A Framework for Using Aldor Libraries with Maple

Cosmin Oancea Stephen M. Watt

Abstract

This paper examines what is required to use Aldor libraries to extend Maple in an
effective and natural way. This represents a non-traditional approach to structuring
computer algebra software: using an efficient, compiled language, designed for writing
large complex mathematical libraries together with a top-level system based on user-
interface priorities and ease of scripting. Our method involves the generation of Maple,
C and Aldor stub code, uses a number of supporting modules, and relies on an enhanced
foreign function interface for Maple. Since the language models of Maple and Aldor
differ, the interface code implements various semantic correspondences. The Aldor
functions run tightly coupled to the Maple environment, able to directly and efficiently
manipulate Maple data objects. We call the overall system Mapal.

Introduction

One of the positions held over the past two decades of mainstream computer algebra system
design has been that there should be one over-arching language that serves both the end user
and library developer. This has led to systems either that use modified scripting languages
for their libraries (e.g. Maple), or that use modified library-building languages for their user
interface (e.g. Axiom). A variant of this approach is to build much of the the mathematical
support in a lower-level system implementation language, such as Lisp (e.g. in Macsyma)
or C (e.g. in Mathematica). This paper examines the structure required for a different
approach: to use libraries written in a programming language well-adapted for computer
algebra, Aldor [6], together with an environment aimed at the general end-user, Maple [2].
We assume that the functionality of the extension library may either be a collection of very
fast core routines or calls to larger software components. We therefore look beyond the
solutions offered by loosely coupled computer algebra systems, e.g. OpenMath[3] or the
software bus[4].

Our solution consists of two parts: the first part allows the low-level run time systems
of Maple and Aldor to work together. That is, it allows Aldor functions to call Maple
functions and vice versa, and provides a protocol whereby the garbage collectors of the two
systems can interact with each other to cooperate in collecting garbage when structures span
two system heaps. This low-level work has been reported elsewhere [5]. The second part,
reported here, implements a high-level correspondence between Maple and Aldor concepts.
The aim has been to allow Aldor domains to appear to the user as Maple modules, and
to bridge the semantic differences between the two environments. For this we use a tool

to generate Aldor, C and Maple code (to wrap each Aldor library) as well as supporting
run-time code (to do type dispatch and caching). The resulting package, which we call
Mapal, allows standard Aldor libraries to be used in a standard Maple environment [2].

We see the following as contributions of the approach we outline. Firstly, Aldor has
been found to offer efficiencies comparable to hand-coded C++ [1]. This approach allows user
extensions to operate with efficiencies comparable to Maple kernel routines. Secondly, these
extensions are in a high-level language, well-adapted for mathematical software, allowing
the programmer to ignore lower-level details, and well-integrated in the Maple environment.
This is very different from earlier work on foreign function interfaces. Thirdly, Aldor is
designed for mathematical “programming in the large” and provides linguistic support for
such concepts as generic algorithms, algebraic interface specification and enforcement, etc.
Finally, authors of Aldor code often wish to make their functionality available through
Maple, e.g. Bronstein’s library for algorithms on differential operators and Moreno Maza’s
library for triangular sets.

The remainder of this paper is organized as follows: Section 1 presents an architectural
overview of the Mapal system, while Section 2 briefly describes the key ideas used in the
process of inter-operating Maple with Aldor.

1 An Overview of Mapal

In order to provide a rich connectivity between the Maple and Aldor programming environ-
ments our system should: (a) allow Maple to interact with Aldor components in an efficient
manner, within a small overhead cost, (b) extend the Maple language (by providing map-
pings for concepts such as overloading, domains, ..), (c) be easy to use, rendering a Maple
“look and feel” to the user, and (d) provide an interactive type-checking mechanism that
gracefully handles user needs, and errors.

Figure 1 introduces the main components of the Mapal architecture. The module that
does the stub code generation is located inside the Aldor compiler. It receives as input an
Aldor program, and generates a binary representation of it, together with Aldor, C, and
Maple stubs for the program’s exports (among which there may be exports that have their
definition in some Aldor library).

The Maple stub is in fact the interface between user and the Mapal system, thus it
uses the functionality of the type checking module, in order to ensure a correct call to
the Aldor library; otherwise, if no type-checking is performed, an incorrect call, will most
likely produce an error (somewhere inside the Aldor library) that will end the current
Maple session: a highly undesirable event. The type-checking module is designed to provide
feedback to the user in the case of an erroneous invocation, that will help him to correct
his program (for example it will list the allowed export types for a given export name). If
a fast implementation is desired the Mapal code generation module is able to produce code
in which no type checking is performed (once the program has reached a mature phase, one
may want to eliminate the type-checking overhead). The type checking module is mostly
implemented in Maple. However, as Figure 1 shows, it consists of code written in all three

ALDOR COMPILER P

4f6\|dor Prog. \
I MAPAL module I — Source _J

Aldor Environment M aple Environment
P U — ~
Aldor Prog. Binar} 1 Maple Program | -
-

Aldor ALDOR C Code MAPLE
Code Code
MAPAL Type Checking Module
LDOR Run—Time Maple Run—Time System

System Enhancements

MAPAL SYSTEM

Library

Figure 1: High-Level Architecture Overview: white arrows mean “generates,” normal arrows
mean “uses,” dashed boxes are user source code, light boxes are generated code

languages (Maple, C, and Aldor) as it uses some of Aldor’s runtime system functionality
(the “has” operation that tests if a given domain satisfies a given category).

Our architecture allows Maple to share a single process space with highly optimized
Aldor components from a library. However, the cost of calling such a code can be quite
expensive, as the Aldor stub may require a number of expensive runtime operations (like
domain instantiation) that cannot be statically optimized by the Aldor compiler (as this
operations may involve parameters that are known only at runtime). Thus, for perfor-
mance reasons, the Maple stub is using a cache module to remember previously computed
domain/category types. Also, it is returning to the user Aldor-closure objects that can then
be invoked directly, thus by-passing the Aldor stub.

The C stub is the glue between the Maple and Aldor environments. In order to suc-
cessfully complete a foreign Aldor invocation, the Maple stub will call the C stub that will
forward the request to the Aldor stub, and finally this one will invoke the correct Aldor
export with valid Aldor parameters and return a value to the C stub. The C stub will
create foreign Maple object(s) and return it/them to the Maple stub. The functionality of
the “maple run-time system module”, that appears in the figure is to synchronize Maple’s
and Aldor’s garbage collectors (this work is presented elsewhere [5]).

In order to use our architecture, the Maple-user is required to understand the new pro-
gramming language concepts introduced into the Maple world by our mapping mechanism
(overloading, domain types, etc...). The information of how to use the Aldor components
is provided in a Maple-like fashion, while the internal invocation mechanism is completely
transparent for the user.

2 Toward a Rich Maple-Aldor Interoperability

Aldor is a strongly typed functional programming language with a higher order type sys-
tem. The type system has two levels: each value belongs to some unique type, known as its
domain. Domains are in principle run-time values, but they belong to type categories which
can be determined statically. Categories can specify properties of domains such as which
operations they export, and are used to specify interfaces and inheritance hierarchies. In
Figure 2 (B), Module(R:Ring) is a parameterized category representing the mathematical
category of R-Modules. The Poly domain is an element of the Module (R) category, having
the dependent mapping type: (R:Ring) -> Module(R) (polynomials with coefficients in
R). In Aldor, within a domain-valued expression, the name % refers to the domain name be-
ing computed, is fixed-pointed, and can be used as a type name. Dependent products and
mapping types are fully supported in Aldor. Generic programming is achieved through ex-
plicit parametric polymorphism, using functions which take types as parameters and which
operate on values of those types, e.g. £(R:Ring,a:R,b:R):R == a*b - bxa.

The code in Figure 2 helps in presenting the high-level conceptual ideas used for inter-
facing Maple with Aldor. For a rich connectivity between the two considered languages to
exist, Aldor’s features like run-time domain types, overloading, dependent types, mapping
types need to be mapped at the Maple level (we are thus performing implicitly a language
extension). The key for the translation of these features is to create (via the Maple stub)
dynamic types corresponding to the hierarchy of (available) Aldor types, and to design a
dynamic type-checking mechanism for the foreign Maple objects.

A module is a first-class Maple expression and provides a collection of name bindings.
Some of these bindings are accessible to Maple code outside the module, after the module
has been constructed; these are the “exports” of the module [2]. An Aldor domain (Poly)
is translated into a Maple function producing at run-time a module, that in addition en-
capsulates whatever information is necessary for type-checking its parameters and exports
(see lines 7, 9 in Figure 2; type/TC is the Mapal’s type checker that ensures the consistency
of the mapped Maple code with the Aldor type system). Name overloading in our mapping
is achieved by concatenating the different implementations sharing the same name inside
a single function, in which dynamic type tests identify the right code to be executed (see
lines 8, 10). Dependent types are naturally handled by Mapal’s type-checking mechanism.

As can be seen in Figure 2 (C) the Aldor stub is quite simple, as Aldor’s type inference
mechanism is employed to identify the correct export to be returned.

The last thing to be mentioned is a summary of the Mapal’s type-checking mechanism.
To type-check that a foreign Maple object o is of type d, where d is a maple module
corresponding to an Aldor domain type, the Aldor type of o (can be found through the
foreign object layout), and the Aldor object representation of d are compared. To type-
check that a Maple domain object belongs to a certain category type, the Aldor’s run-time
system is invoked (“has” operation) via the Mapal’s Aldor stub. To test that a foreign
Maple functional object S1->T1 is of a functional type S2->T2, one has to verify that S2
is a subtype of S1, and T1 is a subtype of T2. When testing this, a run-time unification
algorithm is used, which computes and works with the fix-point representation of a type

1. Poly := proc() ##(A) Maple stub -- (B) Aldor code

2. local ret, argsl; argsl = [args]; define Module(R:Ring) : Category
3. if(type(args[1], TC(Ring()))) then == Ring with {

4. ret := module() export ‘x¢, self; coerce: (String) -> %;

5. ‘coerce‘ := proc() coerce: (R) —> %; -— ...
6. if (nargs=1) then }

7. if (type(args[1], TC(args1[1,3]))) Poly(R: Ring) : Module(R) == add {
8. then ## ... implem. coerce(s: String) : % == ...;
9. elif (type(args[1], TC(String()))) coerce(r: R) : % == ...; —— ...
10. then ## ... implem. }

11. fi; fi; error("No Such funct!");

12. end proc; end module: -— (C) Aldor stub for coerce: (R)—>%
13. ret:-self := ret; ## ... acoerce. .. (R:Ring) : (R)->Poly(R) ==
14. fi; error("No Such funct"); end proc: coerce$Poly(R);

Figure 2: (A)/(C) Part of Generated Maple/Aldor Stub, (B) Aldor Code

(otherwise for mutually recursive types the algorithm will never end). The only non-trivial
sub-typing lattices for our type system are the lattices of categories and functions.

Figure 3 shows a user-Mapal interaction example. Domain types are run-time values
both in Aldor and in our mappings: the user has to construct them first in order to use
their exports. They are also first class values (can be passed as parameter or be returned
by a function). Line 1 creates a foreign Maple object corresponding to the SingleInteger
Aldor domain. Line 2 creates a foreign Maple object for the integer 5; its Mapal’s type
is the SingleInteger () module. Line 3 creates the Mapal’s type corresponding to the
Aldor’s Poly(SingleInteger) domain. Finally, on line 4, the coerce function is called,
and as result, a list composed from a foreign Maple object of Poly(SingleInteger) Aldor
type, and a closure object corresponding to the coerce Aldor function is returned (we are
interested only in the foreign object therefor [1] in line marked with (*)). Line 5 shows how
our framework is reacting to an erroneous input. The type checking module will detect that
the parameter to the coerce export is neither of type SingleInteger, nor of type String,
and in consequence the Aldor library invocation (that otherwise will end the Maple session)
will be skipped. Feedback is provided to the user with respect to the valid type signatures
of the coerce function.

References

[1] L. Bernardin, B. Char, and E. Kaltofen. Symbolic computation in java: An appraisement. In
Proc. ISSAC 1999, pages 237-244. ACM, 1999.

[2] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and
P. DeMarco. Maple 9 Advanced Programming Guide. Maplesoft, 2003.

[3] Special issue on OpenMath. ACM SIGSAM Bulletin, 34(2), June 2000.

1. > SI_dom := SingleInteger():-asForeign;
[€‘d’’, 145930296, module() export ...]
2. > si_obj := MAPAL:-AldorInt(5);

[‘“0’’, 5, module() export ...]

3. > poly_si_dom := Poly(SI_dom);
module() export ... end module

4. > poly_obj := poly_si_dom:-coerce(si_obj)[1]; ##(*)
[“‘0’?, 145939408, module() export ...]

5. > wrong_obj := poly_si_dom:-coerce(SI_dom);

no function with this signature! candidates:
coerce: (SingleInteger)->Poly(SingleInteger)
coerce: (String) -> Poly(Singlelnteger)

Figure 3: User-Mapal interaction. The not-numbered lines shows the Maple’s output for
the executed instructions. The layout for the foreign Maple object is a set containing
a classification identifier (”0”-object, ”d”-domain, ”c”-category), a pointer to the Aldor
object (or if a basic type a value), and a Mapal type.

[4] J. Purtilo. Applications of a software interconnection system in mathematical problem solving
environments. In Symposium on Symbolic and Algebraic Manipulation (SYMSAC 86), pages
16-23. ACM, 1986.

[5] S. M. Watt. A study in the integration of computer algebra systems: Memory management in
a Maple-Aldor environment. In Proc. International Congress of Mathematical Software, pages
405-411, 2002.

[6] S. M. Watt. Aldor. In J. Grabmeier, E. Kaltofen, and V. Weispfenning, editors, Handbook of
Computer Algebra, pages 154-160, 2003.

Authors Information

[1] Cosmin Oancea, University of Western Ontario, London N6A 5B7 Canada, coancea@csd.uwo.ca
[2] Stephen M. Watt, University of Western Ontario, London N6A 5B7 Canada, watt@csd.uwo.ca

