Task: 4.2
Version: 1.4
Date: March 2004

Symbolic Solver Services.
Wrapper Tools Release Candidate

Elena Smirnova, Clare M. So and Stephen M. Watt
ORCCA, University of Western Ontario

Deliverable D23 (Public)

© 2004 The MONET Consortium (IST-2001-34145)

IST-2001-84145: MONET

Abstract

This deliverable re-package previous results from [9] and [10] and presents
the Wrapper Tool that allows various advanced mathematical problem solv-
ing environments to be exposed through web services. In this document
we describe all technologies designed and software implemented that were
developed for Symbolic Solver and its wrapper tool. Those include an
approach to portable mathematical server architecture, software for main-
taining the life cycles of mathematical web services, and client-side facilities
to access and use services deployed. We also detail mathematical services
implemented within the task 4.2.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2)

IST-2001-84145: MONET

Contents
1 Architecture of the Wrapper Tool for Symbolic Services 4
1.1 Symbolic Solver Environment oL, 4
1.2 Symbolic Service Organization 5
1.2.1 Service Configuration File 5
1.2.2 Generated Service Associates, 6
1.2.3 Realization of Service Functions 6
1.3 Advantages of the Architecture oo, 6
1.3.1 Portability 6
1.3.2 Flexibility o e 7
1.3.3 Extensibility 7
2 Technologies Used 8
2.1 LInux e e e e e 8
2.2 Java ... e e e e 8
2.3 AXIS e 8
2.4 Tomcat e e e 8
2.5 SOAP . . . e 8
2.6 WSDL e e e 9
2.7 ISP e 9
2.8 MSDL e 9
2.9 Computer Algebra Systems o Lo 9
3 Implementation 10
3.1 Tools and Requirements L. 10
3.2 Monet Symbolic Server Installationo 10
3.3 Symbolic Service Installation 11
3.4 Symbolic Service Invocation oL, 12
4 Replacing Mathematical Solving Engine 15

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 1 of 59

IST-2001-84145: MONET

4.1 Changes to service configuration file 15
4.2 Changes to implementation Symbolic Solver Environment 16

5 Service input and output 17
5.1 Imput Format 17
5.2 Output Format 17
5.2.1 Representing multiple outputs 17

5.2.2 MEL format 18

5.2.3 Additional mathematical formats for service output 20

5.3 Service API e 20

6 Service error handling 21
6.1 Error catching during server and service installation 21
6.2 Errors catching during service invocation 21

7 Providing Explanation From Service 25
8 Service Monitoring 26
8.1 Service Log Information 26
8.2 SOAP monitoring L 26
8.3 TCP monitoring e 26

9 Exposing services to the outside world 27
9.1 Registrationon broker e 27
9.2 Client interfaces L e 27
9.2.1 Command lineclient 0 L. 27

9.22 GUI 28

9.3 Web Client e 29

10 Services Developed 31
10.1 List of Available Services Lo oo 31
10.2 Symbolic Service Example: Limit Calculation Service 31

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 2 of 59

IST-2001-84145: MONET

10.2.1 Mathematical problem description 31

10.2.2 Service configuration file oo, 36

10.2.3 Service MSDL e e 38

10.2.4 Generated javacode L o oLl 40

10.2.5 Generated WSDD files 43

10.2.6 Genmerated WSDL 44

10.3 Service Call e e 46

11 User Guide 48
11.1 Server Installation 48
11.2 Installation of New Service 49
11.3 Qalling Service e 50

12 Invocation Log Example 52
13 Service SOAP messages 56
Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 3 of 59

IST-2001-84145: MONET

1 Architecture of the Wrapper Tool for Symbolic Services

The idea of the Symbolic Solver Wrapper Tool architecture is to provide an environ-
ment that will encapsulate advanced mathematical software packages, such as Maple[23],
Axiom[24], Derive[25], Mathematica[26] or Matlab[27] and expose the functionalities of
these systems through symbolic services deployed.

1.1 Symbolic Solver Environment

The main concept of the Symbolic Solver assumes that all developed MONET symbolic
services are running as independent web services, each reachable at its own unique URL
and offering its own functionalities. All of these services are enclosed within a specially
designed software engine, called Monet Symbolic Server and they are managed by a wrapper
tool named Symbolic Solver Environment.

The general scheme of organization for the Symbolic Solver Environment is shown in Fig-
ure 1. It demonstrates that each Monet symbolic service is assigned to several instances,
such as service core Java class, source code implementing the service with a mathematical
solving software! (usually a computer algebra system), and MSDL [7]. The principal infor-
mation about each service is provided by the service configuration file that contains tree
parts: service MSDL, service interface to mathematical solving system(s) and the actual
service implementation with those systems. The wrapper tool is a container for all symbolic
services, which is masked by their web interfaces and carries out their main functionalities,
including installation and invocation.

Client /
Broker

request

response

MONET Symbolic Server
P ~ Service Associate Components
. . . MSDL J 1

Symbolic Symbolic Symbolic avaciass
Service Service Service Interface to WSDD

#1 #2 #n Math Solver
Code for WSDL

9 . Math Solver

Symbolic Solver Environment v

Figure 1: The general scheme of Monet Symbolic Server Architecture

There are two core software tools to maintain this wrapper environment: one is responsible

'Hereafter called mathematical solver system or mathematical solving engine

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 4 of 59

IST-2001-84145: MONET

for service creation and installation, and the other for service invocation. Both of them will
be discussed later in the section “Implementation”.

1.2 Symbolic Service Organization

The Symbolic Services are organized in the way that the author of a new service does not
need to know about web servers and services, Java or various XML technologies in order
to create a new service. Instead the service’s author is asked to provide the code that
implements the service using the language of the mathematical system chosen to serve as
solving engine of the service. The author aslo has to indicate the name of the main function
that calls that implementation part.

As shown in the Figure 1, each service is associated with three original pieces of information:
MSDL, service interface to the mathematical solving system, code written using language
of that software and with three generated: Java class, web service deployment descriptor
(WSDD) [13] and web service description language file (WSDL) [12].

1.2.1 Service Configuration File

All original information about symbolic service is provided by a service author and stored in
an XML-based configuration file. This file is the item in the Symbolic Solver Architecture
that uniquely and completely represents the service itself. This file consists of three parts:
service MSDL skeleton(to be complete automatically during service installation), service
interface to mathematical solving engine (computer algebra system for example) and service
implementation (code written in the language of the solving system). One file can contain
descriptions for more than one service, especially it makes sense when several services share
parts of implementation. The structure of the configuration file has the following pattern:

<mathServer>
<msdl>
<service name="gsevice_A">
{MSDL. skeleton for service A}
</service>
{MSDLs for other services}
</msd1>

<services>
<service name="service_A" call="function_call_for_service_A"/>
{interfaces for other services}

</services>

<implementation language = "math_solver_name'>
{implementation for each service using

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 5 of 59

IST-2001-84145: MONET

the language of the corresponding solver}
</implementation>
</mathSever>

An example of configuration file for limit calculation service is given in the section 10.2.2
The configuration file for each service should be available for the wrapper tool at any time
after the service is installed on the Monet Symbolic Server.

1.2.2 Generated Service Associates

If the configuration file statically describes service functionalities, in order to fulfill them
dynamically we still need additional descriptors and implementation tools. Those com-
ponents are service implementation Java class, WSDD and WSDL files. All of them are
automatically generated by the Symbolic Solver Environment installation engine, according
to the information provided in the service configuration file.

Those generic components are basically used to deploy, expose and run service on the Monet
Symbolic Server. During service installation, the created java class is placed in a proper
location in the web server file system, so it is ready to maintain service calls. Generated
WSDD is used to deploy service on the Monet Symbolic Server, and WSDL is exposed to
the outside world to provide Monet brokers and clients with the information about service
interface (see Figure 2).

1.2.3 Realization of Service Functions

A symbolic service mathematical functionalities is carried out by a combination of service
Java class, Symbolic Solver invocation tool and information from service configuration file.

The main idea of the service infrastructure is that its Java class receives all SOAP requests
from the outside (client or brokers), extracts information about mathematical arguments
passed with the request (if any) and then calls Symbolic Solver Environment invocation
engine. Symbolic Solver Environment in its turn creates program for the solving engine
in real time, using information from service configuration file and mathematical arguments
from a service call. This program is passed to solving software for execution, the result is
retrieved by the same Symbolic Service Environment tool, wrapped into a SOAP message
and sent back to the client or broker (see Figure 3).

1.3 Advantages of the Architecture

1.3.1 Portability

e Service. The described approach to service organization allows services to be portable:

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 6 of 59

IST-2001-84145: MONET

once a configuration file for the service has been created, it can be used for this service
installation on another Monet Symbolic Server.

e Server. The software package, designed to maintain the Monet Symbolic Server also
provides it with a complete portability. As it will be shown later, the Monet Symbolic
Server can be very easy installed on a web server, running Tomcat[17] and Axis[19].

1.3.2 Flexibility

e Service. Introduced way of service organization also ensures service flexibility: any
service functionalities can be changed or updated by adjusting of the implementation
part (program code for mathematical solver) in the service configuration file.

e Server. Installation tools for Monet Symbolic Server allow to choose its configuration,
depending on the system environment and user preferences. More details about server
installation will be described in the section ”Implementation”.

1.3.3 Extensibility

e Service. Service functionalities can be extended because of natural extensibility of
the technologies, used in its implementation. If one needs, new CD can be added
to OpenMath; new modules or packages can be written to expand build-in routines
of computer algebra system. Indeed both of those opportunities were used in the
current Symbolic Solver implementation: in Series Expansion Service new OpenMath
CD for power series was added; new Maple package was created for Fractional Order
Differentiation Service.

e Server. The architecture of Symbolic Solver provides the Monet Symbolic Server
with a desirable extensibility: new services can be easily added to the Symbolic Solver
Environment by using its installation engine.

To demonstrate the idea of Symbolic Solver Server architecture we offer two slightly different
implementations by the University of Bath and the University of Western Ontario. Their
common functions and specifications, as well as differences in the realization were discussed
in [10] and also will be mentioned in the course of this document.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 7 of 59

IST-2001-84145: MONET

2 Technologies Used

Most of technologies used in the MONET project were presented in [1]. We included
reasoning explaining why those approaches were used in [4]. Here we will briefly re-name
those of technologies used for Symbolic Solver Services implementation.

2.1 Linux

It was decided to use Linux operation system to run Monet Symbolic Server, since Linux
is known to be reasonable stable; it allows dynamic and remote control, its shell scripting
is sophisticated enough to maintain large project. Furthermore this OS is relatively secure
and mostly virus-protected. However client of Symbolic Services can be ran under other
operation systems such as SUN Solaris or Windows.

2.2 Java

The main software for Symbolic Solver Environment is written in Java [16], using various
libraries and applications also having Java API (RTACCA OpenMath library, Axis, Tomcat
— see below)

2.3 Axis

Apache Axis [19] is a web servlet used to wrap all of developed Symbolic Services. It allows
easily deploy web service, by using web service deployment descriptor(WSDD), that we
provide for each of our symbolic services. Axis has its own web interface to browse list of
deployed web services and associated with them WSDLs [12] We also use Axis’s features of
TCP and SOAP monitoring to capture messages flowing between Monet Symbolic Services
and their clients. In our case Axis is running within Tomcat servlet container.

2.4 Tomcat

Apache Tomcat [17] is used as a web application server to provide a container for Monet
Symbolic Server. All developed services (as part of Axis servlet) and their web clients (as
independent Java Servlet Pages [20] are running under Tomcat.

2.5 SOAP

Simple Object Access Protocol is mainly used by Axis to exchange messages between various
parts of MONET architecture: Monet Services(both symbolic and numeric), Monet broker
and a whole variety of Monet clients.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 8 of 59

IST-2001-84145: MONET

2.6 WSDL

WSDL is used to provide Monet services clients with information about service interface.
We use combination of both manually created and automatically generated (by Axis) WS-
DLs for developed services. WSDL plays an important réle in service binding part of MSDL,
which explains how to map parts of Monet queries(MSQL)[6] into proper parts of service
input data.

2.7 JSP

Technology of JavaServer Pages applied to design client-end web interface, that easies ser-
vice invocation, and in case of Bath implementation provides tools for symbolic service
installation.

2.8 MSDL

The MONET approach to describe mathematical services [7] is used for it direct purpose.
Each of developed services is associated with it own MSDL file, used then to advertise this
service with the MONET Broker

2.9 Computer Algebra Systems

In Wrapper Tool different computer algebra systems may serve as solving engine, which
task is to provide mathematical functionalities of symbolic services. Maple[23] was chosen
as an example of the solving engine for the first implementation of Wrapper Tools. Being
a advanced extensible computer algebra system and programming language at the same
time Maple allows a wide variety of mathematical problem to be solved by using its build-
in routines, as well as additionally created packages. Another computer algebra system
Axiom[24] was then used to validate the Wrapper Tool architecture and to demonstrate
abilities of the Symbolic Solver Environment to adopt different solving engine without
performing major changes to its structure.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 9 of 59

IST-2001-84145: MONET

3 Implementation

3.1 Tools and Requirements
Symbolic Solver Environment implementation involves

e Java programs and libraries

shell scripts

JavaServer Pages
XSLT stylesheets

Computer algebra system(s) to be used as solving engine(s).

The main requirements for the system to run Monet Symbolic Server and Symbolic Solver
Environment are

e Linux Redhat, version 7.0 or later

Java SDK, version 1.4 or later

Apache Tomcat

Apache Axis
Apache Ant

e Installation of a computer algebra system chosen(in case Maple version 8 or later).

All of the above software should be properly installed and running on the system where
Symbolic Solver Environment is going to be set.

As it was mentioned in 1.1 the implementation of Symbolic Solver Environment includes
two main parts: installation and invocation managers. The first of them takes care about
new service creation and maintaining (installation/deinstallation). The second is a engine
that handles calls to service from the outside. There is also a third component of Symbolic
Solver Environment, which is responsible for installation of Monet Symbolic Server.

3.2 Monet Symbolic Server Installation

Monet Symbolic Server installation process involves setting up an existing web server in
order to prepare it for running Monet symbolic services. We assume that Tomcat and Axis
are running on a local host on a port, which can be accessed from the outside of the local
network.

Once all necessary software listed in 3.1 are properly installed, the administrator of the
Monet Symbolic Server implemented by UWO can execute the shell script mathserver_init.sh
that performs instant Monet Symbolic Server installation. This script is due to perform the
following steps: check the system settings and availability of all required components, then

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 10 of 59

IST-2001-84145: MONET

run Apache Ant task to build Symbolic Solver java libraries from the source code included
in the deliverable package and place them in proper locations in the Apache Tomcat and
Apache Axis directory trees. Auxiliary java libraries such as RIACA for encoding Open-
Math, RISC for serialization of RIACA objects and codecs for OpenMath to solving system
phrasebook will be also copied to Axis library directory. At the end Axis servlet will be
automatically restarted.

The architecture of Monet Symbolic Server is designed to be flexible, which allows to set
it on Tomcat web servers with various configurations. Together with installation script
provided it makes the Symbolic Server truly portable.

Bath implementation of the Monet Symbolic Server does not offer an installation script,
but rather provides detailed instructions how to set web server to run Symbolic Services
manually, which also allows this version of Symbolic Service to be portable.

3.3 Symbolic Service Installation

The UWO Service installation manager is implemented as a combination of Java programs
and shell scripts. Each of Java programs is responsible to carry out one or more steps of
service installation process, which in whole is driven by manager shell script. As described
in 1.2 all necessary information about service is provided in its configuration file by the
author. Therefore in order to install service the installation manager needs access to this
file. To register a new service with the Monet Broker, the installation manager also requires
the URL of the Broker. Optionally service administrator may specify port on which service
will be running, if different from default and a path to the installation of the main solving
software, if it has not been specified in the system path.

The general interface of the service installation manager call looks like
mathservice_init.sh <service config.file> <broker URL> [port] [path to solving software]

While installing a new service(see Figure 2), installation manager

e parses configuration file to extract the information about service interface,
e creates Java class that will implement the service on the web server,

e generates WSDD,

e deploys the service on the web server,

o retrieves WSDL file generated by Axis after the service deployment,

e updates MSDL according to generated WSDL: it adjusts service binding part and
fills-in the interface to client and broker elements.

After installation is complete the service can be seen from outside by Monet clients and
brokers, and it is ready to handle requests from them.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 11 of 59

IST-2001-84145: MONET

MONET Symbolic Server

e 2
Symbolic Solver Environment: installation tool
-
Service Configuration file . i
service
- Service Core
) Service Java Class
MSDL Skeleton (service info}——————= Installation &
Tools =
Java
Service Interface
to Math Solver System
. . Service Service
Service Implementation }
P WSDD Service WSDL
(Code for Math Solver) MSDL
N J

Web Server

< ii MONET Broker

Figure 2: Monet Symbolic Service Installation

In case of Bath implementation of Symbolic Solver Environment, service installation man-
ager is driven by JavaServer Pages, running as a separate web service, rather then by
shell scripts. This allows remote service installation over the Internet, which beside ob-
vious advantages hides the risk of possible damage of the web server by incompetent or
invalid services installations. Furthermore all data for service configuration file should be
re-entered in forms provided on the JSP pages every time service is deployed. However Bath
implementation includes the feature of on-line MSDL generation, which is really helpful,
especially for services handling large mathematical problems.

3.4 Symbolic Service Invocation

When symbolic service receives a SOAP request with a mathematical query, the service core
java class retrieves the input arguments from this query and calls the service invocation
manager.

The Symbolic Solver Environment service invocation manager is implemented as a combina-
tion of several Java libraries and auxiliary packages to computer algebra systems, designed
to fulfill symbolic service functionalities, according to the information provided in the ser-
vice configuration files. The following algorithm (also shown as scheme in the Figure 3)is

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 12 of 59

IST-2001-84145: MONET

executed every time a symbolic service gets invoked:

response (SOAP message)

requiest (SOAP message)

Client / Broker
H] MONET Symbolic Server
s : : : - N
Symbolic Solver Environment: invocation tool
Service Configuration file
i Program
Service Call K Generated
OpenMath « Service Core for MathSolver
MSDL Arguments I;',:T,E Java Class e
<OMOBJ>
Service Interface L
to Math Solver System
5 Math Solver Service
. . specific Invocation
Service Implementation | || code —{f— Manager
(Code for Math Solver) Mod: -proc2 (x,y)
=)

Figure 3: Monet Symbolic Service Invocation

1. Service Java class calls the invocation manager with the following parameters

o the reference to the service configuration file

e an array of mathematical arguments from query to the service

e (optional) mathematical formats, if client set preference for encoding of service
inputs and outputs (see section 5).

e location of mathematical format conversion tools, defined for this particular ser-
vice during its installation (for example, the service administrator may choose to
use special XSLT stylesheets for Content MathML to OpenMath transformation
or particular software package for translation between OpenMath and syntax of
a computer algebra system used as a solving engine).

2. Invocation Manager parses configuration file and extracts service implementation and
service interface to the solving mathematical software.

3. Service arguments gets parsed to strings representing OpenMath expressions or con-
verted to syntax of mathematical solving system of by using a phrasebook specially
designed for this particular system (depends on the implementation of Symbolic Solver
and also on preferences set by client).

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 13 of 59

IST-2001-84145: MONET

4. Invocation manager generates program to be run by the mathematical solving en-
gine, based on the implementation part from the service configuration file, service
interface to this system and mathematical arguments from service request.

5. The generated code is passed to the solving engine (for example a computer algebra
system) for execution.

6. The results from solving engine returns to the invocation manager, there it gets con-
verted into appropriate mathematical format and encoding(see section 5.2, afterwards
it is passed back to service core java class.

7. Service Java class wrappers the answer into SOAP message in sends back to service
client.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 14 of 59

IST-2001-84145: MONET

4 Replacing Mathematical Solving Engine

As has been mentioned in the section 1.2.1 different problem solving environments can be
used as mathematical solving engine of the Wrapper Tool.

The approach to the organization of the Symbolic Solver Environment allows to reuse
its architecture for developing symbolic services using different mathematical software as
solving engine.

From the point of view of the service author switching between mathematical solvers means
only updating the service configuration file. From the point of view of the Symbolic Solver
Environment developer it means replacing components of Invocation Manager that are
specific to the mathematical solving software used, however the second part of Symbolic
Solver Environment — Installation Manager remains the same.

4.1 Changes to service configuration file

The idea of configuration file allows to specify the solving system name and the service
implementation with this system. It also permits to have more than one implementation
for the same service, using alternative solving engines. For example the service for definite
integration may use system Derive, Axiom or Mathematica instead of Maple or all four
of them. In this case all that is required from the author of the service is to change the
implementation part of service configuration file. If one decides to use Maple, Axiom and
Derive software for definite integration service, configuration file could be re-written as the
following;:

<mathServer>

<msdl>
{ MSDL for Definite Integration Service }
</msd1l>

<services>
<service name="DefiniteIntegrationService" call="monetDefInt"/>
</services>

<implementation language = "maple">
monetDefInt:=proc(function,var,lower_limit,upper_limit);
int (function,var=lower_limit..upper_limit);

end:
</implementation>
<implementation language = "derive'">

monetDefInt (f,x,a,b,e) := PROG(e:=INT(f,x,a,b), return(e))
</implementation>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 15 of 59

IST-2001-84145: MONET

<implementation language = "mathematica'">
monetDefInt[f_,x_,a_,b_] := Integrate[f,{x,a,b}]
</implementation>
</mathServer>

4.2 Changes to implementation Symbolic Solver Environment

In order to enable capabilities of Symbolic Solver Environment to handle services that use
other computer algebra software, the Symbolic Solver Environment developer has to replace
components of Invocation Manager, which depend on the computer algebra system, such as
code generation means, tools for conversion between OpenMath and language of this system
and an adaptor that allows to plug the system software into Symbolic Solver Environment.

Essentially it means providing three new java classes, by default named as

e <solver_system name>ServicelImpl
e <solver_system name>CodeGenereation
e <solver_system name>0utput

The stub code of those classes for known solving systems(such as Maple, Axiom, Mathemat-
ica, etc.) may be already written and stored in known locations. In this case the developer
only has to point at those locations while installing the Symbolic Solving Environment.
Otherwise those classes should be written from scratch.

However the whole scheme of Symbolic Solver Environment as well as tools of Symbolic
Solver Environment assigned to install and maintain new services remain the same, since
they do not depend on the solving engine.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 16 of 59

IST-2001-84145: MONET

5 Service input and output

5.1 Input Format

All symbolic services accept input arguments in OpenMath format. Each service takes an
array of OpenMath expressions, that can be encoded as

e plain string
e XML DOM objects[21]
e RTACA OpenMath object[15]

The reason to support all of those encoding was to provide a choice of possible interfaces
to clients and brokers by the same service.

String is a simplest way to format a request, which does not require any extra libraries, nor
serialization tools on a client side. However, in case of string-based inputs there is a hight
probability of submitting invalid OpenMath within service requests.

XML DOM is a moderate stage of encoding OpenMath objects that at least can ensure
that the passed arguments represent a valid XML.

RIACA format is specially designed to represent OpenMath objects. It guaranties that
sent inputs are valid OpenMath, but in this case client has to know about RIACA library,
have it installed locally and take care about serialization of RIACA objects, when sending
SOAP messages with service queries.

5.2 Output Format

In general case services return string object, encoding OpenMath expression, which contains
the list of results or error message (see 6.2).

5.2.1 Representing multiple outputs

By default in case of success Symbolic services return answer, wrapped in an OpenMath
list object.

This decision was made to unify the output from those symbolic services, which can return
more than one result. For example the output from Root Finding Service with the input
e® —a =0, a>0islna but for the input (z2 —a) =0, a > 0 the answer has 2 entries \/a
and —/a. In both cases the output will be put in a list:

e [lna)

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 17 of 59

IST-2001-84145: MONET

<OMOBJ xmlns = ’http://www.openmath.org/OpenMath’>
<0MA>
<0MS cd = ’1listl’ name = ’list’/>
<0MA>
<0MS cd="transcl1" name="1n"/>
<0MV name="a"/>
</0MA>
</0MA>
</0MOBJ>

® L_\/E’V&ﬂ

<OMOBJ xmlns = ’http://www.openmath.org/OpenMath’>
<0OMA>
<0OMS cd = ’listl’ name = ’list’/>
<0MA>
<0MS cd="arithl" name="root"/>
<0MV name="a"/>
</0MA>
<0OMA>
<0MS cd="arithl" name="unary_minus"/>
<0MA>
<0MS cd="arithl" name="root"/>
<0MV name="a"/>
</0MA>
</0MA>
</0MA>
</0MOBJ>

5.2.2 MEL format

Upon a client request, the answer from the service can be wrapped into a service response
object, according to the Monet MEL ontology (Mathematical Explanation Language) [3].
In this case the output looks like

<executionResponse xmlns="http://monet.nag.co.uk/monet/ns"
href="http://ptibonum.scl.csd.uwo.ca:16661/axis/services/LimitCalculationService">
<explanation>
<errorcode>1</errorcode>
<explanationFormat isProvided="true"
href="http://monet.nag.co.uk/monet/explanation#expll">
<myexplanation xmlns="http://www.orcca.on.ca/MONET/explain">
<Algorithm>
MONET_limit_module := module()
export monet_limit;
monet_limit:=proc(function,var,limit_point);

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 18 of 59

IST-2001-84145: MONET

limit (function,var=1limit_point);
end:
end:
</Algorithmn>
<ExecutionTime>
12s
</ExecutionTime>
</myexplanation>
</explanationFormat>
</explanation>

<result>
<resultFormat href="http://monet.nag.co.uk/monet/result#openmath">
<0MOBJ xmlns = ’http://www.openmath.org/OpenMath’>
<OMA>
<OMS cd = ’listl’ name = ’list’/>
<OMI>1</0MI>
</0MA>
</0MOBJ>
</resultFormat>
</result>

<resultAdditionalInfo>
<addInfoFormat isProvided="true">
<additionalInfo xmlns="http://www.orcca.on.ca/MONET/addInfo">
<accuracy>
10E-7
</accuracy>
<logfile>
http://ptibonum.scl.csd.uwo.ca:16661/logs/mathservice48486.1log
</logfile>
<input_encoding>
RIACA 0OMOBJ
</input_encoding>
<output_encoding>
String
</output_encoding>
</additionalInfo>
</addInfoFormat>
</resultAdditionalInfo>
</executionResponse>

We do not offer this option by default, since when the result from a service is sent back
to the Monet Broker, the last will provide the wrapping, possibly including supplementary
information, such as explanation from a Planning Manager or Execution, etc.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 19 of 59

IST-2001-84145: MONET

5.2.3 Additional mathematical formats for service output

In addition, UWO Symbolic Service implementation supports several other mathematical
formats to encode service results. User may set his or her preference while calling a service,
and the answer will come in one of the following formats:

OpenMath

Content MathML
PresentationMathML
LaTex

This is an experimental facility that can be used in various environments, which integrate
several formats to represent mathematical objects.

5.3 Service API

Service programming interface is presented by service WSDL file. This file should be
accessible by clients and brokers, so they can create a proper service call. By default the
WSDL file for each service is located at <configFile>?7wsdl .

In order to support all of encoding for OpenMath objects, listed in 5.1, each service has
several API plug-ins. Basically main operation offered by services are provided by run and
check methods, that accepts service arguments in three different formats:

String checkService (String[] mathArgs)
String runservice(String[] mathArgs)

String checkService (org.w3c.dom.Node[] mathArgs)

String runservice(org.w3c.dom.Node[] mathArgs)

String checkService (nl.tue.win.riaca.openmath.lang.0MObject[] mathArgs)
String runservice(nl.tue.win.riaca.openmath.lang.0MObject[] mathArgs)

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 20 of 59

IST-2001-84145: MONET

6 Service error handling

It is always important not only to create a robust software tool, implementing one or another
sophisticated technology, but also to foreseen a range of possible problems and exceptional
situation, when this tool may have problems or even fail to carry out its functions. It means
we have to provide the developed product with a reliable error handling mechanism, that
will protect the software environment from crashing or becoming irresponsible in unusual
circumstances.

This error-handling tool should perform two main functions: firstly, ensure software stability
in case of unpredicted conditions and secondly, provide legible explanation about possible
cause of the arisen exceptional situation.

6.1 Error catching during server and service installation

Service installation toolkit of the Symbolic Solver Environment offers a simple, but still
helpful error catching utility. Both server and service installation scripts, while running,
check exit codes of all shell commands, performed on each step of the installation process.
They also monitor system error and output streams. In case an exception arises, the
installation process will be stopped and an appropriate to the situation message will be
printed on a screen.

Installation manager automatically redirects error stream to a file error.log in its home
directory, so the administrator of the Symbolic Server can browse it later to spot the reason
of the trouble. The Figure 4 shows one of possible error situations during a new service
installation.

6.2 Errors catching during service invocation

We distinguish two main types of errors and exceptional situation, that can happen during
service calls: software/hardware problems and actual symbolic solver-related errors.

Among software/hardware we can list for example the following

e connection fails
Those include ”host /target/URL not found”, ” connection refused”, ” connection time-
out”, ”"wrong protocol”, etc.

e input/output exceptions
Typically they are ”file not found”, "read/write permission denied”, etc.

Since Java is the main engine running symbolic services, those types of errors are relatively
easy to catch, because of well developed exception handling mechanism in Java. If any of
listed above or similar errors occur, the corresponding exception will be caught and proceed

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 21 of 59

IST-2001-84145: MONET

<..snip..>
Deploying service SystemEquationSolveService on the web server:
Web server settings:
host name = ptibonum.scl.csd.uwo.ca
port number = 8081
<..snip..>
Tomcat manager username and password are set properly
Reloading Axis ...
<..snip..>
RELOAD FAILED
Axis Connect Exception: Connection refused
Total time: 2 seconds
--- *ERROR* ----— - ————
Some errors occurred while reloading axis.
Please check the host name and the port number.
For detailed information see error log in
/usr/MonetSymbolicServer/error.log

Figure 4: An error message from Symbolic Solver Environment installation manager. The
user tried to install a new symbolic service on a wrong port of the web server.

by Java Core of service invocation tool. The content of the exception then will be wrapped
into a SOAP message and sent back to a client.

It is important for error reporting to distinguish the hardware/software caused errors from
ones that occur while service is trying to solve a mathematical-related problem.

In other words, we have to catch errors, raised within mathematical solver and report them
separately.

The following parties can be potential sources of problems related to mathematical solving
system:

e The author of the service, who provides code written for mathematical solver to
implement the service. Usually authors validate their programs, before submitting it
for MONET services; therefore solver-related errors in service implementation parts
are rare, but still not hundred percent excluded. We found that the most frequent
issue of the problem in author distribution to the symbolic service is mismatching
service interface and service implementation parts in the configuration file. This
error is easy to correct but sometimes hard to notice, since it will not be flagged by
solving system during the test run of the code written for service implementation.
For example if someone designs services for simple arithmetical functions, describing
their interfaces to maple as

<services>
<service name="MultService" call="My_arithml_module:-my_mult"/>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 22 of 59

IST-2001-84145: MONET

<service name="DivService" call="My_arithml_module:-my_div"/>
</services>

and putting in the implementation part

<implementation language = "maple'">
My_arithm_modulel := module()
export my_div, my_mult;
<..snip..>
</implementation>

then the Monet Symbolic Solver will fail to fulfill any request for both of this services,
because the Maple program, generated by Solver Environment will contain an ex-
pression My_arithml module:-my mult(paraml,param2) , which will not evaluate, since
module My_arithml_module has not been defined in the implementation part.

e Client. Potentially clients may submit queries for a service with wrong number or
type of arguments. If those errors are not caught by Monet Broker, the service will
receive a request, which will be translated to an expression that is invalid in syntax
of mathematical solving system. For example one by mistake can call a definite
integration service with missing upper bound of integration or a partial differentiation
service with a number instead of differential variable.

e Service implementation routines: OpenMath to mathematical solver language phrase-
book and solver-specific program generation tools. Theoretically extensions of Open-
Math to mathematical solving system conversion tools, written by Symbolic Solver

users may contain typos or wrong solver-specific entries. For example if mapping for
OpenMath object

<0MOBJ>
<0OMA>
<0MS cd="calculusl1" name="int"/>
<0MS cd="transcl" name="sin"/>
</0MA>
</0MOBJ>

is set to be Mathematica expression Integrate[sin] , Mathematica processor will
raise an exception while parsing this statement, because the proper syntax for indef-
inite integration operator in Mathematica is Integrate[&function,&variable]

Catching Errors within Mathematical Solving Systems

Most errors occurred during execution of the service code with the mathematical solving
systems should be caught and handled within these systems.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 23 of 59

IST-2001-84145: MONET

The error catching mechanism may be different for each mathematical solving system.
Therefore when switching from one mathematical solving engine to another, the developer
of the Symbolic Solver Environment has to provide a code fragment with error catching
methods, specific to of the mathematical solving system used. This code is meant to be
included into the stub of solver-specific program that will be used each time services of this
Symbolic Solver Environment are called.

In [10] we suggested the way to catch error in Maple by using build-in try-catch-finally
statement. We assume the similar capacities of other computer algebra systems be available
to develop Symbolic Solver Environment on their platforms.

The main task of the error handling tools is to provide a legible explanation about the
error nature. By default the error message from the mathematical solver should to be
converted into OME (OpenMath Error) object. The result OME then will be wrapped into
SOAP message and sent back to client or broker, so the caller of the service will get a valid
OpenMath expression, explaining the reason of the service fail.

For example if client calls a differentiation service with parameters tan(z) and 1, the answer
from the service might be

<0MOBJ xmlns = ’http://www.openmath.org/OpenMath’>

<0OME>
<0MS cd = ’moreerrors’ name = ’algorithm’/>
<OMSTR> wrong number (or type) of arguments </OMSTR>
</0OME>
</0MOBJ>

Another very common error case is runaway argument: for example if user submits a
request for limit calculation service without specifying a limit point, the Symbolic Solver
has complain about missing parameter:

<0OMOBJ xmlns = ’http://www.openmath.org/OpenMath’>
<0ME>
<0MS cd = ’moreerrors’ name = ’algorithm’/>
<0OMSTR> MONET_limit uses a 3rd argument, limit_point, which is missing </O0MSTR>
</0ME>
</0MOBJ>

For now we are able to use only one OpenMath CD to encode service execution errors. In
a future we hope to have more OpenMath errors CDs for, in order to distinguish syntax-
related error (such as in a previous examples) from computation errors (such as division by
7€ero).

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 24 of 59

IST-2001-84145: MONET

7 Providing Explanation From Service

It has been a try to provide a user with the additional information from the service, such
as used methods, performed computation and trace of called functions.

The pervious deliverable [10] contains a description of providing the explanations from a
service, by using overloaded Maple method that returns the user information. The similar
approach can be applied to other computer algebra systems: its main idea is in retrieving
and re-defining, if necessary, the information provided by the kernel of solving system to
user.

Usually the author of the service is the one who provides service with meaningful user
information. It is more reasonable to include such explanations into service implementation
part of a configuration file, than in a generated solver-specific code.

The main use of this user information is to provide an explanation from a service that can
be sent to a client within service response message, constructed according to MEL [3].

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 25 of 59

IST-2001-84145: MONET

8 Service Monitoring

8.1 Service Log Information

Symbolic Solver Environment creates log files for each service invocation. The log file
contains records about each step of service execution, starting with loading service from
configuration file, parsing arguments from a request, creating code to be run with mathe-
matical engine, passing it for execution to the mathematical solving software and retrieving
the result of computation. Each entry of log file is preceded by the time stamp. Keeping
such a log allows to browse history of service invocation step by step, it gives an idea about
time spent for each step of execution, and in case of exceptional situation or problem with
fulfilling service request, this log information can help to spot the cause of trouble. The
example of invocation log for Limit Calculation service can be found in Appendix 12

8.2 SOAP monitoring

In addition to logging of service execution, we also allow to monitor SOAP messages floating
between service and its client. Both request to service and response from it is caught by
Apache Axis SOAP Monitor. In order to enable the monitoring, all services have to be
specially configured, when deployed with Apache Axis web servlet. The tools and utilities
to enable symbolic services handling by the SOAP monitor is provided by the Symbolic
Solver Environment distribution. They can be found in directory axis tools .

The SOAP monitor utility itself is accessible with a web browser by going to
http://<host>:<port>/axis/SOAPMonitor , where <host> and <port> are correspondingly
the host name and port number where the Monet Symbolic Server is running.

In case administrator of the symbolic server does not permit access to SOAP monitor
from clients, they can monitor SOAP messages flowing between them and services by using
service-client interface toolkit, supplied with the Symbolic Solver Environment. See Client
User Guide in section 11 for more details about this option.

An example of SOAP request and response messages, sent between client and string-base
version of Indefinite Integration Service can be found in Appendix 13.

8.3 TCP monitoring

TCP request/response monitoring can also be useful while examining the service calls. We
suggest to use TCP monitor application, provided with Apache Axis distribution. To run
it simply call java org.apache.axis.utils.tcpmon [listenPort targetHost targetPort]

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 26 of 59

IST-2001-84145: MONET

9 Exposing services to the outside world

9.1 Registration on broker

Each service advertises itself with the Monet Broker. It involves the registration of a
service with the Broker Registry Manager [8]. By default it is performed when during
service installation by Symbolic Solver Environment installation manager. Furthermore
service can be register with the broker independently at any time by calling be registration
utility from Symbolic Solver Environment:

java RegisterServiceWithBroker [-reg|-dereg|-modify] <broker URL> <service MSDL (file

name or reference)>

9.2 Client interfaces

Symbolic Solver Environment distribution provides each symbolic service with three flavours
of client interface:

e command line interface
e graphical user interface

e web-based interface

First two interfaces are universal for all services, since they allow the user to change target
service and broker URLSs, ports, number of service arguments, etc. The third one is specific
to each service and is automatically generated by service installation manager of Symbolic
Solver Environment.

9.2.1 Command line client

Client-side toolkit of Symbolic Solver offers 3 client java classes to call Monet symbolic
services from the command line. The number three is corresponding to number of dif-
ferent encodings for OpenMath objects that each symbolic service supports. So we have
three clients to operate with string-based, DOM XML and RIACA encodings of OpenMath.

To call a service using this simple interface user needs to specify service URL and URLs or
local file names of required mathematical arguments. For example for string-based version
of series expansion service that requires 4 input argument for function, variable, origin and
truncation order one can type

java SymbolicServiceStrClient
http://ptibonum.scl.csd.uwo.ca:16661/axis/services/SeriesExpansionService
http://www.orcca.on.ca/MONET/samples/OpenMath/0M_sin.xml

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 27 of 59

IST-2001-84145: MONET

£ Monet Symbuolic Service Client GUI = 5‘
1
Callflow: ® direct () thruBroker b{ Answer:
Direct Call 1 | |<0MOBJ xumlhs = 'http://ww, openmath, org/OpenMath'>
<OMA
-Senn'ceURL:|hﬂp:IIptibDnum.scl.csd.uwo ca:1 6661 akisiservicesLimitCaloulationService <0MS cd = 'listl' name = 'list'/>
< OMIx1< /OMI
1 |hﬂp i areca.on. cat ONET/Openhath/OM_OM_singd_aver_xxml | </0Mk>
< /OMOBT>

Number of args: I 3 3: 2 |hﬂp Mhavini.orcca.on.cat ONETIO penhdath/OM_xxml |

3 |hﬂp i 0reea,on.cat ONET/O penhlath/OM_0.xml |

Senvice Input: | OpenMath ¥ | Solvernput: | OpenMath hd

Math Formats:) =
Service Output: | OpenMath ¥ | SolverOutput: (OpenMath
.............. oo Maple {5
(Content MathML
<OMOET> Presentation MathML
£0Mis String
<0M§ cd = 'arithl' name = 'times' /> LaTeX
<ML iOther
<0M5 cd = 'transcl' name = 'sin'/>
<0MV name = 'K'/r
</ OMA
<OMA
<0M3 cd = 'arithl' name = 'power'/>
<OMV name = 'x'/> B

| Send | ‘ Reset | | Set by default ‘ | Cancel | File name: |MonetMathSeniceResultyml | Browse

Figure 5: GUI for Symbolic Service Client

http://www.orcca.on.ca/MONET/samples/OpenMath/0M_x.xml
http://www.orcca.on.ca/MONET/samples/OpenMath/0M_0.xml
http://www.orcca.on.ca/MONET/samples/OpenMath/0M_9.xml

For detailed instructions about usage of command line client interface please refer to the
Symbolic Solver User Guide, partly presented in section 11.

9.2.2 GUI

The UWO implementation of Symbolic Solver includes a graphical interface for service
clients (figure 5). Likewise command-line version, this interface is universal for all symbolic
services, since it allows one to change dynamically the service URL and the number of
service arguments.

Among features of the developed GUT application we offer alternative ways to input service
arguments: the user may choose to enter them as URL references or local files names or
alternatively type their contents in the text editor areas provided. Using drop-down menus

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 28 of 59

IST-2001-84145: MONET

client can easy choose preferred mathematical formats for service input/output, according
to 5.2.3. The response from service appears in the right text panel, where it can be browsed,
edited and then saved in a file. This interface allows changing a client-service call pattern
from ”direct” to ”via-broker” mode (see User Guide for Clients in section 11).

9.3 Web Client

2} MONET Symbolic Services @UW0,0RCCA - Microsoft Internet Explorer =1
J File Edit Wiew Favorites Tools Help i
| 4Back ~ = -) [H] 2} | Disearch [GlFavoriess CfHistory | By Sh 0 - S

J.qddress |@ httpiffptibonum, scl.csd, uwo,ca; 1666 1 fMonet ServiceClient) L! @Go
J Lirks 4] Customize Links & | Free Hotmail @& Windows Media & windaws

MONET Symbolic Services

Thversity of Western Ontario

Ontarto Eesearch Centre for Compurter Algebra

List of available Symbolic Services

CHent for Symbolic Order Differentiation Service
= Arithmetic
& Addition
2 Subtraction
© Multiplication Ihttp:,-",-'\v\n-\rw.orcca.on.ca,-"MONETfsamples,-"OpenMath,-"OM_tan

& Division

function E (Dpenhlath expression repaository)

© Power caleulation © or Openldath content (Openldath expression editor JOWE)

+ Calculus : OMORT S =l

O Indefinite Integration < DMA

Cefinite Symbolic Integration <0ONG od=
Definite Numeric Integration <OMV nam:

2] "transel” name="tan"/>

o]

© Ordinary Differentiation </ OMA> ﬂ
[s]

e}

o]

B

Symbolic Order Differentiation

Fractional Order Differentiation 3 direct {+
Limits calculation Service call flow pattern:

via broker €
© Series Expansion

& Eruation Salving Result format: | Opentath |
O Root Finding
< Solving System of Polynomial Send request to service | Feset | —

Equationz

Additional service information: MSDL | WSDL | Confisuration File

&1 ’_ ’_ |4 Internet

S B

Figure 6: GUI for Symbolic Service Client

Two web interfaces for symbolic service clients are independently offered by both Bath
and UWO implementations. They set access to symbolic services through HTML and
Java Server Pages [20]. Each developed symbolic service has assigned to it web-client
automatically generated. Tools for generation web clients for symbolic services are included
in the Symbolic Solver Environment software distribution.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 29 of 59

IST-2001-84145: MONET

Because those web interfaces are specific to their services, number, order and sometimes
type of arguments sent to service can be checked on a client-side, which helps user to
formulate a valid request for the service.

The other positive side of having web-client is that users, who need to call symbolic services
do not have to have any Symbolic Solver-related software installed on their sides: they just
open a corresponding page in the Internet browser and send their requests.

The Bath web clients for deployed services are available at
http://agentcities.cs.bath.ac.uk:8090/axis/maple-service/www/invoke/TSInvoke.
jsp with username monet and password monet .

The UWO symbolic service web clients are accessible at
http://ptibonum.scl.csd.uwo.ca:16661/MonetServiceClient/. The screen shot of web
page for symbolic order differentiation service is shown in Figure 6.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 30 of 59

IST-2001-84145: MONET

10 Services Developed

10.1 List of Available Services

The following services are developed and running on the Monet web server at the University
of Western Ontario:

e Arithmetical expression simplification services

e Indefinite integration service

e Definite symbolic integration

e Definite numeric Integration

e Ordinary differentiation

e Fractional-order differentiation

e Symbolic-order differentiation of rational functions
e Limit calculation

e Series expansion

e Approximate GCD

e Root-finding service (including parametric solutions)
e Solving systems of polynomials

e Math format conversion

The following services are installed and running on the Monet web server at the University
of Bath:

e Simple symbolic integration service
e Gauss Legendre Integration

e Service for evaluation of mathematical expressions in Maple

10.2 Symbolic Service Example: Limit Calculation Service
10.2.1 Mathematical problem description
Input:

e function f: R— R
e variable z

e limit point a € R

Output:

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 31 of 59

IST-2001-84145: MONET

e L= lim f(x)

T—a

Pre-Condition:

e function f has limit at the point a: lim f(z) = lim f(z)
T—a+ T—a—

Post-Condition:

e Ve>0.36>0.Vz.0< |z —a| < d=|f(z) - L|<e

The following describes the same problem, using Mathematical Problem Description On-
tology [5]

<monet:definitions xmlns:monet="http://monet.nag.co.uk/monet/ns"
xmlns:om="http://www.openmath.org/OpenMath"
targetNamespace="http://monet.nag.co.uk/problems/" >

<monet:problem name ="limit_calculation">
<monet :header>

<monet:taxonomy taxonomy="http://gams.nist.gov" code="Gams0" />
</monet:header>

<monet :body>

<monet :input name="function">
<monet:signature>
<om:0MOBJ>
<om:0OMA>
<om:0MS cd="sts" name="mapsto" />
<om:0MV name="R"/>
<om:0MV name="R"/>
</om:0OMA>
</om:0MOBJ>
</monet:signature>
</monet: input>

<monet:input name="var">
<monet:signature>
<om:0OMOBJ>
<om:0MV name="R"/>
</om:0MOBJ>
</monet:signature>
</monet : input>

<monet:input name="1limit_point">
<monet:signature>
<om:0MOBJ>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 32 of 59

IST-2001-84145: MONET

<om:0MV name="R"/>
</om:0MOBJ>
</monet:signature>
</monet :input>

<monet:output name="1limit">
<monet:signature>
<om:0OMOBJ>
<om:0MV name="R"/>
</om:0MOBJ>
</monet:signature>
</monet :output>

<monet :pre-condition>
<0MA>
<0MS cd="relationl" name="gt" />
<0MA>
<0MS cd="1limit" name="1limit"/>
<0MV name="a"/>
<0OMS cd="1imit" name="below"/>
<0OMBIND>
<0MS cd="fns1" name="lambda"/>
<0OMBVAR>
<0MV name="x"/>
</0MBVAR>
<0MA>
<0MV name="f"/>
<0MV name="x"/>
</0MA>
</0MBIND>
</0MA>
<0MA>
<0MS cd="1limit" name="1limit"/>
<0MV name="a"/>
<0OMS cd="1imit" name="above'"/>
<OMBIND>
<0MS cd="fns1" name="lambda"/>
<0MBVAR>
<0MV name="x"/>
</0MBVAR>
<0MA>
<0MV name="f"/>
<0MV name="x"/>
</0MA>
</0MBIND>
</0MA>
</0MA>
</monet :pre-condition>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2)

Page 33 of 59

IST-2001-84145: MONET

<monet:post-condition>
<OMOBJ>
<0OMBIND>
<OMS cd="quantl" name="exists" />
<OMBVAR>
<0MV name="epsilon" />
</0MBVAR>
<0MS cd="logicl" name="implies" />
<t-- delta >0 -->
<0OMA>
<0MS cd="relationl" name="gt" />
<0OMV name="epsilon" />

<0OMI>0</0MI>
</0MA>
<!-- exists delta (delta > 0 => forall x |x-al<delta => |f(x)-L|<epsilon)-->
<0OMBIND>
<0MS cd="quantl" name="exists" />
<OMBVAR>
<OMV name="delta" />
</0MBVAR>
<0OMA>
<!-- delta > 0 => forall x |x-al<delta => |f(x)-L|<epsilon -->
<OMS cd="logicl" name="implies" />
<!-- delta >0 -->
<0MA>

<0MS cd="relationl" name="gt" />
<0OMV name="delta" />

<0OMI>0</0MI>
</0MA>
<!-- forall x (|x-al<delta => |f(x)-L|<epsilon) -->
<0OMBIND>
<0MS cd="quantl" name="forall" />
<0OMBVAR>
<0MV name="x" />
</0OMBVAR>
<!-- |x-al<delta => |f(x)-L|<epsilon -->
<0MA>
<0MS cd="logicl" name="implies" />
<0MA>
<0MS cd="relationl" name="1t" />
<0MA>
<0MS cd="arithl" name="abs" />
<0MA>

<0MS cd="arithl" name="minus" />
<0MV name="x" />
<0OMV name="a" />
</0MA>
</0MA>
<0MV name="delta" />

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 34 of 59

IST-2001-84145: MONET

</0MA>
<0MA>
<0MS cd="relationl" name="1t" />
<0MA>
<0MS cd="arithl" name="abs" />
<0OMA>
<0MS cd="arithl" name="minus" />
<0MA>
<0MV name="f" />
<0MV name="x" />
</0OMA>
<0MV name="L" />
</0MA>
</0MA>
<0MV name="epsilon" />
</0MA>
</0MA>
</0OMBIND>
</0MA>
</0MBIND>
</0MBIND>
</0MOBJ>

</monet :post-condition>
</monet :body>

</monet :problem>
</monet:definitions>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 35 of 59

IST-2001-84145: MONET

10.2.2 Service configuration file

This file is created by the author of the limit calculation service.

<mathServer>
<msdl>
<service name ="LimitCalculationService">

<classification>
<taxonomy taxonomy="http://gams.nist.gov" code="Gams0"/>
<problem href="http://monet.nag.co.uk/problems/series_expansion"/>
<format> http://www.openmath.org/cdfiles/cdgroups/mathml.cdg </format>
<directive-type href="http://monet.nag.co.uk/owl#evaluate"/>
</classification>

<implementation>
<software name="maple9" href="http://monet.nag.co.uk/owl#Maple9"/>
<hardware name="0ORCCAWebServer" href ="http://monet.nag.co.uk/owl#PentiumSystem"/>
<action role="execute'" name="runService"/>

</implementation>

<service-interface-description name="" href =""/>

<service-binding>
<map operation ="runService"
action="invokeService"
problem-reference="http://monet.nag.co.uk/problems/series_expansion"/>
<message-construction
io-ref ="http://monet.nag.co.uk/problems/series_expansion#function"
message-name ="" message-part =""/>
<message-construction
io-ref ="http://monet.nag.co.uk/problems/series_expansion#var"
message-name ="" message-part =""/>
<message-construction
io-ref ="http://monet.nag.co.uk/problems/series_expansion#limit_point"
message-name ="" message-part =""/>
<message-construction
io-ref ="http://monet.nag.co.uk/problems/series_expansion#limit"
message-name ="" message-part =""/>
</service-binding>

<service-metadata/>

</service>
</msdl>

<services>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 36 of 59

IST-2001-84145: MONET

<service name="LimitCalculationService" call="MONET_limit_module:-monet_limit"/>
</services>

<implementation language = "maple'">
MONET_limit_module := module()
export monet_limit;
monet_limit:=proc(function,var,limit_point);
limit(function,var=limit_point);
end:
end:
</implementation>
</mathServer>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 37 of 59

IST-2001-84145: MONET

10.2.3 Service MSDL

When service is installed its MSDL gets changed: the service interface description, inter-
face to broker and service binding parts are updated by the Symbolic Solver Environment
installation manager.

<definitions
targetNamespace="http://wuw.orcca.on.ca/MONET/samples/msdl"
xmlns="http://monet.nag.co.uk/monet/ns">

<service name ="LimitCalculationService">

<classification>
<taxonomy taxonomy="http://gams.nist.gov" code="Gams0"/>
<problem href="http://monet.nag.co.uk/problems/limit_calculation"/>
<format> http://www.openmath.org/cdfiles/cdgroups/mathml.cdg </format>
<directive-type href="http://monet.nag.co.uk/owl#evaluate"/>
</classification>

<implementation>
<software name="maple9" href="http://monet.nag.co.uk/owl#Maple9"/>
<hardware name="ORCCAWebServer" href ="http://monet.nag.co.uk/owl#PentiumSystem"/>
<action role="execute" name="runService"/>

</implementation>

<service-interface-description name="LimitCalculationWSDL"
href="http://ptibonum.scl.csd.uwo.ca:16661/axis/services/LimitCalculationService?wsdl"/>

<service-binding>
<map operation ="" action=""
problem-reference="http://monet.nag.co.uk/problems/limit_calculation"/>
<message-construction
io-ref ="http://monet.nag.co.uk/problems/limit_calculation#function"
message-name ="" message-part =""/>
<message-construction
io-ref ="http://monet.nag.co.uk/problems/limit_calculation#var"
message-name ="" message-part =""/>
<message-construction
io-ref ="http://monet.nag.co.uk/problems/limit_calculation#limit_point"
message-name ="" message-part =""/>
<message-construction
io-ref ="http://monet.nag.co.uk/problems/limit_calculation#limit"
message-name ="" message-part =""/>
</service-binding>

<service-metadata/>

<broker-interface>
<service-URI>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 38 of 59

IST-2001-84145: MONET

http://ptibonum.scl.csd.uwo.ca:16661/axis/services/LimitCalculationService

</service-URI>

<broker-interface-description>
http://ptibonum.scl.csd.uwo.ca:16661/axis/services/LimitCalculationService?wsdl

</broker-interface-description>

</broker-interface>
</service>
</definitions>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 39 of 59

IST-2001-84145: MONET

10.2.4 Generated java code

/ ** Autocreated by Symbolic Solver service installation module **/

import nl.tue.win.riaca.openmath.lang.0MObject; import
org.w3c.dom.Node;

public class LimitCalculationServiceImpl{

private String configFile =
"http://www.orcca.on.ca/MONET/samples/configfiles/limitServiceConfig.xml";

private String serviceName = "LimitCalculationService";

private String pathToMaple = "maple";

public String runService (OMObject[] mathArgs){

FormatConversionTools fct = getFormatConversionTools();
try{
MapleServiceImpl msi =
new MapleServiceImpl(configFile,pathToMaple,fct,serviceName,mathArgs);
return msi.runService();
} catch (Exception e){
e.printStackTrace();
return "++ ERROR in MapleServiceImpl.runService: "+e.toString();

public String runService (OMObject[] mathArgs, MathFormats types){

FormatConversionTools fct = getFormatConversionTools();
try{
MapleServiceImpl msi =
new MapleServiceImpl(configFile,pathToMaple,fct,types,serviceName,mathArgs);
return msi.runService();
} catch (Exception e){
e.printStackTrace();

return "#*% ERROR in calling MapleServiceImpl.runService: "+e.toString();

}
}
/===
public String checkService (OMObject[] mathArgs){
try{
MapleServiceImpl msi = new MapleServicelImpl(configFile,serviceName, mathArgs);
return msi.checkService(configFile,serviceName, mathArgs);
} catch (Exception e){
e.printStackTrace();
return "-- ERROR in calling MapleServiceImpl.runService : "+e.toString();
}
X

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 40 of 59

IST-2001-84145: MONET

/)= String-based OM args ————————————= === —— -
public String runService (String[] mathArgs){

FormatConversionTools fct = getFormatConversionTools();
try{
MapleServiceImpl msi =
new MapleServicelImpl(configFile,pathToMaple,fct,serviceName, mathArgs);
return msi.runService();
} catch (Exception e){
e.printStackTrace();
return "++ ERROR in MapleServicelImpl.runService: "+e.toString() ;

public String runService (String[] mathArgs, MathFormats types){

FormatConversionTools fct = getFormatConversionTools();

try{
MapleServiceImpl msi =

new MapleServiceImpl(configFile,pathToMaple,fct,types,serviceName,mathArgs);

return msi.runService();

} catch (Exception e){
e.printStackTrace();

return "** ERROR in calling MapleServiceImpl.runService: "+e.toString();

}
X
e
public String checkService (String[] mathArgs){
try{
MapleServiceImpl msi = new MapleServiceImpl(configFile,serviceName, mathArgs);
return msi.checkService(configFile,serviceName, mathArgs);
} catch (Exception e){
e.printStackTrace();
return "-- ERROR in calling MapleServiceImpl.runService : "+e.toString();
}
X
//-———=——= XML DOM-based OM args ————————=—— === === ===

public String runService (Node[] mathArgs){

FormatConversionTools fct = getFormatConversionTools();
try{
MapleServicelImpl msi =
new MapleServiceImpl(configFile,pathToMaple,fct,serviceName,mathArgs);
return msi.runService();
} catch (Exception e){
e.printStackTrace();
return "++ ERROR in MapleServiceImpl.runService: "+e.toString();

}

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 41 of 59

IST-2001-84145: MONET

public String runService (Node[] mathArgs, MathFormats types){

FormatConversionTools fct = getFormatConversionTools();

try{
MapleServiceImpl msi

new MapleServicelImpl(configFile,pathToMaple,fct,types,serviceName,mathArgs);

return msi.runService();

} catch (Exception e){
e.printStackTrace();

return "x* ERROR in calling MapleServiceImpl.runService: "+e.toString();

}
X
e m
public String checkService (Node[] mathArgs)<{
try{
MapleServiceImpl msi = new MapleServicelImpl(configFile,serviceName, mathArgs);
return msi.checkService(configFile,serviceName, mathArgs);
} catch (Exception e){
e.printStackTrace();
return "-- ERROR in calling MapleServiceImpl.runService : "+e.toString();
}
X
i

public FormatConversionTools getFormatConversionTools(){

FormatConversionTools fct = new FormatConversionTools();
fct.setOpenMathToMaplePackage (" /MonetSymbolicSolver-UW0//maple/omo_to_mob.mpl") ;
fct.setMapleToOpenMathPackage (" /MonetSymbolicSolver-UW0//maple/mob_to_omo.mpl") ;
fct.setCMathMLToOpenMathXSLT("file:////MonetSymbolicSolver-UW0/xslt/cmmltoom.xs1");

return fct;

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 42 of 59

IST-2001-84145: MONET

10.2.5 Generated WSDD files

Deployment descriptor

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns: java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:om="http://www.openmath.org/0OpenMath">
<service name="LimitCalculationService" provider="java:RPC">
<requestFlow>
<handler type="soapmonitor"/>
</requestFlow>
<responseFlow>
<handler type
</responseFlow>
<parameter name="wsdlTargetNamespace" value="urn:axis.sosnoski.com"/>
<parameter name="wsdlServiceElement" value="PersonLookupService"/>

="soapmonitor"/>

<parameter name="className" value="LimitCalculationServiceImpl"/>
<parameter name="allowedMethods" value="runService checkService "/>

<!--beanMapping for MathFormats and OMObjects -->
<beanMapping qname="urn:MathFormats"
xmlns:urn="http://www.orcca.on.ca/MONET"
languageSpecificType="java:MathFormats"/>
<beanMapping qname="om:0MOBJ"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MObject"/>
<beanMapping qname="om:0OMS"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MSymbol"/>
<beanMapping qname="om:0OME"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MError"/>
<beanMapping gqname="om:0MSTR"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MString"/>
<beanMapping qname="om:0MB"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MByteArray"/>
<beanMapping qname="om:0MBIND"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MBinding"/>
<beanMapping qname="om:0OMV"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MVariable"/>
<beanMapping qname="om:0MI"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MInteger"/>
<beanMapping gqname="om:0OMF"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MFloat"/>
<beanMapping gqname="om:0OMATTR"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MAttribution"/>
<beanMapping gqname="om:0MA"
languageSpecificType="java:nl.tue.win.riaca.openmath.lang.0MApplication"/>
</service>
</deployment>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 43 of 59

IST-2001-84145: MONET

Undeployment descriptor

<undeployment xmlns="http://xml.apache.org/axis/wsdd/">
<service name="LimitCalculationService"/>
</undeployment>

10.2.6 Generated WSDL

Because WSDL generated file for this service is very long, we will include here only few
fragments demonstrating the parameters of SOAP request and response messages and ser-
vice call interface for case of string-based input and output. The full version of this ser-
vice descriptor is available at http://ptibonum.scl.csd.uwo.ca:16661/axis/services/
LimitCalculationService?wsdl

<7xml version="1.0" encoding="UTF-8"7> <wsdl:definitions
targetNamespace="urn:axis.sosnoski.com"
xmlns="http://schemas.xmlsoap.org/wsdl/"
[.. snip ..]
xmlns:tnsl="http://www.openmath.org/OpenMath"
xmlns:tns2="http://www.orcca.on.ca/MONET"
[.. snip ..]
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:types>
[.. snip ..]
<complexType name="MathFormats'">
<sequence>
<element name="solverInputType" type="xsd:int"/>
<element name="solverOutputType" type="xsd:int"/>
<element name="serviceInputType" type="xsd:int"/>
<element name="serviceOutputType" type="xsd:int"/>
</sequence>
</complexType>
[.. snip ..]
<complexType name="Array0f_xsd_string">
<complexContent>
<restriction base="soapenc:Array'>
<attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:string[]" />
</restriction>
</complexContent>
</complexType>
</wsdl:types>

<wsdl:message name="runServiceRequest">

<wsdl:part name="in0" type="impl:Array0f_xsd_string"/>
</wsdl:message>
<wsdl:message name='"runServiceResponse'">

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 44 of 59

IST-2001-84145: MONET

<wsdl:part name="runServiceReturn" type="xsd:string"/>
</wsdl:message>
<wsdl:message name='"runServiceRequestl">
<wsdl:part name="in0" type="impl:Array0f_xsd_string"/>
<wsdl:part name="inl" type='"tns2:MathFormats"/>
</wsdl:message>
[.. snip ..]

<wsdl:portType name="LimitCalculationServiceImpl">
<wsdl:operation name="runService" parameterOrder="in0O">
<wsdl:input message="impl:runServiceRequest" name="runServiceRequest"/>
<wsdl:output message="impl:runServiceResponse" name="runServiceResponse'"/>
</wsdl:operation>
<wsdl:operation name="runService" parameter(Urder="in0 inl">
<wsdl:input message="impl:runServiceRequestl" name="runServiceRequest1"/>
<wsdl:output message="impl:runServiceResponsel" name="runServiceResponse"/>
</wsdl:operation>
</wsdl:portType>
[.. snip ..]

<wsdl:binding name="LimitCalculationServiceSoapBinding"
type="impl:LimitCalculationServiceImpl">
<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="runService">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="runServiceRequest">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://DefaultNamespace" use="encoded"/>
</wsdl:input>
<wsdl:output name="runServiceResponse">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:axis.sosnoski.com" use="encoded"/>
</wsdl:output>
</wsdl:operation>
[.. snip ..]
</wsdl:binding>

<wsdl:service name="PersonLookupService'">
<wsdl:port binding="impl:LimitCalculationServiceSoapBinding"
name="LimitCalculationService">
<wsdlsoap:address
location="http://ptibonum.scl.csd.uwo.ca:16661/axis/services/LimitCalculationService"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 45 of 59

IST-2001-84145: MONET

10.3 Service Call

sinz

To calculate the limit of the function at the point 0 one may use a command-line base
client to the limit calculation service by calling the following sequence:

java SymbolicServiceStrClient -si 1 -so 1 -SOAP
http://ptibonum.scl.csd.uwo.ca:16661/axis/services/LimitCalculationService
http://www.orcca.on.ca/MONET/samples/OpenMath/0M_sin-over_x.xml
http://www.orcca.on.ca/MONET/samples/OpenMath/0M_x.xml
http://www.orcca.on.ca/MONET/samples/OpenMath/0M_0.xml

Another service invocation is possible by going to http://ptibonum.scl.csd.uwo.ca:
16661/MonetServiceClient/html/LimitCalculationService_client.html and typing
in three arguments:

e Function:

<0MOBJ>
<0MA>
<0MS cd = ’arithl’ name = ’times’/>
<0MA>
<0MS cd = ’transcl’ name = ’sin’/>
<0OMV name = ’x’/>
</0MA>
<0OMA>
<0MS cd = ’arithl’ name = ’power’/>
<0MV name = ’x’/>
<OMI>-1</0MI>
</0MA>
</0MA>
</0MOBJ>

e Variable:
<0MOBJ>
<0MV name="x" />
</0MDBJ>
e Limit point
<0MOBJ>

<0OMI>0</0MI>
</0MOBJ>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 46 of 59

IST-2001-84145: MONET

The service will get the request and return the answer

<0MOBJ zmlns = ’http://www.openmath.org/OpenMath’>

<0MA>
<0MS cd = ’listl’ name = ’1list’/>
<0OMI>1</0MI>
</0MA>
</0MOBJ>

The service invocation log for calculation of lirr(l) % is detailed in the Appendix 12.
T—

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 47 of 59

IST-2001-84145: MONET

11 User Guide

This section contains outlines of the user manual for the UWO Symbolic Solver Environment
package. Here we introduce basic operations to be performed for symbolic server and service
installation, as well as service invocation.

11.1 Server Installation

1. System setting:
a) Make sure all requirement software listed in 3.1 are installed and available.
b) Set the following paths as shell variables:

path to Java installation: JAVA HOME ,

path to Apache Tomcat working directory: CATALINA HOME ,
path to Apache Axis home directory: AXIS_HOME ,

path to Apache Ant home directory: ANT HOME ,

path to mathematical solver installation: MATHSOLVER_PATH .

2. Unpack Symbolic Solver distribution archive in a convenient location. It is recom-
mended to set a shell variable to store the path to this directory. By default it will
be referred as MONET_SYMBOLIC_SOLVER_HOME .

3. Check the port number on which the current version of Tomcat is running.

4. Make sure the Axis servlet is reloadable either automatically or manually. For the
first option the file $CATALINA HOME/conf/server.xml has to contain the line <Context
path="/axis" docBase="axis" reloadable="true"/>. For the second option (more
recommended) Tomcat configuration has to define the manager role, assigned at least
to one username. For more information about enabling reloading Axis please refer to
user manual, section “Reload Axis”.

5. Run $MONET_SYMBOLIC_SOLVER HOME/mathserver init.sh [port] [-reloadaxis|-ral
Specify argument port if different from the default value 8080. If Axis is not set to
be autoreloadable, use the key ”-ra” or ”-reloadaxis” to force Axis reload at the end
of server installation.

6. To verify that installation of the Symbolic Server was successful go $AXIS HOME/WEB_INF/1ib
and check presence of the following libraries: mathServices.jar , om-tools.jar ,
om-codecs.jar , om-1ib.jar and risc-openmath-utill.0.3.jar.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 48 of 59

IST-2001-84145: MONET

11.2 Imnstallation of New Service

1. Prepare service configuration file, put it in known location on the web or in the local
network file system (do not forget to grant reading permission to it).

2. Find out the URL of a Broker on which the service will be registered.

3. Verify the port number on which the current version of Monet Symbolic Server is set
up (corresponds to port of Tomcat, on which Symbolic Server is installed in 11.1).

4. Check the full path to the mathematical solver installation if it is not set in the shell
variable MATHSOLVER PATH and different from name of the software system in lowcase
(for exapmple ”axiom”, "maple”, etc.) This may corrspond to a real path to the
software, link or alias.

5. Run
cd $MONET_SYMBOLIC_SOLVER_HOME
./mathservice_install.sh <config.file> <broker URL> [port] [path to math solver]

This script executed will perform the following steps:
a. Parse configuration file and extract service name and service MSDL skeleton.

b. Generate service java core class and put it in $AXIS_ HOME/WEB_INF/1ib directory, so the
new service is ready to be deployed on the web server uder Tomcat/Axis. To verify
if this step was successful check the presence of the file <serviceName>Impl.class in
$AXIS_HOME/WEB_INF/class .

c. If Axis servlet is not set to be autoreloadable, at this point it will be reloaded by the
auxiliary script reload_axis.sh .

d. Generate service deployment/undeployment descriptors named deploy<serviceName>.wsdd
and undeploy<serviceName>.wsdd correspondingly. These files will be put in a gener-
ated directory wsdd under Symbolic Solver home directory $MONET_SYMBOLIC_SOLVER_HOME.

e. Deploy the service on the web server using deployment descriptor created in the
previous step. After this task is compete the web server is ready to run the new
symbolic service as a fully-functional web service.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 49 of 59

IST-2001-84145: MONET

11.3 Calling Service

Symbolic Services can be called either directly from client or via the Monet Broker. Both of
these call flow patterns are supported by all three types of client interface: command-line,
GUI and web-based.

e Call symbolic service directly using command line client

To call service a symbolic directly using command line client interface, perform the following
steps:

1. cd $MONET_SYMBOLIC_SOLVER HOME/Client .

2. If you run the Symbolic Solver Service Client for the first time, run ant . It will build
java classes and executable jar file from the source.

3. Run the client:
cd class
java SymbolicServiceCall [-si n][-mi n][-mo n][-so n][-SOAP] <service URL> <math
args>
where service URL is the URL of calling symbolic service; math args mathemati-
cal arguments to the service, represented by file names or URL references to files,
containing OpenMath objects.

The following options are available:
-SOAP — use of this key enables tracking of service SOAP request/response.
-si — specifies mathematical format for service input
-mi — specifies mathematical format for mathematical solver input
-mo — specifies mathematical format for mathematical solver output
-so — specifies mathematical format for service output

n — code for mathematical format:
: Native syntax of the system of mathematical solver
: OpenMath
: Content MathML
: Presentation MathML
: Plain string

5: LaTeX

For example, for Maple-based symbolic services the choice of “OpenMath” for all inputs and
outputs will lead to conversion between OpenMath and Maple inside of Maple (by calling
specially designed Maple packages for this type of conversion).

=N = O

The choice of OpenMath format for service input and output together with “Maple” for
maple input and “Content MathML” output will invoke another type of call, when OpenMath
arguments are converted to Maple syntax outside of Maple program by an OpenMath to Maple
phrasebook, and output from Maple is converted to Content MathML and then translated to
OpenMath by using XSLT stylesheets.

e Call symbolic service directly using GUI client

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 50 of 59

IST-2001-84145: MONET

cd $MONET_SYMBOLIC_SOLVER_HOME

Execute ant -run .

In the window appeared select “direct” item in the “call flow” radio button menu.
Enter the service URL in the field provided.

Using scroll-field set number of arguments to service call.

S ot W

Enter these arguments either as URL references or local file names in the text fields
in upper part of the form or as content of OpenMath in text areas appeared in the
bottom of the window.

7. Using drop-down menus choose preferable input and output formats for service request
and response, as well as intermediate format of arguments that are passed from service
to mathematical solver software.

8. Current setting and parameter values can be saved by pressing on the button “Save
as default”.

9. Clicking on the button “Reset” will set all fields contents to default values.

10. When you are ready to submit your request to the service, send it by pressing the
button “Send”.

11. The response from the service will appear in the right-side text area. Its content can

be then browsed and saved in a file by using filename text field and “Save” button.

e Call symbolic service directly using web client

One can either use existing web clients available at the MONET sites of UWO and Bath
or install his own instance of the web client for symbolic services.

1. To access symbolic services at the University of Western Ontario, open in a browser
the URL http://ptibonum.scl.csd.uwo.ca:16661/MonetServiceClient/

2. on the left-side panel choose one of the services offered, then format request to a
corresponding service by entering its arguments as URL references or OpenMath
content. To help the user, a repository of samples for OpenMath expressions is
accessible by the hyper link above each field for service arguments, as well as link
to OpenMath editor JOME [22] that helps to get a mathematical expression in the
OpenMath format.

3. Set the radio button for service call flow pattern to “direct” value.
4. Send the request by pressing the submit button “Sent request to server”.

5. Browse the output from the service on the next page in the field “Result”.

¢ Call symbolic services via broker

This option is a temporary solution to provide the client with an interface to symbolic
services via Monet Brokers. All client interfaces provided allow to re-direct the call to
service via Monet Brokers.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 51 of 59

IST-2001-84145: MONET

e Command-line client interface offers the following call format:
cd $MONET_SYMBOLIC_SOLVER_HOME/Client
java BrokerCallFromClient <Broker URL> [-directcall] <service name> <service args>
the option “-directcall ” allows service to return result direct to the client, when by
default the answer from the service is passed to broker first and then to from broker
to client.

e To use ”via-broker” mode in the GUI client choose the “trough broker” radio button
in the upper panel, in the tab opened enter Broker URL and service name. The
farther steps are similar to service call in the “direct call” mode.

e To call the service through a broker from a web-based client the user just need to
set the service call flow pattern to ”via broker” value. The rest of the service calling
procedure is equal to the “direct call” case.

12 Invocation Log Example

**x LimitCalculationService invocation log *%*

Configuration for mathservice LimitCalculationService has been
loaded from
http://www.orcca.on.ca/MONET/samples/configfiles/limitServiceConfig.xml

Service argument(s): 1: <0OMA>
<0OMS cd =’arithl’ name =’times’/>
<0MA>
<0MS cd =’transcl’ name =’sin’/>
<0MV name =’x’/>
</0MA>
<0MA>
<OMS cd =’arithl’ name =’power’/>
<0MV name =’x’/>
<OMI>-1 </0MI>
</0MA>
</OMA> 2: <OMV name =’x’/> 3: <0OMI>0 </OMI>

OpenMath encoding format: RIACA

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 52 of 59

IST-2001-84145: MONET

2004-03-29 21:54:32.713

Invoke the service
Solving Engine: MAPLE

Math Formats:
Service input : OpenMath
Solver input : OpenMath
Solver output : OpenMath
Service output : OpenMath

Available tools for math format conversion :
OpenMath to Maple package : /MonetSymbolicSolver-UWO/maple/omo_to_mob.mpl
Maple to OpenMath package : /MonetSymbolicSolver-UW0/maple/mob_to_omo.mpl
Content MathML to OpenMath XSLT : file://MonetSymbolicSolver-UWO/xslt/cmmltoom.xsl

Maple operation to evaluate:
MONET_limit_module:-monet_limit

List of OpenMath args, submitted to Maple:

["<DMA><DMS cd=’arithl’ name=’times’/><0MA><0MS cd=’transcl’ name=’sin’/>
<OMV name=’x’/></0MA><OMA><0OMS cd=’arithl’ name=’power’/><0MV name=’x’/>
<OMI>-1</0MI></0MA></0OMA>",

"<OMV name=’x’/>",

"<OMI>0</0MI>"]

MAPLE input file content:

restart;

generated temporary filename for Maple program output

outputFileName:=

"/scl/packages/jakarta-tomcat-5.0.16/temp/MathServiceOutputs/mapleQut48485.tmp";

file containing package for OpenMath to Maple conversion

OM2MaplepackageFile:= "/MonetSymbolicSolver-UW0/maple/omo_to_mob.mpl";

file containing package for Maple to OpenMath conversion

maple20MpackageFile:= "/MonetSymbolicSolver-UW0/maple/mob_to_omo.mpl";

path to 0OM<->Maple converter directory

Mob0OMpackageDir:= "/MonetSymbolicSolver-UW0/maple";

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 53 of 59

IST-2001-84145: MONET

MONET_limit_module := module()
export monet_limit;
monet_limit:=proc(function,var,limit_point);
limit (function,var=1limit_point);
end:
end:

try

o0lddir := currentdir();

currentdir (MobOMpackageDir) ;

read package for OpenMath to Maple conversion

read OM2MaplepackageFile;

read package with Maple to OpenMath conversion

read maple20MpackageFile;

try

omArgs:=["<OMA><OMS cd=’arithl’ name=’times’/><0MA><OMS cd=’transcl’ name=’sin’/>
<0OMV name=’x’/></0MA><0MA><OMS cd=’arithl’ name=’power’/>
<OMV name=’x’/><0MI>-1</0MI></0MA></0MA>",
"<OMV name=’x’/>",
"<OMI>0</0MI>"];

convert list of OpenMath expressions to sequence of Maple expression

mapleArgs:=seq(OpenMathToMobConversion:-omtomaple (omArgs[i]), i=1..nops(omArgs));

output :=My_limit_module:-my_limit(mapleArgs):

catch :

errorFlag:=1;

err:= lastexception;

errmsg:= StringTools:-FormatMessage(err[2..-1]);

#ans:= cat ("ERROR: ",errmsg);

ans:= XMLTools:-PrintToString(MobToOpenMathConversion:-mapletoom_error (errmsg)) ;

finally:

if (errorFlag<>1) then
if type(output,list) then
ans:= MobToOpenMathConversion:-mapletoom(output) ;

else
ans:= MobToOpenMathConversion:-mapletoom([output]) ;
end if;
ans:= XMLTools:-PrintToString(ans);
end if;

fd := fopen(outputFileName,WRITE):
fprintf(fd, "%s",ans):
fclose(fd):
end try:
currentdir (olddir) ;
catch :
err:= lastexception;
errmsg:= StringTools:-FormatMessage(err[2..-1]);
ans:= cat("ERROR: ",errmsg);

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 54 of 59

IST-2001-84145: MONET

ans:= XMLTools:-PrintToString(MobToOpenMathConversion:-mapletoom_error(errmsg)) ;
fd := fopen(outputFileName,WRITE):
fprintf(fd, "%s",ans):
fclose(fd):
end try: quit;

MAPLE input file stored as
/scl/packages/jakarta-tomcat-5.0.16/temp/MathServiceInputs/mapleIn48484. tmp

Creating file
/scl/packages/jakarta-tomcat-5.0.16/temp/MathServiceInputs/mapleIn48484.tmp_read
containing statement read
"/scl/packages/jakarta-tomcat-5.0.16/temp/MathServiceIlnputs/mapleIn48484.tmp";

Executing command :
maple /scl/packages/jakarta-tomcat-5.0.16/temp/MathServiceInputs/mapleIn48484.tmp_read

The answer from MAPLE:

<0MOBJ xmlns = ’http://www.openmath.org/OpenMath’>

<0OMA>
<0MS cd = ’1listl’ name = ’list’/>
<OMI>1</0MI>
</0OMA>
</0MOBJ>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 55 of 59

IST-2001-84145: MONET

13 Service SOAP messages

Here is an example of SOAP request to string-base version of Indefinite Integration Service with a
function tan(z) as an input parameter.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance">
<soapenv:Body>
<nsl:runService
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://ptibonum.scl.csd.uwo.ca:16661/axis/services/IndefIntService">
<arg0 xsi:type="soapenc:Array"
soapenc:arrayType="xsd:string[2]"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<item>
<0MOBJ>
<0MA>
<OMS cd="transcl" name="tan"/>
<0OMV name="x"/>
</0MA>
</0MOBJ>
</item>
<item>
<0MOBJ>
<0MV name="x" />
</0MOBJ>
</item>
</arg0>
</nsl:runService>
</soapenv:Body>
</soapenv:Envelope>

Then the response from the service is

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<nsl:runServiceResponse
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns ns1="http://ptibonum.scl.csd.uwo.ca:16661/axis/services/IndefIntService">
<nsl:runServiceReturn xsi:type="xsd:string">
<0OMOBJ xmlns = ’http://www.openmath.org/OpenMath’>
<0MA>
<OMS cd = ’listl’ name = ’list’/>

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 56 of 59

IST-2001-84145: MONET

<0OMA>
<0MS cd = ’arithl’ name = ’times’/>
<OMI>-1</0MI>

<0OMA>
<0MS cd = ’transcl’ name = ’1n’/>
<0OMA>
<0MS cd = ’transcl’ name = ’cos’/>
<0MV name = ’x’/>
</0MA>
</0MA>
</0OMA>
</0MA>
</0MOBJ>

</nsl:runServiceReturn>

</nsl:runServiceResponse>
</soapenv:Body>
</soapenv:Envelope>

Note: the real SOAP message body contains entities ”&1t;” and ”>” instead of “<”
and “>” in context of OpenMath objects. We replaced these entities to clarify the example

look.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2)

Page 57 of 59

IST-2001-84145: MONET

References

[1]

[2]

[4]

[5]

[6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

Horrocks Tan, MONET Ezxisting and Emerging Technologies, Deliverable 3, The
MONET Consortium, November 2002.

Stephen Buswell,Olga Caprotti and Mike Dewar, MONET Architecture Querview, De-
liverable 4, The MONET Consortium, December 2002.

Yannis Chicha, James Davenport, David Roberts, Mathematical Ezplanation Ontology,
Deliverable 7, The MONET Consortium, January 2004.

Elena Smirnova, Yannis Chicha, Nick Taylor, Broker Initial Beta Version, Deliverable
8, The MONET Consortium, August 2003.

Olga Caprotti, David Carlisle, Arjeh M. Cohen, Mike Dewar, Mathematical Problem
Description Ontology, Deliverable 11, The MONET Consortium, March 2003.

Mathematical Query Ontology, Deliverable 13, The MONET Consortium, March 2003.

Stephen Buswell, Olga Caprotti, Mike Dewar, Mathematical Service Description Lan-
guage , Deliverable 14, The MONET Consortium, March 2003.

Walter Barbera-Medina, Stephen Buswell, Yannis Chicha, Marc Gaetano, Julian Pad-
get, Manfred Riem, Daniele Turi, Broker API, Deliverable 18, The MONET Consor-
tium, September 2003.

Marc Aird(ed): Symbolic Service Beta Version, Deliverable 15, The MONET Consor-
tium, July 2003.

Marc Aird, Walter Barbera, Elena Smirnova, Symbolic Service Release Candidate,
Deliverable 21, The MONET Consortium, December 2003.

W3C, Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/SOAP.

W3C, Web Services Description Language (WSDL) 1.1, http://www.u3.org/TR/
wsdl.html.

W3C, Web Service Deployment Descriptor (WSDD) 1.1, developer.apple.
com/documentation/WebObjects/Web_Services/Web_Services/chapter_4\
_section_7.html.

OpenMath http://www.openmath.org/cocoon/openmath//index . html.

RIACA OpenMath Library, http://www.openmath.org/cocoon/html/openmath_
tutorial/projects/om/lib/build/doc/api/overview-summary.html.

Sun Microsystems Inc, http://java.sun.com, 1995-2003.

The Apache Software Foundation, http://jakarta.apache.org/tomcat, 1999-2003.

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 58 of 59

IST-2001-84145: MONET

[18] The Apache Software Foundation, http://httpd.apache.org, 1996-2003.

[19] The Apache Software Foundation, http://ws.apache.org/axis, 1999-2003.

[20] JavaServer Pages Technology, http://java.sun.com/products/jsp/, 1999-2003.
[21] Document Object Model , http://www.w3.org/DOM/

[22] JOME: Java OpenMath Editor, http://mainline.essi.fr/jome/jome-editor-en.
html

[23] Maple, http://www.maplesoft.com

[24] Aziom computer algebra system, http://www.nongnu.org/axiom/
[25] Derive, http://www.derive.com

[26] Mathematica, http://waw.wolfram.com/

[27] MatLab, http://www.mathworks.com/products/matlab/

Symbolic Solver Services.Wrapper Tools Release Candidate (Task: 4.2) Page 59 of 59

