Reasoning about the elementary functions of
complex analysis

Robert M. Corless James H. Davenport*
David J. Jeffrey Dept. Mathematical Sciences
Gurjeet Litt University of Bath
Ontario Research Centre Bath BA2 TAY
for Computer Algebra England
WWW.Oorcca.on.ca jhd@maths.bath.ac.uk

Reprinted from AISC 2000, LNCS 1930 pp. 115-126.

Abstract
There are many problems with the simplification of elementary functions,
particularly over the complex plane. Systems tend to make “howlers” or
not to simplify enough. In this paper we outline the “unwinding number”
approach to such problems, and show how it can be used to systematise
such simplification, even though we have not yet reduced it to a complete
algorithm. The unsolved problems are probably more amenable to the
techniques of artificial intelligence and theorem proving than the original
problem of complex-variable analysis.
Keywords: Elementary functions; Branch cuts; Complex identities.
Topics: Al and Symbolic Mathematical Computing; Integration of Log-
ical Reasoning and Computer Algebra.

1 Introduction

The elementary functions are traditionally thought of as log, exp and the trigono-
metric and hyperbolic functions (and their inverses). This should include pow-
ering (to non-integral powers) and also the n-th root. These functions are built
in, to a greater or lesser extent, into many computer algebra systems (not to
mention other programming languages [7, 11]), and are heavily used. How-
ever, reasoning with them is more difficult than is usually acknowledged, and
all algebra systems have one, sometimes both, of the following defects:

e they make mistakes, be it the traditional schoolboy one

1=V1i=+/(-12=-1 (1)

*This work was performed while this author held the Ontario Research Chair in Computer
Algebra at the University of Western Ontario.

or more subtle ones — see footnote 5;

e they fail to perform obvious simplifications, leaving the user with an im-
possible mess when there “ought” to be a simpler answer. In fact, there
are two possibilities here: maybe there is a simpler equivalent that the
system has failed to find, but maybe there isn’t, and the simplification
that the user wants is not actually valid, or is only valid outside an ex-
ceptional set. In genera, the user is not informed what the simplification
might have been, nor what the exceptional set is.

Throughout this paper, z and its decorations indicate a complex variable, z,
y and t real variables. For the purposes of this paper, the precise definitions
of the inverse elementary functions in terms of log are those of [3]: these are
reproduced in Appendix A for ease of reference.

2 The Problem

The fundamental problem is that log is multi-valued: since exp(27i) = 1, its
inverse is only valid up to adding any multiple of 27i. This ambiguity is tra-
ditionally resolved by making a branch cut: usually [1, p. 67] the branch cut
(=00, 0], and the rule (4.1.2) that

—m < Slogz < . (2)

This then completely specifies the behaviour of log: on the branch cut it is
continuous with the positive imaginary side of the cut, i.e. counter-clockwise
continuous in the sense of [9)].

What are the consequences of this definition!? ;From the existence of branch
cuts, we get the problem of a lack of continuity:

lim log(z + iy) # log(z) : (3)

yHO’
for < 0 the limit is log(x) — 2mi. Related to this is the fact that
logz # log z (4)

on the branch cut: instead logz = log z + 27i on the cut. Similarly,

log(l) # —log z (5)

z

on the branch cut: instead log(1) = —logz + 27i on the cut.

IWhich we do not contest: it seems that few people today would support the rule one of us
(JHD) was taught, viz. that 0 < Slogz < 27. The placement of the branch cut is “merely”
a notational convention, but an important one. If we wanted a function that behaves like log
but with this cut, we could consider log(—1) — log(—1/z) instead. We note that, until 1925,
astronomers placed the branch cut between one day and the next at noon [6, vol. 15 p. 417].

Although not normally explained this way, the problem with (1) is a con-
sequence of the multi-valued nature of log: if we define (as for the purposes of
this paper we do)

V7 = exp (; log z) , (6)

then 57 < 3y/z < 7. On the real line, this leads to the traditional resolution
of (1): Va2 = |x|.

Three families of solutions have been mooted to these problems.

e [9] points out that the concept of a “signed zero”? [8] (for clarity, we write
the positive zero as 07 and the negative one as 07) can be used to solve
the above problems, if we say that, for x < 0, log(z + 07¢) = log(z) + 7
whereas log(x+07¢) = log(x) —mi. Equation (3) then becomes an equality
for all z, interpreting the = on the right as « 4+ 074. Similarly, (4) and (5)
become equalities throughout. Attractive though this proposal is, it does
not answer the fundamental question as far as the designer of a computer
algebra system is concerned: what to do if the user types log(—1).

e [4] points out that most “equalities” do not hold for the complex logarithm,
e.g. log(2?) # 2log z (try z = —1), and its generalisation

log(z122) # log(21) + log(22). (7)

The most fundamental of all non-equalities is z = logexp z, whose most
obvious violation is at z = 2mwi. They therefore propose to introduce the
unwinding number K, defined® by

_z—logexpz [Sz—7
Me) = —5 { o WGZ ®)

Ry

(note that the apparently equivalent definition L o J differs precisely on
the branch cut for log as applied to exp z). (7) can then be rescued as

log(z122) = log(z1) + log(z2) — 2mik(log(z1) + log(z2)). (9)
Similarly (4) can be rescued as
logz = log z — 2miK(log 2). (10)

Note that, as part of the algebra of K, K(log z) = K(—log z) # K(log 1).
K(z) depends only on the imaginary part of z.

20ne could ask why zero should be special and have two values. The answer is that all the
branch cuts we need to consider are on either the real or imaginary axes, so the side to which
the branch cut adheres depends on the sign of the imaginary or real part, including the sign
of zero.

3Note that the sign convention here is the opposite to that of [4], which defined K(z) as
I_%SZJ the authors of [4] recanted later to keep the number of —1s occurring in formulae to
a minimum.

e Although not formally proposed in the same way in the computational
community, one possible solution, often found in texts in complex anal-
ysis, is to accept the multi-valued nature of these functions (we adopt
the common convention of using capital letters, e.g. Ln, to denote the
multi-valued function), defining, for example

Arcsin z = {y|siny = z}.

This leads to v/ 22 = 4z, which has the advantage that it is valid through-
out C. Equation 7 is then rewritten as

Ln(z122) = Ln(z1) + Ln(z9), (11)

where addition is addition of sets (A+ B ={a+b:a € A,b e B}) and
equality is set equality?.

However, it seems to lead in practice to very large and confusing formu-
lae. More fundamentally, this approach does not say what will happen
when the multi-valued functions are replaced by the single-valued ones of
numerical programming languages.

A further problem that has not been stressed in the past is that this
approach suffers from the same aliasing problem that naive interval arith-
metic does [5]. For example,

Ln(z?) = Ln(z) + Ln(z) # 2Ln(z),

since 2Ln(z) = {21n(z) + 4kni : k € Z}, but Ln(z) + Ln(z) = {2In(z) +
2kmi : k € Z}” indeed if 2 = —1, In(22) ¢ 2Ln(z). Hence this method is
unduly pessimistic: it may fail to prove some identities that are true.

3 The role of the Unwinding Number

We claim that the unwinding number provides a convenient formalism for rea-
soning about these problems. Introducing the unwinding number systematically
allows one to make “simplifying” transformations that are mathematically valid.
The unwinding number can be evaluated at any point, either symbolically or
via guaranteed arithmetic: since we know it is an integer, in practice little ac-
curacy is necessary. Conversely, removing unwinding numbers lets us genuinely
“simplify” a result. We describe introduction and removal as separate steps,
but in practice every unwinding number, once introduced by a “simplification”
rule, should be eliminated as soon as possible.

The following section gives examples of reasoning with unwinding numbers.

4“The equation merely states that the sum of one of the (infinitely many) logarithms of z;
and one of the (infinitely many) logarithms of zo can be found among the (infinitely many)
logarithms of z;z2, and conversely every logarithm of z; 22 can be represented as a sum of this
kind (with a suitable choice of Lnz; and Lnz2).” [2, pp. 259-260] (our notation).

4 Examples of Unwinding Numbers

4.1 Forms of arccos

The following example is taken from [3], showing that two alternative definitions
of arccos are in fact equal.

Lemma 1
N \/g\/g(_l)iC(ln(zl)Hn(zQ)). (12)
Proof.

Jam = eXp(;(ln(zlzz))>

= exp (; (In(z1) + In(22) — 2miK(In(z1) + In(22)))

Vziy/zzexp (—mi(In(z1) + In(z2)))
\/Z\/E(il)lC(ln(zl)Jrln(zz))

Lemma 2 Whatever the value of z,

V1—2V1+2z2=+v1-22

This is a classic example of a result that is “obvious” — the schoolboy just
squares both sides, but in fact it requires proof. To show this, consider the
apparently similar “result”®:

V—i—2V—i+2z2=+v—-1-22

If we take z = %7 the left-hand side becomes _T?ﬂ _71 the arguments of the
square roots have arg = =%, so the square roots themselves have arg = —F,
and the product has arg = =%, and therefore is _T‘/gz The right-hand side is
=3 = 3
4 2

Proof. It is sufficient to show that the unwinding number term in lemma 1
is zero. Whatever the value of z, 14z and 1— z have imaginary parts of opposite
signs. Without loss of generality, assume Sz > 0. Then 0 < arg(l+2) <7
and —7 < arg(l — z) < 0. Therefore their sum, which is the imaginary part of
In((142)+1In(1 —2), is in (—m, 7]. Hence the unwinding number is indeed zero.

Theorem 1

2 1+z . [1—2z)}) 5
iln<\/ 5 —|—Z\/ 5)-—zln(z+z l—z). (13)

5Maple V.5, in the absence of an explicit declaration that z is complex, will say that the
two are almost never equal, with the difference being —2iv/1 — 22, but in fact at z = 2i, the
two are equal.

Proof. Now

2
1 1-—
(\/ JrZ—I—i\/ Z) =24Vl —2V1l+z2z=2+1/1—-22

2 2

by the previous lemma. Also 2Ina = In(a?) if £(2Ina) = 0, so we need only
show this last stipulation i.e. that

T car \/1+Z+i\/1_z <
g S8 2 2 | =7

This is trivially true at z = 0. If it is false then we have to pass through
‘arg (Lz 4 1;)’ =2 ie. y/1E2+4i /152 =it for t € R. Squaring both

sides, z +ivV1 — 22 = —t2, ie. (2 + t2) = 7(1 — 2%). Hence 22t? +t* = —1,
SO z = (;";t) < —1, and in particular is real. On this half-line, the argument

in question is +/2, which is acceptable. Hence the argument never leaves the
desired range, and the theorem is proved.

4.2 arccos and arccosh

cos(z) = cosh(iz), so we can ask whether the corresponding relation for the
inverse functions, arccosh(z) = 4arccos(z) holds. This is known in [3] as the
“couthness” of the arccos /arccosh definitions. The problem reduces, using equa-
tions (20) and (

(F V) (),
(o ()

Since In(a) = In(b) implies a = b, this reduces to

z—192. [1—2 1—=2
A/ 5 =i\ / 5 =vV—14/ 5
z—1

By lemma 1, the right-hand side reduces to /251 (—1)*(n(=D+n(5
the two are equal if, and only if, the winding number is even (and therefore
zero). This will happen if, and only if, & (%) <0,ie Sz<0or &z=0and
z> 1.

). Hence

4.3 arcsin and arctan

The aim of this section is to prove that

arcsin z = arctan \/% +7K(—1In(1 + 2)) — 7K(—1n(1 — 2)). (14)

We start from equations (19) and (21). Then

z

z z
= In(l+t——) —In(l—1—w—
1—22 (\/1—22> (\/1—22)

- In ([1 +i\/%]/[1 - z\/lzj])
+omik (ln(l +i)—In(1—i

2t arctan

z
V1—2z2

= In[iz+ V1 — 222

ik (In(1 + z‘\/l%j) —In(l—i
= 2jarcsin(z)

—2milC (2 In(iz ++1— 22))

+2mik (ln(l +1) —1In(1—1

z
V1—2z2

z
V1—22

z
V1—2z2

z
V1—22

The tendency for K factors to proliferate is clear. To simplify we proceed as

follows. Consider first the term

K2In(iz+ v1 - 22))

For |z] < 1, the real part of the logarithm argument is positive and hence K = 0.
For |z| > 1, we solve for the critical case in which the argument of K is —7 and

find only z = rexp(in), with r > 1. Therefore
K2In(iz+v1—-22))=K(—In(1+2)) .
Repeating the procedure with

K(n(l+iz/v/1—22) —In(1 —iz/V/1—22))
shows that K # 0 only for z > 1. Therefore
K(n(1+1iz/v/1—=22) —In(1l —iz/v/1—22)) = K(=In(1 — 2))
and so finally we get
z
arctan ——— = arcsin(z) — 7/ (—In(1 + 2)) + 7K(—In(1 — 2)) ,
=y = avesinz) 7K (= In(1 +) + 7K (= (1 -)

and this cannot be simplified further.

5 The Unwinding Number: Introduction

(15)

Unwinding numbers are normally introduced by use of equation (9) and its

converse:

log (2) = log(z1) — log(22) — 27K (log(z1) — log(22)) -

(16)

Equation (10) may also be used, as may its close relative (also a special case of

(16)) X
log <z> = —log(z) — 27K (—log(z)) . (17)

In practice, results such as lemma 1 would also be built in to a simplifier.
The definition of K gives us

log(exp(z)) = z — 2miK(2), (18)

which is another mechanism for introducing unwinding numbers while “simpli-
fying”. The formulae for other inverse functions are given in appendix B.

6 The Unwinding Number: Removal

It is clearly easier to introduce unwinding numbers than to remove them. There
are various possibilities for the values of unwinding numbers.

e A winding number may be identically zero. This is the case in lemma 2
and theorem 1. The aim is then to prove this.

e An unwinding number may be zero everywhere except on certain branch
cuts in the complex plane. This is the case in equation (10), and its rela-
tive log 2 = —log 22mikC(—log(z)). A less trivial case of this can be seen
in equation (14). Derive has a different definition of arctan to eliminate

this, so that, for Derive, arcsin(z) = arctan \/12_7 This definition can be

Derive
related to ours either via unwinding numbers or via arctan (z) = arctanz.

Derive
It is often possible to disguise this sort of unwinding number, which can

often be recognised by being of the form K(—1In(...)) or K(Inz) by resort-
ing to such a “double conjugate” expression, though as yet we have no
algorithm for this. Equally, we have no algorithm as yet for the sort of
simplification we see in section 14.

e An unwinding number may divide the complex plane into two regions,
one where it is non-zero and one where it is zero. A typical case of this
is given in section 4.2. Here the proof methodology consists in examining
the critical case, i.e. when the argument to K has imaginary part +m.

e An unwinding number may correspond to the usual +nm: n € Z of many
trigonometric identities: examples of this are given in appendix B.

7 Conclusion

Unwinding number introduction allows combination of logarithms, square roots
etc., as well as canceling functions and their inverses, while retaining mathe-
matical correctness. This can be done completely algorithmically.

Unwinding number removal, where it is possible, then simplifies these results
to the expected form. This is not a process that can currently be done algorith-
mically, but it is much better suited to current artificial intelligence techniques
than the general problems of complex analysis.

When the unwinding numbers cannot be eliminated, they can often be con-
verted into a case analysis that, while not ideal, is at least comprehensible while
being mathematically correct.

More generally, we have reduced the analytic difficulties of simplifying these
functions to more algebraic ones, in areas where we hope that artificial intelli-
gence and theorem proving stand a better chance of contributing to the problem.

References

[1] Abramowitz,M. & Stegun,l., Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. US Government Printing Of-
fice, 1964. 10th Printing December 1972.

[2] Carathéodory,C., Theory of functions of a complex variable (trans. F. Stein-
hardt), 2nd. ed., Chelsea Publ., New York, 1958.

[3] Corless,R.M., Davenport,J.H., Jeffrey,D.J. & Watt,S.M., “According to
Abramowitz and Stegun”. To appear in SIGSAM Bulletin.

[4] Corless,R.M. & Jeffrey,D.J., The Unwinding Number. SIGSAM Bulletin
30 (1996) 2, pp. 28-35.

[5] Davenport,J.H. & Fischer,H.-C., Manipulation of Expressions. Improving
Floating-Point Programming (ed. P.J.L. Wallis), Wiley, 1990, pp. 149-167.

[6] Encyclopedia Britannica, 15th. edition. Encyclopedia Britannica Inc.,
Chicago etc., 15th ed., 1995 printing.

[7] IEEE Standard Pascal Computer Programming Language. IEEE Inc., 1983.
[8] IEEE Standard 754 for Binary Floating-Point Arithmetic. IEEE Inc., 1985.

[9] Kahan,W., Branch Cuts for Complex Elementary Functions. The State of
Art in Numerical Analysis (ed. A. Iserles & M.J.D. Powell), Clarendon
Press, Oxford, 1987, pp. 165—211.

[10] Litt,G., Unwinding numbers for the Logarithmic, Inverse Trigonometric
and Inverse Hyperbolic Functions. M.Sc. project, Department of Applied
Mathematics, Universiyt of Western Ontario, December 1999.

[11] Steele,G.L.,Jr., Common LISP: The Language, 2nd. edition. Digital Press,
1990.

A Definition of the Elementary Inverse Func-

tions

These definitions are taken from [3]. They agree with [1, ninth printing], but
are more precise on the branch cuts, and agree with Maple with the exception

of arccot, for the reasons explained in [3].

arcsin z = —iln(1—22 +iz).

s . 2 1+2z .
arccos(z) = 5 arcsin(z) = — In 5 +i
i

arctan(z) = 2% (In(1 4 iz) — In(1 — iz)).

1 z4+1 1
arccot z = — In - | = arctan | — | .
21 z—1 z

arcsec(z) = arccos(1/z) = —iln(1/2z + iy/1 — 1/22),

with arcsec(0) = 7.

arcesc(z) = arcsin(1/z) = —iln(i/z + /1 — 1/22),

with arccse(0) = 0.

arcsinh(z

A

z+\/1+22)

1 -1
arccosh(z):21n< G +4/2 >

ﬁ

1
arctanh(z) = 3

arccoth(z) = %(1(1—2)—1In(1-2)).

1—z>.

T

arcsech(z) = 21n (

1 1
arcesch(z) =In | — +4/1+ (>
z z

(In(1+2) —In(1 — 2)).

B Formulae for inverse functions

These formulae are taken from [10]. They make use of the function csgn, defined
by

o= o {12 D R 2

& &
|

o | 227K (1) csgn(cosz) =1

arcsin(sin(2)) = { m—z—27K(i(mr —2)) csgn(cosz) =—1" (31)
o z—21K (%) csgn(sinz) =1
arccos(cos z) = { —z —2wK(—zi) csgn(sinz) = —1" (32)
arctan(tanz) = z + 7 (K(—=zi — Incos z) — K(zi — Incos z)) (33)
provided z # 5 +nm: n € Z.

. . | z—2miK(z) csgn(cosh z) =1
arcsinh(sinh(z)) = { im— 2z —2miK(im — z)) csgn(coshz) = -1~ (34)

fz=27K(2) csgn(sinh z) cos(nm) = 1
arccosh(cosh z) = { —z —2mik(—%) csgn(sinz)cos(nm) = —1° (35)

where n = K (In(cosh(z) — 1) + In(cosh(z) + 1)).
arctanh(tanh z) = z 4+ im (K(z — Incosh z) — K(z — In cosh 2)) (36)

provided z # $i +inm: n € Z.

11

