
On the Performance of

Parametric Polymorphism in Maple

Laurentiu Dragan Stephen M. Watt

Ontario Research Centre for Computer Algebra
University of Western Ontario

London, Ontario, Canada N6A 5B7

{ldragan,watt}@orcca.on.ca

Abstract

With the introduction of support for generics in mainstream program-
ming languages, we see an renewed interest in writing generic code. Maple
offers the possibility to write generic code using module-producing func-
tions. There is usually a performance cost associated with the use of
generics, and this paper analyzes the cost of using these in Maple.

We created sets of tests for different styles of generics and compared
their performance with specialized Maple code. The first set of tests
implemented generics in the style of parameterized abstract data types,
with Maple modules providing functions that operated on data values.
The second set of tests implemented generics in the style of parameterized
object-oriented classes, where each data value was embodied in its own
module object. The test functions were based on the popular SciMark
benchmark for scientific computation in Java. The results show a small
degradation of performance when using generics modeled on abstract data
types and high performance degradation when using an object-oriented
approach.

Keywords. generics, parametric polymorphism, performance, Maple.

1 Introduction

Scientific algorithms are well suited to a generic style of programming due to
their natural mathematical structure. The feasibility of generic code for scien-
tific computing has been investigated in [4], [5]. Good examples of the usefulness
of the generic libraries are provided by the C++ standard template library (STL)
and the Boost libraries [6]. There are many computer algebra libraries using
parametric polymorphism for generics: the NTL library for number theory [7],
the LinBox library for symbolic linear algebra [8], the Sum-IT library for dif-
ferential operators [9] and the Triade library for triangular sets [10], to mention
just a few.

1

We believe that programming generically using parametric polymorphism is
an important abstraction technique that can simplify code, allow more reuse
and improve maintainability. Naive implementations of generic code typically
do not perform as well as specialized code, but optimizers can make significant
improvements and minimize the extra cost.

One of the prerequisites for wider adoption of generic code is a clear un-
derstanding of its cost. To address this question in a wider setting we have
developed “SciGMark” a benchmark for generics in scientific computing. This
is an extension of the well-known SciMark benchmark [3] to use generics. This
benchmark suite contains various language implementations of a number of
mathematical test problems. The first version of SciGMark contains the prob-
lems from SciMark for Java, C++, C# and Aldor in both specialized and generic
form.

As described in the “Advanced Programming Guide” [11], Maple offers sup-
port for generic programming using modules produced by functions. It is the
purpose of this paper to investigate the cost this incurs and the potential per-
formance that may be gained through optimization. To conduct this analysis,
we re-implemented our existing SciGMark test suite in Maple to compare the
performance of specialized and generic programs. We produced two versions,
corresponding to the object-oriented and the abstract data type models of com-
putation. The object-oriented tests pair data with operations and the abstract
data type tests separate the data from the operations. We show the results
obtained for this benchmark, comparing the generic object-oriented, the generic
abstract data type and the specialized versions. The environment provided by
Maple is interpreted and, as a result, the overall performance of code is slower
than the performance for the other general purpose languages used in our SciG-
Mark test. It is not our intention, however, to compare Maple against Java,
C++, C# and Aldor. Our goal, rather, is to investigate the implications of writ-
ing generic code in Maple.

This remainder of the paper is organized as follows: Section 2 is a brief
description of SciGMark with its tests. Section 3 presents the implementation
details of SciGMark in Maple. Section 4 shows the results obtained. Finally,
Section 5 presents the conclusions.

2 SciGMark, a Generic SciMark

SciMark [3] is a Java benchmark for scientific and numerical computing and
has been ported to C++ and C#. It measures several computational kernels
and determines a composite score in approximate MFlops (Millions of FLoating
point Operations Per Second). The computational kernels include the following:

Fast Fourier transform (FFT) performs a one-dimensional for-
ward transform of 4K complex numbers. This kernel exercises com-
plex arithmetic, shuffling, non-constant memory references and trigono-
metric functions.

2

Jacobi successive over-relaxation (SOR) on a 100x100 grid ex-
ercises typical access patterns in finite difference applications, for
example, solving Laplace’s equation in 2D with Dirichlet boundary
conditions. The algorithm exercises basic “grid averaging” memory
patterns, where each A(i,j) is assigned an average weighting of its
four nearest neighbors.

Monte Carlo integration approximates the value of π by com-
puting the integral of the quarter circle y =

√
1− x2 on [0, 1]. It

chooses random points within the unit square and computes the ratio
of those within the circle. The algorithm exercises random-number
generators, synchronized function calls, and function inlining.

Sparse matrix multiply uses an unstructured sparse matrix stored
in compressed-row format with a prescribed sparsity structure. This
kernel exercises indirection addressing and non-regular memory ref-
erences.

Dense LU matrix factorization computes the LU factorization of
a dense 100x100 matrix using partial pivoting. This exercises linear
algebra kernels (BLAS) and dense matrix operations. The algorithm
is the right-looking version of LU with rank-1 updates.

We have developed SciGMark [1] as an extension to SciMark using generic
versions of the tests present in SciMark. This allows us to measure the difference
in performance between generic and specialized code. The individual kernels
are re-written to operate over a generic numerical type supporting the ring
operations (+,−,×, /, zero, one). The current version implements a wrapper
for double precision floating point numbers and this is used to instantiate the
tests. The tests may also be run in single or multiple precision, or using exact
arithmetic by instantiating them with another numerical ring.

3 A Maple Version of SciGMark

Parametric polymorphism can be achieved in Maple using module-producing
functions. The basic mechanism is to write a function that takes one or more
modules as parameters and produces a module as its result. The module pro-
duced uses operations from the parameter modules to provide abstract algo-
rithms in a generic form. The following is a simple example:

MyGenericType := proc(R)
module ()

export f, g;
Here f and g can use u and v from R.
f := proc(a, b) foo(R:-u(a), R:-v(b)) end;
g := proc(a, b) goo(R:-u(a), R:-v(b)) end;

end module
end proc:

3

We investigated two ways of using this basic idea to provide generics:

• The first way — the “object oriented” (OO) approach — represented each
value as a module. This module had a number of components, including
fields (locals or exports) for the data and for the operations supported.
Each value would be represented by its own constructed module.

• The second way — the “abstract data type” (ADT) approach — repre-
sented each value as some data object, manipulated by operations from
some module. One module was shared by all values belonging to each type,
and the module provided operations only. The data was free-standing.

We produced two Maple versions of SciGMark: one for each of these approaches.
In both the OO and ADT versions, the SciGMark kernels use numerical op-
erations from a generic parameter type. For the concrete instantiation of this
parameter, we created the module “DoubleRing” as a wrapper for floating point.

The code for the OO version of DoubleRing is as follows:

DoubleRing := proc(val::float)
local Me;
Me := module()

export v, a, s, m, d, gt, zero, one,
coerce, absolute, sine, sqroot;

v := val;
a := (b) -> DoubleRing(Me:-v + b:-v);
s := (b) -> DoubleRing(Me:-v - b:-v);
m := (b) -> DoubleRing(Me:-v * b:-v);
d := (b) -> DoubleRing(Me:-v / b:-v);
gt := (b) -> Me:-v > b:-v;
zero := () -> DoubleRing(0.0);
one := () -> DoubleRing(1.0);
coerce := () -> Me:-v;
absolute:= () -> DoubleRing(abs(v));
sine := () -> DoubleRing(sin(v));
sqroot := () -> DoubleRing(sqrt(v));

end module:
return Me;

end proc:

This version simulates the object-oriented model by storing the value and the
operations in a module. Each call to DoubleRing produces a new module that
stores its own value. The exports a, s, m and d correspond to addition, subtrac-
tion, multiplication and division. We chose these names, rather than ‘+‘, ‘-‘,
‘*‘ and ‘/‘, since Maple’s support for overloading basic operations is rather
awkward and we were not producing a piece of code for general distribution.
The last two functions, sine and sqroot, are used only by the FFT kernel to
replace complex operations and to test the correctness of the results.

4

The code for the ADT version of DoubleRing is as follows:

DoubleRing := module()
export a, s, m, d, zero, one,

coerce, absolute, sine, gt, sqroot;
a := (a, b) -> a + b;
s := (a, b) -> a - b;
m := (a, b) -> a * b;
d := (a, b) -> a / b;
gt := (a, b) -> a > b;
zero := () -> 0.0;
one := () -> 1.0;
coerce := (a::float) -> a;
absolute := (a) -> abs(a);
sine := (a) -> sin(a);
sqroot := (a) -> sqrt(a);

end module:

It can be seen that this approach does not store the data; it provides only the
operations. As a convention, one must coerce the float type to the representation
used by the module. In this case the representation used is exactly float (as can
be seen from the coerce function). The DoubleRing module is created only once
when the module for each kernel is created.

Each SciGMark kernel exports an implementation of its algorithm and a
function to compute the estimated floating point instruction rate. Each of the
kernels is parametrized by a module, R, that abstracts the numerical type. An
example of this structure is as follows:

gFFT := proc(R)

module()
export num_flops, transform, inverse;
local transform_internal, bitreverse;

num_flops := ...;
transform := proc(data::array) ... end proc;
inverse := proc(data::array) ... end proc;
transform_internal := proc(data, direction) ... end proc;
bitreverse := proc(data::array) ... end proc;

end module:

end proc:

The high-level structure of the implementation is the same in both the OO
and ADT generic cases. The detailed implementations of the functions in the
module are different, however. An example of the same piece of code in all three
cases is shown in Table 1. One can see that the specialized version makes use of

5

Model Code
Specialized x*x + y*y
Object-Oriented (x:-m(x):-a(y:-m(y))):-coerce()
Abstract Data Type R:-coerce(R:-a(R:-m(x,x), R:-m(y,y)))

Table 1: Differences in implementation of specialized and generic code

the built-in Maple operations. In this case, the values use Maple’s native floating
point representation. The other two versions make use of exported operations
from R, which in our case is given by DoubleRing. The object-oriented model
uses a module instance to obtain the operations associated with the data. One
can see that in the object-oriented model the variables are themselves modules
and are used to find the operations. On the other hand, the abstract data type
model uses a module for the operations that is not connected to the data in any
explicit way. In the abstract data model, the parameter passed in to the kernel
module is the same for all operations on all data.

We tested the kernels described in Section 2. These were implemented in
the same way in Maple as in other languages. In particular, we did not make
use of Maple’s own arithmetic to treat complex values and matrices as single
objects. By doing this, and by taking tests where the parameter values were
relatively light weight (floating point numbers), we hoped to expose the worst
case performance of generics.

4 Results

The results of running SciGMark in Maple 10 are presented in Table 2. The
benchmark was run on a Pentium 4 processor with 3.2 GHz, 1MB cache and 2
GB RAM. The operating system used was Linux, Fedora Core 4.

The results show that abstract data type model is very close in performance
to the specialized version. The ratio between abstract data type and specialized
versions is roughly 1.3. This means there is not strong justification, based on
performance alone, to avoid writing generic algorithms in Maple. We should
point out two situations, however, that require special consideration: The first
is that with several nested levels of generic construction the compounding of
the performance penalty may become significant. The second consideration is
that some Maple procedures obtain their performance from an evaluation mode,
evalhf, that treats hardware floats specially. Our investigation assumes evalhf
is not being used.

The last column of Table 2 shows the results for the object-oriented model.
This model tries to simulate as closely as possible the original SciGMark test,
given the language features offered by Maple. This model constructs many mod-
ules during the benchmark, leading to a significant performance degradation.
The ratio between object-oriented and specialized versions is 9.9; that is, the
generic OO code is about one order of magnitude slower than the specialized
code. This shows that this approach to writing generic code should be avoided

6

Test Specialized Abstract Object
Data Type Oriented

Fast Fourier Transform 0.123 0.088 0.0103
Successive Over Relaxation 0.243 0.166 0.0167
Monte Carlo 0.092 0.069 0.0165
Sparse Matrix Multiplication 0.045 0.041 0.0129
LU factorization 0.162 0.131 0.0111
Composite 0.133 0.099 0.0135
Ratio 1.0 1.3 9.9

Table 2: SciGMark MFlops in Maple 10

in Maple. If generic object-oriented code is truly required for some application,
it would be worthwhile to explicitly separate the instance-specific data values
from a shared-method module. Then values would be composite objects (e.g.
lists) with one component being the shared module.

The performance penalty for generic code should not discourage writing of
generic code, but rather encourage compiler writers to think harder about op-
timizing generic code constructs. Generic code is useful, they provide a much
needed code reuse that can simplify the libraries. An example of such opti-
mization has been proposed by specializing the type according to the particular
parameter used when constructing the type, as mentioned in [2].

5 Conclusion

There are certain benefits that a generic programming style provides, including
improved modularity, improved maintainability and re-use, and decreased du-
plication. In a mathematical context, writing programs generically also helps
programmers operate at a higher, more appropriate level of abstraction. With
these potential benefits, it is important to understand whether there are op-
posing reasons that preclude use of this style. We have made a quantitative
assessment of the performance impact of using a generic programming style in
Maple.

We have found that writing generic code using parametric polymorphism
and abstract data types does not introduce an excessive performance penalty in
Maple. We believe that this is in part due to the fact that Maple is interpreted
and there is little overall optimization. Even specialized code executes function
calls for each operation. Carefully written generic code and code that is not
excessively generic can do well in Maple environment. We suggest that it would
be worthwhile to consider modifications to the Maple programming language to
make generic programming easier.

Writing code in Maple that tries to simulate the sub-classing polymorphism
provided by object-oriented languages such as Java, can be very expensive in
Maple. The code written using this approach can be an order of magnitude
slower compared to the specialized code.

7

References

[1] L. Dragan and S. M. Watt Performance Analysis of Generics in Scientific
Computing, Proceedings of Seventh International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, Timisoara, Romania,
IEEE Computer Society, 90–100, 2005

[2] L. Dragan and S. M. Watt Parametric Polymorphism Optimization for
Deeply Nested Types, Proceedings of Maple Conference 2005, Waterloo,
Canada, Maplesoft, 243–259, 2005

[3] R. Pozo and B. Miller, SciMark2, Natl. Inst. of Standards and Technology,
http://math.nist.gov/scimark2

[4] J. Gerlach and J. Kneis, Generic Programming for Scientific Computing in
C++, Java, and C#., Advanced Parallel Programming Technologies, 5th
International Workshop, 2834, Xiamen, China, Springer, 301–310, 2003

[5] T. L. Veldhuizen and M. E. Jernigan, Will C++ be faster than Fortran?,
Proceedings of the 1st International Scientific Computing in Object-Oriented
Parallel Environments (ISCOPE’97), Marina del Rey, California, Springer-
Verlag, 1997

[6] D. Abrahams, Boost C++ Libraries, http://www.boost.org/, 2002

[7] V. Shoup, NTL: A Library for Doing Number Theory, http://
www.shoup.net/ntl/doc/tour.html

[8] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen,
E. Kaltofen, B. D. Saunders, W. J. Turner and G. Villard, Lin-
Box: A Generic Library For Exact Linear Algebra, International
Congress of Mathematical Software (ICMS 2002), Beijing, China,
http://citeseer.csail.mit.edu/511043.html

[9] M. Bronstein, SUM-IT: A Strongly-Typed Embeddable Computer Algebra
Library, Proceedings of DISCO’96, Karlsruhe, Germany, Springer LNCS
1128, 22–33, 1996

[10] M. Moreno Maza, On Triangular Decompositions of Algebraic Varieties,
Méthodes Effectives en Géométrie Algébrique (MEGA 2000), Bath, UK,
(http://www.bath.ac.uk/~masdr/abst/), 2000

[11] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,
J. McCarron and P. DeMarco, Maple 10 – Advanced Programming Guide,
Maplesoft 2005

8

