x) is convex. This is important, since min-cut al-
gorithms require non-negative edge weights. The graph
construction is illustrated in fig. 1.

Let C be a cut of finite cost. Let (p, q) ∈ N . If edges
ep
i and eq

j are in the cut C, then all the edges in the set
Sij

pq, defined below, also have to be in the cut C.

Sij
pq = {epq

lm|0 ≤ l ≤ i, j + 1 ≤ m ≤ k + 1}∪
{epq

lm|i + 1 ≤ l ≤ k + 1, 0 ≤ m ≤ j}.
When summing up over Sij

pq, most of edge weight cancel
out, and we are left with

∑

e∈Sij
pq

w(e) = wpq[g(i− j) + g(k + 2) + h(i) + h(j)],

where h(i) = − 1
2 [g(k + 1 − i) + g(i + 1)]. Recall that

the cut C corresponds to a labeling fC . Except some
extra terms, the sum above is almost exactly Vpq(i, j) =

Vpq(fC
p , fC

q) = wpq · g(i− j). The term g(k + 2) can be
ignored since it is a constant and does not change the
minimum cut, just its cost. Terms h(i) and h(j) can be
subtracted from the costs of edges ep

i and ep
j . Therefore

we define the weights ep
i as follows:

w(ep
i) = Dp(i)−

∑

q∈Np

wpq · h(i),

where Np is the set of neighbors of pixel p. Under this
edge weights assignment, the cost of any finite cut C is
exactly E(fC) plus a constant. Therefore the minimum
cut gives the optimal labeling.

For the absolute linear Vpq this construction leads
to a graph with O(|P| · |L|) (where |S| denotes the size
of set S) vertices and edges, assuming 4-connected grid.
This is because the edges of type epq

ij have zero weight
unless i = j. For more general Vpq, for example the
squared difference Vpq, the number of vertices is still
O(|P| · |L|), but the number of edges is O(|P| · |L|2).

Note that [19] develops an algorithm for minimizing
energy with convex Vpq which is more memory and time
efficient. However it can be used only when the Dp’s are
convex. Also note that [35] generalizes the results in [14]
and develops a method to exactly optimize submodular
multi-label energies.

2.4 Expansion and Swap Algorithms

Boykov et.al. [9] develop expansion and swap algorithms
based on graph cuts for minimizing the energy in Eq. (1).
The swap algorithm can be applied when Vpq is Potts,
truncated linear or quadratic, and the expansion algo-
rithm can be applied to the Potts and truncated linear
Vpq. The answer is only approximate, which is not sur-
prising, since the energy is NP-hard to optimize [9].
However, in case of the Potts Vpq, the expansion al-
gorithm gives an answer within a factor of 2 from the
optimal [9], although in practice, the answer is much
closer to the optimal [36].

Both the expansion and swap algorithms find a local
minimum of the energy function in the following sense.
For each f , we define a set of “moves” M(f), which
is just a set of labelings that we are allowed to move
to from f . We say that f is a local minimum with re-
spect to a set of moves M(f), if E(f ′) ≥ E(f) for any
f ′ ∈ M(f). A move from f to f ′ is standard if there is
at most one pixel p s.t. fp 6= f ′p. Such moves are used,
for example, in the ICM algorithm [4]. The number of
standard moves is O(|P||L|), therefore an optimal stan-
dard move is easy to compute.

Swap moves are defined as follows. Given a labeling
f and a label pair (α, β), a move from f to f ′ is called

5

an α-β swap if fp 6= f ′p ⇒ fp, f
′
p ∈ {α, β}. That is

an α-β swap reassign labels α, β among pixels that are
labeled either α or β in f . M(f) is then defined as the
collection of α-β swaps for all pairs of labels α, β ∈ L.

The expansion moves are defined as follows. Given
a labeling f and a label α, a move f ′ is called an α-
expansion if fp 6= f ′p ⇒ f ′p = α. That is the set of pixels
assigned α can only expand from f to f ′. M(f) is then
defined as the collection of α-expansions for all labels
α ∈ L.

The expansion and swap algorithm finds a local min-
imum with respect to expansion or swap moves, corre-
spondingly. In either case, the number of moves is expo-
nential in the number of pixels, and so the exhaustive
search is ruled out. In [9] they describe how to compute,
for a given a labeling f , the optimal α-expansion and
the optimal α-β swap by finding a minimum cut on a
certain graph. The conditions on Vpq for the expansion
or swap algorithm to work were generalized from those
in [9] by [22].

According to [22], the swap algorithm may be used
whenever Vpq(α, α) + Vpq(β, β) ≤ Vpq(α, β) + Vpq(β, α)
for all α, β ∈ L. The expansion algorithm may be used
whenever Vpq(α, α) + Vpq(β, γ) ≤ Vpq(β, α) + Vpq(α, γ)
for all α, β, γ ∈ L. Therefore the requirements for ex-
pansion algorithm are more strict than those for the
swap algorithm. For example, the energy with trun-
cated linear Vpq can be optimized by both expansion
and swap algorithms, whereas for truncated quadratic
Vpq, only the swap algorithm applies. In practice, how-
ever, it is possible to apply the expansion algorithm
with a “truncation trick” [30] to energies which do not
satisfy the necessary inequality above. The truncation
trick lowers the value of Vpq for the non-submodular
terms in order to make them submodular. The resulting
labeling is no longer guaranteed to be a local minimum
with the respect to expansion moves, but the energy is
guaranteed to go down.

Unlike the method in [14], the expansion and swap
algorithms are iterative. We start with an initial label-
ing f . Then we iterate until convergence over labels
α ∈ L for the expansion and over pairs of α, β ∈ L
for the swap algorithm. At each iteration, we find the
optimal α-expansion (or α-β-swap) from the current la-
beling, and then replace the current labeling with it.

3 Multi-label Swap

We are now ready to develop multi-label moves for opti-
mizing energies with truncated convex Vpq. In this sec-
tion we develop the multi-label swap and in sections 4
and 5 we develop the multi-label expansion and multi-
label smooth swap, respectively.

Fig. 2 Illustration for the multi-label swap. Left: initial labeling.
Right: multi-label swap from labeling on the left. Allowed range
of labels {α, α+1, ...β} is on top. Sites participating in the move
are outlined with a thick line.

First we define the truncated convex Vpq. Vpq is said
to be truncated convex if there exists a constant T and
a symmetric function g(x) such that g(x+1)− 2g(x)+
g(x− 1) ≥ 0 and

Vpq(l1, l2) = wpq ·min{g(l1 − l2), g(T)}. (3)

We now develop the multi-label swap move. Recall
that the label set is L = {0, 1, ..., k}. Let Lαβ = {α, α+
1, ..., β}, where α < β ∈ L. That is Lαβ is the subset of
labels containing consecutive integers. Given a labeling
f , we say that f ′ is an α-β multi-label swap from f , if
fp 6= f ′p ⇒ {fp, f

′
p} ⊂ Lαβ . The α-β multi-label swap is

a generalization of α-β swap moves. An α-β swap move
reassigns labels α, β among pixels that are currently
labeled α and β. An α-β multi-label swap reassigns the
labels in the range {α, α+1, .., β} among the pixels that
currently have labels in the range {α, α + 1, .., β}. An
illustration of a multi-label swap is in Fig. 2

Of course, if we knew how to find the best α-β range
move for α = 0 and β = k, we would find the global op-
tima of the energy function, which is not feasible since
the problem is NP-hard, in general. However, we can
find the optimal α-β multi-label swap if |α− β| ≤ T .

3.1 α-β Multi-label Swap for |α− β| ≤ T

To simplify the description, we will assume that |α −
β| = T , but it is trivial to extend the construction in
this section to handle the case when |α− β| < T . Sup-
pose that we are given a labeling f and we wish to find
the optimal α-β multi-label swap, where |α − β| = T .
The graph construction is similar to that in section 2.3.
Let T = {p|α ≤ fp ≤ β}. Notice that the truncated
convex terms Vpq become convex when p, q ∈ T , since
for any p, q ∈ T , Vpq(fp, fq) = wpqg(fp − fq).

We identify label set Lαβ with set {0, 1, ..., T} and
employ the construction in section 2.3 but only on the
pixels in the subset T and with a slight modification.

6

A modification is needed because the construction in
section 2.3 does not consider the effect of terms Vpq on
the boundary of T , that is those Vpq for which we have
|{p, q}∩T | = 1. An adjustment to the weights of edges
ep
i , described below, solves this boundary problem.

First we need more notation. Given a T ⊂ P, let

ET (f) =
∑

p∈T
Dp(fp) +

∑

(p,q)∈N ,{p,q}∩T 6=∅
Vpq(fp, fq).

In words, ET (f) is the sum of all the terms of the energy
function which depend on pixels in T . Also let

Eopen
T (f) =

∑

p∈T
Dp(fp) +

∑

(p,q)∈N ,{p,q}⊂T
Vpq(fp, fq).

In words, Eopen
T (f) is the sum of all the terms of the

energy function which depend only on pixels in T . Note
that Eopen

T (f) 6= ET (f) in most cases.
Let Mαβ(f) = {f ′|f ′p 6= fp ⇒ f ′p, fp ∈ Lαβ}. That

is Mαβ(f) is exactly the set of all α-β multi-label swap
moves from labeling f . If we directly use the construc-
tion in section 2.3 on pixels in T and labels in Lαβ

then we will find the f ′ ∈ Mαβ(f) s.t. Eopen
T (f ′) is as

small as possible. However, we actually want to find
f ′ ∈ Mαβ(f) that makes ET (f ′) is as small as possible.
This is since for f ′ ∈ Mαβ(f),

E(f ′) = ET (f ′)+Eopen
P−T (f ′) = ET (f ′)+Eopen

P−T (f), (4)

where P − T denotes set difference. Thus the labeling
f ′ ∈ Mαβ(f) which minimizes ET (f ′) gives the biggest
decrease in energy from f to f ′ among all f ′ ∈ Mαβ(f).
Notice that since f ∈ Mαβ(f), we are guaranteed to
have E(f ′) ≤ E(f), for any f ′ ∈ Mαβ(f) that makes
ET as small as possible.

This boundary problem is easy to fix. For each pixel
p ∈ T , if there is a neighboring pixel q 6∈ T , we add to
the weight of edge ep

i an additional cost which equals
to Vpq(i, fq), for all i = 0, 1, ..., k. Recall that we iden-
tified the label set {α, α + 1, ...β} with the label set
{0, 1, ..., T}. Therefore Vpq(i, fq) = Vpq(i + α, fq). This
additional weight to edges ep

i makes sure that the terms
Vpq on the boundary of T are accounted for. Now this
fixed construction will find the f ′ ∈ Mαβ(f) which op-
timizes ET (f ′).

Just as with α-β swaps, the algorithm starts at some
labeling f . Then it iterates over a set of label ranges
{α, .., β} with |α− β| = T , finding the best α-β multi-
label swap move f ′ and switching the current labeling
to f ′.

The memory requirement grows linearly with T for
the truncated linear Vpq, and quadratically with T for
the truncated quadratic Vpq. Thus the larger is T , the
more powerful the move is, but the more time and mem-
ory will be required.

3.2 Generalized Multi-label Swap

We can generalize the construction in the previous sec-
tion. As before, let |α−β| = T (the case of |α−β| < T

is basically identical) and let T = {p|α ≤ fp ≤ β}. Let

Lαβt = {α− t, α− t + 1, ..., β + t− 1, β + t} ∩ L,

that is Lαβt extends the range of Lαβ by t in each di-
rection, making sure that the resulting range is still a
valid range of labels in L. Let

Mαβt(f) = {f ′|f ′p 6= fp ⇒ fp ∈ Lαβ , f ′p ∈ Lαβt}.
That is Mαβt(f) is a set of moves that change pixels la-
bels from Lαβ to labels in Lαβt. Notice that Mαβ(f) ⊂
Mαβt(f). We actually cannot find the optimal move in
Mαβt(f), but we can find f̂ ∈ Mαβt(f) s.t. E(f̂) ≤
E(f∗), where f∗ is the optimal move in Mαβ(f). Thus
labeling f̂ is not worse than the optimal move in Mαβ(f),
and if we are lucky, E(f̂) could be significantly better
than the optimal move in Mαβ(f).

We use basically the same construction as in sec-
tion 3.1. We construct a graph for pixels in T = {p|α ≤
fp ≤ β}. However, the label range is now Lαβt, and as
before, we identify it with label set {0, 1, ..., |Lαβt|−1}.
The rest of the graph construction is identical to that
in section 3.1.

This construction finds a labeling under the energy
E¬T (f), where E¬T (f) is the same as E(f), except
there is no truncation of Vpq terms for p, q ∈ T . That
is for p, q ∈ T , Vpq(fp, fq) = wpq · g(fp − fq) under the
energy E¬T (f). There is a correct truncation if either
p or q are not in T .

Clearly for any labeling f , E¬T (f) ≥ E(f). Let f̂ be
the labeling returned by our construction, i.e. it is the
labeling that minimizes E¬T (f ′) over f ′ ∈ Mαβt(f).
Let f∗ be the optimal move in Mαβ(f). Since f∗ ∈
Mαβt(f), we have that E¬T (f̂) ≤ E¬T (f∗), and there-
fore E(f̂) ≤ E¬T (f∗). However, E¬T (f∗) = E(f∗),
since Vpq terms do not need to be truncated for p, q ∈ T
for any f ′ ∈ Mαβ(f). Therefore we have the desired re-
sult, namely E(f̂) ≤ E(f∗).

If time and memory resources were not an issue, the
best option would be to set t to a large value. However,
with larger t the running time increases dramatically,
especially for the truncated quadratic Vpq, since the size
of the graph is quadratic in the number of labels in this
case. Also, the larger is the value of t, the more the
graph construction overestimates the term Vpq(fp, fq),
and it is too costly to assign labels fp and fq under
such overestimated cost. Experimentally, the best trade
off that we found between improvement in the energy
and increase in the running time is when t is set to a
small constant, such as 2 or 3 for the examples in the
experimental section.

7

(a) (b)

Fig. 3 Graph construction for the multi-label expansion.

4 Multi-label Expansion

The expansion algorithm usually performs better than
the swap algorithm [36], and has optimality guaran-
tees in some cases [9]. Therefore it is promising to ex-
tend a binary expansion to a multi-label expansion, in
a hope of better performance. Multi-label expansion is
the topic of this section.

Let α and β be two labels s.t. α < β. A multi-label
expansion generalizes the binary expansion move. Each
pixel can either stay with its old label, or switch to a
label in the set {α, α+1, ..., β}. The name “expansion”,
as before, reflects the fact that labels in the set {α, α+
1, ..., β} expand their territory.

Let Mαβ(f) = {f ′|f ′p 6= fp ⇒ f ′p ∈ Lαβ}. That
is Mαβ(f) is exactly the set of all α-β multi-label ex-
pansions from labeling f . Unfortunately, the optimal
expansion move cannot be computed exactly, so we are
forced to approximate it.

Suppose that we are given a labeling f and we wish
to approximate the optimal α-β multi-label expansion,
where |α − β| = T . The construction is similar to that
in section 3. We identify label set {α, α + 1, ..., β} with
set {0, 1, ..., T}. One of the differences is that now all
pixels participate in a move. First we build a graph
exactly like in section 3, except the links between the
source and p0 are not set to infinite, for all pixels p.
That is, unlike in section 3, p0 is not identified with the
source. We create an auxiliary pixel apq between each
pair of neighboring pixels (p, q). We connect p0 to apq,
q0 to apq, and s to apq, as illustrated in Fig. 3 (a). The
costs of the new links that we create for the expansion
algorithm are as in Fig. 4. If the minimum cut severs
the edge between s and p0, then p is assigned its old

link weight

p0 to apq Vpq(fp, α) + C/2
q0 to apq Vpq(β, fq) + C/2
s to apq Vpq(fp, fq)+C
s to p0 Dp(fp)
s to q0 Dp(fq)

Fig. 4 Weights of the new links.

label in the move. Otherwise, the label assignment is
exactly like in section 3.

For the construction in section 3, if we sever links
ep
i and eq

j , then the cost of all the links epq
ij that have

to be severed adds up to C + Vpq(i, j).
This construction insures that if links between s and

p0 and between q0 and q1 are broken, then the cost of
all edges severed corresponds exactly to Vpq(fp, α) plus
a constant, which is exactly what is needed. Similarly
the correct thing happens if links between s and q0 and
between p0 and p1 are broken, and if the link between s

and apq is broken. Unfortunately in other cases, as long
as the new links in Fig. 4 are involved, the Vpq value can
be either underestimated or overestimated. The mini-
mum graph cut is not even guaranteed to reduce the
energy from that of the current labeling f . Still in prac-
tice we found that many minimum cuts correspond to
an assignment with a lower energy, and therefore many
of such moves are useful in decreasing the energy. No-
tice that there are other methods, such as in [23,12],
where multi-label moves developed also do not guar-
antee that the energy is decreased. To insure that the
energy never goes up, if f ′ is the assignment returned
by our approximate multi-label expansion, we first test
if E(f ′) < E(f), where f is the current labeling. If yes,
we accept f ′ as the new current labeling. If no, we reject
it.

As with the multi-label swap, the range of labels
involved in multi-label expansion can be extended by
some t. The construction changes appropriately, similar
to what is done when extending the range of multi-label
swap moves, see section 3.

In practice, we found the following version of the
multi-label expansion to work better. Let U = {p ∈
P|fp ≤ β} and let B = {p ∈ P|fp ≥ α}. We perform a
multi-label expansion on pixels in set U using the graph
like in Fig. 3(a), and another multi-label expansion on
pixels in set B using the graph like in Fig. 3(b), with
symmetrically modified weights in Fig. 4 for the second
case. The weights also have to be corrected because
there are pixels not participating in the move, so the
“border” conditions resulting from such pixels have to
be incorporated into edge weights ep

i , just like in sec-
tion 3. The improvement is probably due to the fact
that more Vpq’s are correctly represented by this split

8

graph construction. Another improvement is probably
due to the fact that pixels on the border not participat-
ing in the move pull the energy in the right direction by
having their Vpq terms correctly modeled through the
edge weights ep

i .

5 Multi-label Smooth Swap

We now present our last move for a truncated convex
prior, the multi-label smooth swap. This move is closely
related to the multi-label swap described in section 3.
The idea of this new move is to involve a potentially
larger group of pixels than that of a multi-label swap.
In a multi-label swap, the pixels participating in a move
have labels in a range limited by truncation, i.e. all the
labels are between some α and β with |α − β| < T. In
a multi-label smooth swap, the domain of pixels par-
ticipating in a move can be larger than that compared
to the multi-label swap. That is the pixels participat-
ing in the move can have labels between some α and
β with |α − β| > T. The restriction is that the pixels
participating in a multi-label smooth swap must form
a “smooth” component in the current labeling f , that
is the labels of any two neighbors cannot differ by more
than T . First, we need a definition.
Definition Given a labeling f and a subset T ⊂ P, f is
called totally smooth with respect to (w.r.t) T , if for any
(p, q) ∈ N , whenever {p, q} ⊂ T , then |fp − fq| ≤ T ,
where T is the truncation constant in Eq. (3). ¤

In words, if f is totally smooth with respect to T ,
then the label difference for any two neighboring pixels
contained in T is not larger than the truncation con-
stant.

Let f be the current labeling and T ⊂ P be s.t. f

is totally smooth w.r.t. T . Let L(T , f) = {fp|p ∈ T },
that is L(T , f) is the collection of labels of pixels in T
under labeling f .

Given a subset T ⊂ P s.t. f is totally smooth w.r.t.
T , let Msmooth(f, T) = {f ′|f ′p 6= fp ⇒ p ∈ T and f ′p ∈
L(T , f)}. Msmooth(f, T) describes exactly the set of
all multi-label smooth swaps. In words, a multi-label
smooth swap takes a subset of pixels T s.t. f is totally
smooth with respect to T , collects the labels of pixels
in T , and reassigns these labels among pixels in T .

Just as it was possible to generalize the multi-label
swap and expansion by extending the range of labels,
it is possible to generalize the multi-label smooth swap.
Let t be a constant for extending the range of labels
L(T , f). Let us define the extended range of labels as

L′(T , f, t) = {l ∈ L|∃l′ ∈ L(T , f) s.t. |l − l′| ≤ t}
In words, to get L′(T , f, t) we add to L′(T , f) those
labels that are at distance no more than t from some

label already in L′(T , f). Let the set of smooth swap
moves augmented by t be denoted by Msmooth(f, T , t).

There are two questions that remain to be answered:
how to choose the smooth subsets P ′ and how to opti-
mize with smooth swap moves. Let us first consider the
question of optimization.

In general, it is not possible to find the optimal
smooth swap move. However, we are able to find a good
smooth swap, the one that improves the current label-
ing f . Let f be the current labeling, and let T be s.t.
f is totally smooth w.r.t. T .

We use construction that is very similar to that in
section 3. We construct a graph for pixels in T . How-
ever, the label range is L′(T , f, t), and we identify it
with label set {0, 1, ..., |L′(T , f, t)| − 1}. Otherwise, the
graph construction is identical to that in section 3.

Just as in section 3.2, this construction finds a la-
beling under the energy E¬T (f), where E¬T (f) is the
same as E(f), except there is no truncation of Vpq terms
for p, q ∈ T . Let f̂ be a smooth swap found by this con-
struction. Using a reasoning very similar to that in sec-
tion 3.2, it is easy to show that E(f̂) ≤ E(f). So even
though we cannot find the optimal multi-label smooth
swap, we can at least find a smooth swap does not in-
crease the energy.

The question remains of how to find subsets T s.t.
current labeling f is totally smooth under T . In gen-
eral, there are many possibilities. We take the following
approach. Given a current labeling f , we can partition
it into a set of P1,P2, ...,Pd, s.t.

⋂
i Pi = P and f is

totally smooth w.r.t. each Pi. This partition can be per-
formed by computing connected components. This par-
tition is not unique, however. To remove any bias due
to visitation order, we compute connected components
in random order. Then we compute multi-label smooth
swaps for each Pi. This is not the only way to proceed,
but we found it to be effective. Computing all smooth
swap moves for a partition P1,P2, ...,Pd constitutes one
iteration of the algorithm. We perform iterations until
convergence.

The advantage of the multi-label smooth swap move
over the multi-label swap is that it converges faster. If
we start from a good solution (typically we start from
the results of the binary expansion algorithm), the num-
ber of smooth subsets in a partition of P is small, so
the number of moves is smaller compared to the multi-
label swap. The disadvantage is that it gives energies
that are slightly higher in practice, see section 7.

6 Double Expansion

In this section we give an example of a multi-label
move that is useful for an energy with Vpq other than

9

truncated convex. We develop a double expansion move
for the Potts model, see section 2.1. Recall that Potts
Vpq(fp, fq) = wpq ·min {1, |fp − fq|}.

A double-expansion move is an analogue of the ex-
pansion move for two, not necessarily consecutive, la-
bels. That is two labels are allowed to increase their
territory at the same time. Formally, the double expan-
sion moves are defined as follows. Given a labeling f

and labels α, β, a move f ′ is called an α − β expan-
sion if fp 6= f ′p ⇒ f ′p ∈ {α, β}. That is the set of pixels
assigned to α and β can only expand from f to f ′.

Just as with multi-label expansion, we cannot find
the optimal α − β expansion, since optimization with
Potts Vpq is NP-hard for three labels [9]. However, we
can find an approximation that is at least as good as
the optimal α-expansion and the optimal β-expansion.

Let α, β ∈ L and a current labeling f c be given. In
this section, we choose to formulate the problem of find-
ing a (possibly sub-optimal) α− β expansion as three-
label (ternary) energy optimization.

Let h be a ternary labeling of pixels in P, i.e. hp ∈
{0, 1, 2}. We are going to use h to encode a double-
expansion move. The transformation function Tαβ(f c, h)
of a α− β expansion takes a labeling fc and a ternary
labeling h and returns the new labeling fn which is
induced by h and is an α− β expansion from f c .

The transformation function Tαβ() for an α− β ex-
pansion transforms the current label f c

p of pixel p into
a new label defined by:

fn
p = Tαβ(f c

p , hp) =

α if hp = 0
f c

p if hp = 1
β if hp = 2

(5)

To simplify the notation, we are going to use T (h)
instead of Tαβ(f c, h) and T (hp) instead of Tαβ(f c

p , hp).
There is no risk of confusion since α, β and f c are fixed
for a double-expansion move computation. We want the
energy of h to be equal to the energy of the labeling fn

it induces i.e. E′(h) = E(T (h)). However, this results in
non-submodular ternary energy in most cases. Instead
we define:

E′(h) = Ẽ(T (f c, h)) =
∑

p∈P Dp(T (hp))
+

∑
(p,q)∈N Ṽpq(T (hp), T (hq)),

(6)

where Ṽpq is defined as:

Ṽpq(l, l′) =

2wpq if f c
p = f c

q 6∈ {α, β}
and l 6= l′ ∈ {α, β}

Vpq(l, l′) otherwise
(7)

It is trivial but tedious to check that the energy in
Eq. (6) is submodular and therefore can be optimized
exactly with the method in [35].

The term Ṽpq is almost always equal to Vpq, except
in one case. If the current labels of p and q are the
same and are not equal to either α or β, then the cost
of assigning α to pixel p and β to pixel q (or vice versa)
is overestimated by a factor of two. Therefore if an α-
β expansion, is, in fact, a pure α-expansion, its cost
is modeled correctly. Similarly for a pure β-expansion.
This implies that the best α − β expansion found by
optimizing the energy in Eq. (6) is not worse than the
optimal α-expansion and the optimal β-expansion. In
fact, if the α and β regions do not have a common
boundary in the optimal α− β expansion, this optimal
α−β expansion will be found by optimizing the energy
in Eq. (6).

These new double expansion moves can avoid some
local minima that expansion algorithm gets stuck in, as
illustrated in an example in fig. 5.

If we need to perform expansion as quickly as pos-
sible, that is expanding on each label exactly once,
then only half as many double expansions are needed,
compared to the regular expansions. The double ex-
pansions are done on graphs that are 1.5 times larger,
compared to the expansion graphs. Therefore one could
hope that performing double expansions is faster. How-
ever in practice, with the min-cut/max-flow algorithm
of [7], we found that this was not the case. That is per-
forming k/2 double expansions took approximately the
same time as performing k expansion. Potentially, how-
ever, a future min-cut/max-flow algorithm could work
faster with double expansions.

7 Experimental Results

In this section we evaluate the performance of our multi-
label moves on the problems of image restoration, in-
painting, and stereo correspondence. For the min-cut
computation, we use the max-flow algorithm in [7].

7.1 Image Restoration

In image restoration, we want to reconstruct the orig-
inal image from the given noisy one. In this case, P is
the set of all image pixels, L is the set of all gray levels,
that is L = {0, 1, ..., 255}. We set Dp(fp) = (Ip − fp)2,
where Ip is the intensity of pixel p in the given noisy
image. We used truncated quadratic Vpq(fp, fq) = 8 ·
min{(fp − fq)2, 50} and multi-label swap with t = 3.

Fig. 6(a) shows an artificial image we constructed,
which consists of a circle and a square in front of the
background, and the intensities inside the circle, square
and background vary smoothly. Fig. 6(b) shows image

10

Fig. 5 Example where expansion algorithm gets stuck in a local minimum, and double-expansion finds the global optimum. Here
L = {0, 1, 2, 3}. The top row shows the data terms for these labels in the consecutive order. White means zero cost and black means
an infinitely high data cost. Bottom row, left image, illustrates wpq terms. All of them are infinite except those along the arcs and
segments outlined in black and white. The accumulated cost of cutting along these arcs and segments is shown. For example, cutting
along the top part of the rectangle costs c in total, and cutting along the diagonal of the rectangle costs a in total. Here a > 2b, and
2c = a − b. The expansion algorithm is initialized with all pixels labeled as 0. Expansion proceeds on labels 1 and 2, the results of
which are shown in the second picture, bottom row. Expansion on label 3 results in the solution shown in the third picture, bottom
row, at which point the algorithm converges to a local minimum with cost Csub = 2a + 2a. The optimum is shown in the last picture
bottom row, and its cost is Copt = 4b + a < Csub. Double expansion on labels 2 and 3 finds the optimal labeling, starting from where
expansion gets stuck, i.e. from the third picture, bottom row.

in (a) corrupted by zero mean Gaussian noise with vari-
ance 16. Figs. (c) and (d) show the result of the expan-
sion and multi-label swap, respectively. We omit the
results of the swap algorithm because they are visu-
ally similar to the results of the expansion algorithm.
The energies of the ground truth, expansion algorithm
and our multi-label swap are listed in the figure. No-
tice that our algorithm not only produces an answer
with a significantly lower energy, but also gives the an-
swer which looks smoother2. The expansion algorithm
tends to assign the same label to a subset of pixels that
is too large, and the resulting answer looks piecewise-
constant as opposed to piecewise smooth. This is be-
cause expansion moves seeks to change a large subset
of pixels to the same label, as opposed to our algorithm
which can change a subset of pixels to a smooth range
of labels. In addition to producing a labeling which
is more piecewise smooth, our answer is much closer
to the ground truth. This is due not only to the fact
that our energy is lower, but also to the fact that trun-
cated quadratic energy is more appropriate for piece-
wise smooth restoration. The absolute average error
(compared to the ground truth in (a)) for our answer

2 Depending on the printer resolution, the ground truth and
our answer in the hard copy version of the paper may actually
appear not piecewise smooth but piecewise constant. Zooming in
on the electronic version, one will see images that do look piece-
wise smooth for our answer and the ground truth, and piecewise
constant for the expansion algorithm.

is 0.82, for the swap algorithm the error is 1.35, and
for the expansion algorithm the error is 1.38. Our algo-
rithm does take twice longer to run than the expansion
algorithm on this example. Expansion algorithm takes
about 40 seconds, and our algorithm takes about 80 sec-
onds. The running time for the multi-label swap is only
twice longer because for many moves the multi-label
swap is run on graphs with small residual flow.

7.2 Image Inpainting

Image inpainting problem is similar to image restora-
tion, except that some pixels have been “occluded” and
therefore they have no preference for any label, that is
for an occluded pixel p, Dp(l) = 0 for all l ∈ L. For non-
occluded pixels, we set Dp(l) = (Ip − l)2, where Ip is
the intensity of pixel p. We took a “Penguin” example
from [36], available from D. Scharstein’s web site3. We
used the same energy as in [36], namely Vpq(fp, fq) =
25 ·min{(fp−fq)2, 200}. The final energies are summa-
rized in Figure 7, and the results are in Figure 8. Again,
we set t = 3 for this experiment.

Multi-label swap obtains the best energy on this
inpainting example. However the smooth range move
achieved the energy very close to that of the multi-
label swap, with a running time that is several times

3 http://vision.middlebury.edu/MRF/

11

(a) original Image, energy=419,076 (b) added noise G(0,16)

(c) expansion algorithm, energy=453,994 (d) Multi-label swap, energy=388,730

Fig. 6 Image Restoration Results.

Swap 17,076,141
Expansion 15,918,631
Multi-label Swap 15,382,317
Multi-label Smooth Swap 15,448,641
Multi-label Expansion 15,512,729

Fig. 7 Energies for “Penguin” inpainting. The minimum in each
column is highlighted.

faster. All multi-label versions performed better than
the regular swap and expansion algorithms.

TRW-S algorithm does give a slightly better energy
than we get, namely the energy of 15,349,028, see [36]
Graph cuts, however, perform better than TRW-S when
longer range interactions are present. Szeliski et.al. [36]
studied only the case when N is the 4-connected grid.
Kolmogorov and Rother [18] performed a comparison
between graph cuts and TRW-S when longer range in-
teractions are present in N , and they concluded that
graph cuts perform significantly better in terms of en-
ergy than TRW-S in this case.

7.3 Stereo Correspondence

In this section, we evaluate our multi-label swap, multi-
label expansion, and multi-label smooth swap on the
problem of stereo correspondence. We use the Middle-
bury database stereo images4. This database was con-
structed by D. Scharstein and R. Szeliski, and these
images are the top benchmark in evaluating the perfor-
mance of stereo algorithms [33,34].

For stereo correspondence, P is the set of all pixels
in the left image, L is the set of all possible stereo dis-
parities. We take the disparity labels at sub-pixel preci-
sion, in quarter of a pixel steps. That is if |fp− fq| = 1,
then the disparities of pixels p and q differ by 0.25 pix-
els. Let dl stand for the actual disparity correspond-
ing to the integer label l, for example label 2 corre-
sponds to disparity 0.75. The data costs are Dp(l) =∣∣IL(p)− [IR(p− dl) · (dl − dl) + IR(p− dl)(dl − dl)]

∣∣,

4 The images were obtained from www.middlebury.edu/stereo

12

(a) Input Image (b) swap (c) expansion

(d) multi-label swap (f) multi-label smooth swap (g) multi-label expansion

Fig. 8 Image Inpaining Results.

Venus Sawtooth Teddy Cones

Swap 7,871,677 9,742,107 16,376,181 21,330,284
Expansion 8,131,203 9,418,529 15,829,221 21,020,174
Multi-label Swap 7,188,393 9,371,745 15,421,437 20,490,753
Multi-label Smooth Swap 7,193,823 9,373,126 15,616,999 20,515,493
Multi-label Expansion 7,188,404 9,377,494 15,408,234 20,626,809

Fig. 9 Energies on Middlebury database. The minimum in each column is highlighted.

where x stands for rounding down, x stands for round-
ing up, and p − x stands for the pixel that has the
coordinates of pixel p shifted to the left by x.

Parameter t was set to 2 for all multi-label moves.
We use the truncated quadratic Vpq(fp, fq) = 100 ·
min{(fp−fq)2, 25}. Using spatially varying weights wpq

improves results of stereo correspondence, since it helps
to align disparity discontinuities with the intensity dis-
continuities. We set all wpq = 10, since the main pur-
pose of our paper is to evaluate our multi-label moves,
and not to come up with the best stereo algorithm.

Fig. 9 summarizes the energies we obtain with dif-
ferent algorithms. First let us consider the “binary”
swap and expansion moves vs. the multi-label moves.
The swap and expansion algorithms are clearly inferior
when it comes to truncated convex priors. Even though
the swap algorithm is guaranteed to find a best swap
move and the expansion algorithm is not guaranteed
to find the best move under the truncated quadratic
model, expansion algorithm does perform better for all
scenes except “Venus”. This is probably explained by
the fact that expansion moves are more powerful than
the swap moves. Even if we do not find the optimal

13

Tsukuba Venus Teddy Cones

Multi-label swap 6.7 3.25 15.1 6.79
Swap 7.47 4.04 15.8 7.64
Expansion 7.14 4.19 16.0 7.81

Fig. 10 Accuracy on the Middlebury database.

expansion, a good expansion may be better than the
optimal swap.

Now let us discuss the multi-label moves. First of
all, the running times for the multi-label swap move
was on the order of minutes (from 5 to 10 minutes).
The smooth range move achieved the energy very close
to that of the multi-label swap, but its running time
is about 2 or 3 times faster. The multi-label expansion
move is almost always slightly worse that the multi-
label swap, it is better only on the “Teddy sequence”.
One would expect a better performance from the ex-
pansion move, but since we cannot find the optimal
one, only an approximate one, these results are not en-
tirely surprising. The running time for the expansion
move is much worse than for other multi-label moves,
since the graphs are much bigger. Multi-label expansion
takes about 9-10 times longer than multi-label swap.

The accuracy of the labelings is summarized in Fig. 10.
Each number in Fig. 10 gives the percentage of pix-
els away from ground truth by more than 0.5 pixels.
Tsukuba, Venus, Teddy, Cones are the name of the four
scenes in the Middlebury stereo database. Notice that
our algorithm performs better not only in terms of en-
ergy, but also in terms of ground truth. The accuracy
improvement is slight, but consistent across all the im-
ages in the database.

Fig. 11 shows the full results and Fig. 12 shows a
zoom in on the detail in the Cones sequence. Notice that
our algorithm gives results that look smoother over the
surface of the cone than the expansion algorithm.5

We should mention that the running times of our al-
gorithms can be significantly improved using the ideas
in [3]. They employ techniques such as good initial-
ization, reducing the number of unknown variables by
computing partially optimal solutions, and recycling
flow. All of these are directly transferable to the im-
plementation of our multi-label moves. Their speed ups
are around a factor of 10 or 15.

8 Conclusions

The main contribution of this paper is the idea of the
multi-label moves, as opposed to the commonly used

5 To see the difference, it may be necessary to zoom in on these
images in the electronic version of the paper.

(a) expansion algorithm

(b) multi-label swap

Fig. 11 Results on “Cones”.

(a) expansion algorithm (b) multi-label swap

Fig. 12 Zoom in on the detail.

14

swap and expansion moves that are binary in nature.
We develop and compare several new multi-label moves
for energies with a truncated convex prior, and a new
multi-label move for the Potts model. We discuss the
relative merits of the moves in terms of energy opti-
mization and running times. Clearly, there are many
more useful multi-label moves that can be developed for
multi-label energies. An interesting question is whether
it is possible to discover automatically new multi-label
moves with good properties for a given energy, rather
than develop them by hand.

The multi-label moves we develop in this paper for
the truncated convex priors can be extended to the
other non-submodular multi-label energies. The main
idea is to restrict the set of labels for each pixel so
that the restricted energy is submodular. The optimal
move can be then found with the construction of [35]
for multi-label submodular energies.

References

1. Agarwala, A., Agrawala, M., Cohen, M., Salesin, D., Szeliski,
R.: Photographing long scenes with multi-viewpoint panora-
mas. ACM SIGGRAPH 25(3), 853–861 (2006)

2. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S.,
Colburn, A., Curless, B., Salesin, D., Cohen, M.: Iterac-
tive digital photomontage. ACM SIGGRAPH pp. 294 – 302
(2004)

3. Alahari, K., Kohli, P., Torr, P.: Reduce, reuse, recycle: Ef-
ficiently solving multi-label mrfs. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–8 (2008)

4. Besag, J.: On the statistical analysis of dirty pictures. Jour-
nal of the Royal Statistical Society, Series B 48, 259–302
(1986)

5. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Inter-
active image segmentation using an adaptive gmmrf model.
In: ECCV, pp. Vol I: 428–441 (2004)

6. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal
boundary and region segmentation of objects in n-d images.
In: ICCV, pp. I: 105–112 (2001)

7. Boykov, Y., Kolmogorov, V.: An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. PAMI 26(9), 1124–1137 (2004)

8. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields
with efficient approximations. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 648–655 (1998)

9. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate en-
ergy minimization via graph cuts. PAMI 23(11), 1222–1239
(2001)

10. Carr, P., Hartley, R.: Solving multilabel graph cut problems
with multilabel swap. In: Digital Image Computing: Tech-
niques and Applications (2009)

11. Geman, S., Geman, D.: Stochastic relaxation, gibbs distri-
butions, and the bayesian restoration of images. PAMI 6,
721–741 (1984)

12. Gould, S., Amat, F., Koller, D.: Alphabet soup: A framework
for approximate energy minimization. In: IEEE Conference
on Computer Vision and Pattern Recognition, pp. 903–910
(2009)

13. Hays, J., Efros, A.A.: Scene completion using millions of pho-
tographs. ACM SIGGRAPH 26(3) (2007)

14. Ishikawa, H.: Exact optimization for markov random fields
with convex priors. PAMI 25(10), 1333–1336 (2003)

15. Ishikawa, H., Geiger, D.: Occlusions, discontinuities, and
epipolar lines in stereo. In: ECCV, p. I:232 (1998)

16. Kolmogorov, V.: Convergent tree-reweighted message pass-
ing for energy minimization. PAMI 28(10), 1568–1583 (2006)

17. Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother,
C.: Probabilistic fusion of stereo with color and contrast for
bilayer segmentation. PAMI 28(9), 1480–1492 (2006)

18. Kolmogorov, V., Rother, C.: Comparison of energy minimiza-
tion algorithms for highly connected graphs. In: ECCV, pp.
II: 1–15 (2006)

19. Kolmogorov, V., Shioura, A.: New algorithms for convex cost
tension problem with application to computer vision. Dis-
crete Optimization 6(4), 378–393 (2009)

20. Kolmogorov, V., Zabih, R.: Computing visual correspon-
dence with occlusions via graph cuts. In: ICCV, pp. II: 508–
515 (2001)

21. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruc-
tion via graph cuts. In: ECCV, p. III: 82 ff. (2002)

22. Kolmogorov, V., Zabih, R.: What energy functions can be
minimized via graph cuts? In: ECCV (2002)

23. Kumar, M.P., Torr, P.H.S.: Improved moves for truncated
convex models. In: D. Koller, D. Schuurmans, Y. Bengio,
L. Bottou (eds.) Advances in Neural Information Processing
Systems 21, pp. 889–896 (2009)

24. Kumar, M.P., Veksler, O., Torr, P.: Improved moves for trun-
cated convex models. Journal of Machine Learning Research
12, 31–67 (2011)

25. Kwatra, V., Schdl, A., Essa, I., Turk, G., Bobick, A.: Graph-
cut textures: Image and video synthesis using graph cuts.
ACM Transactions on Graphics, SIGGRAPH 2003 22(3),
277–286 (2003)

26. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and
depth from a conventional camera with a coded aperture. In:
ACM SIGGRAPH, p. 70 (2007)

27. Liu, X., Veksler, O., Samarabandu, J.: Graph cut with or-
dering constraints on labels and its applications. In: CVPR,
pp. 1–8 (2008)

28. Nguyen, M.H., Lalonde, J.F., Efros, A.A., de la Torre, F.:
Image-based shaving. Computer Graphics Forum Journal
(Eurographics 2008) 27(2), 627–635 (2008)

29. Pearl, J.: Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann (1988)

30. Rother, C., Kumar, S., Kolmogorov, V., Blake, A.: Digital
tapestry. In: IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. I: 589–596 (2005)

31. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Coseg-
mentation of image pairs by histogram matching: Incorpo-
rating a global constraint into mrfs. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. I: 993–1000
(2006)

32. Roy, S., Govindu, V.: Mrf solutions for probabilistic optical
flow formulations. In: ICPR00, pp. Vol III: 1041–1047 (2000)

33. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV
47(1-3), 7–42 (2002)

34. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps
using structured light. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. I: 195–202 (2003)

35. Schlesinger, D., Flach, B.: Transforming an arbitrary minsum
problem into a binary one. Technical Report TUD-FI06-01,
Dresden University of Technology (2006)

36. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kol-
mogorov, V., Agarwala, A., Tappen, M., Rother, C.: A com-
parative study of energy minimization methods for markov

15

random fields with smoothness-based priors. IEEE Transa-
cions on Pattern Analysis and Machine Intellegence 30(6),
1068–1080 (2008)

37. Torr, P.H.S.: In: personal communication (2008)
38. Veksler, O.: Graph cut based optimization for mrfs with trun-

cated convex priors. In: CVPR, pp. 1–8 (2007)
39. Veksler, O.: Multi-label moves for mrfs with truncated convex

priors. In: Energy Minimization Methods in Computer Vision
and Pattern Recognition, pp. 1–13 (2009)

40. Wills, J., Agarwal, S., Belongie, S.: What went where. In:
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. I: 37–44 (2003)

