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Abstract

We present a pivot-free deterministic algorithm for the
inversion of block matrices. The method is based on the
Moore-Penrose inverse and is applicable over certain gen-
eral classes of rings. This improves on previous methods
that required at least one invertible on-diagonal block, and
that otherwise required row- or column-based pivoting, dis-
rupting the block structure. Our method is applicable to any
invertible matrix and does not require any particular blocks
to invertible. This is achieved at the cost of two additional
specialized matrix multiplications and, in some cases, re-
quires the inversion to be performed in an extended ring.

1. Introduction

Algorithms for block matrices have been well studied
and have many benefits under certain conditions: They may
be used to improve memory hierarchy performance, at the
level of cache, disk or network. They may be used on a
quad-tree representation that allows reasonable memory use
for dense, sparse or structured matrices. They allow the
generic formulation of many algorithms of linear algebra so
that they may be applied over non-commutative domains.
This allows some some algorithms to be expressed in a
recursive formulation, leading to improved computational
complexity. Block matrices have been used in numerical
computing, and also in symbolic computing [1].

This paper revisits the question of block algorithms for
matrix inversion. We are interested in this problem for sev-
eral reasons:

First, it is an interesting mathematical problem. While
many problems that are na ıvely expressed using matrix in-
verse (such as the solution of linear systems) are better
solved using other methods (such as PLU factorization),
matrix inverse nevertheless remains a fundamental opera-
tion.

Second, we wish to use block matrices as one representa-
tion in the mathematical libraries for Aldor [2]. Aldor sup-
ports generic programming through parametric polymor-
phism, where types must satisfy specific type categories.
For matrices to satisfy the type category Ring they must
provide a partial inverse operation.

Third, we wish to use block matrices as a test case in
our work benchmarking the performance of compilers on
generic programs [3].

We consider the inversion of 2×2 block matrices. Larger
matrices are expressed by applying this construction recur-
sively. Earlier methods for block matrix inversion either
require one of the blocks to be invertible or degenerate into
individual row or column operations, destroying the block
structure.

We ask whether it is possible to formulate deterministic
block matrix inversion in such a way that

1. only operations on entire blocks are used,

2. no case-based branching is required,

3. block inverses are required only when they are guaran-
teed to exist and

4. applied recursively, the method gives inversion the
same complexity as matrix multiplication?

As with other block-oriented methods, we do not require
numerical stability.

We are able to answer this question positively. We show
such a block matrix inversion that is applicable over a gen-
eral class of rings. In particular, it may be used for block
matrices with real, complex or finite field entries.

The rest of the paper is organized as follows: Section 2
provides some necessary background. Section 3 presents
our method for block matrix inverse. The algorithm is pre-
sented first for formally real rings, then for the complex and
general field cases. Finally we present our conclusions.



2. Preliminaries

2.1 Recursive Block Matrices

We consider n × n matrices with elements from a ring
R and denote the matrix ring Rn×n. For convenience we
require that R have unity and explicitly state any additional
properties when they are required. If n is even, we may put
the matrices of Rn×n in a one-to-one correspondence with
the matrices of (Rn/2×n/2)2×2. For an n×n matrix M we
take

M =

�
A B
C D

�

with the n
2 ×

n
2 matrices A, B, C, D having elements Aij =

Mi,j , Bij = Mi,j+ n
2

, Cij = Mi+ n
2 ,j , Dij = Mi+ n

2 ,j+ n
2

with 1 ≤ i, j,≤ n/2. For general n, there are two ways to
impose a 2×2 block structure that preserves the multiplica-
tive properties of the matrix ring:

The first method is to embed Rn×n in a ring of larger
matrices R(n+`)×(n+`) by adding ones along the diagonal
and zeros elsewhere. If n is odd and ` is one, then we may
apply the 2×2 block division once. If ` = 2dlog2 ne−n (i.e.
if n+` is the next power of 2), then the construction may be
applied dlog2 ne times to obtain a fully recursive 2×2 struc-
ture. This method has the advantage that, at each level, the
matrix elements are from a specific ring. For the recursive
block matrix ring, we introduce the notation R(2×2)k

. This
allows certain isomorphisms to be expressed conveniently

R2k×2k ∼=(R2k−1×2k−1
)2×2∼=(R(2×2)k−i

)(2×2)i ∼=R(2×2)k

.

The second method is to divide matrices unevenly.
The blocks A, B, C, D have elements Aij = Mi,j ,
Bij′ = Mi,j′+`, Ci′j = Mi′+`,j , Di′j′ = Mi′+`,j′+`,
where ` is between 1 and n and the indices range as
1 ≤ i, j ≤ ` and 1 ≤ i′, j′ ≤ n − `. This construction
may be applied repeatedly to obtain a fully recursive 2 × 2
block structure. For the complexity results given below, we
choose ` = bn

2 c.
Both methods may be used for the block matrix inversion

problem considered in this paper. Note that in both methods
the blocks A and D are square.

2.2. Näıve Block Matrix Inverse

Perhaps the most æsthetically pleasing formulation of
the block matrix inverse is as

M−1 =

"
(A−BD−1C)−1 (C −DB−1A)−1

(B −AC−1D)−1 (D − CA−1B)−1

#
,

which is valid over any ring, and may be applied recursively.
This formulation has two defects, however: First, it re-

quires all of A, B, C and D to be invertible. In fact, M

may be invertible even if all of A, B, C and D are non-
invertible. Second, this expression for the matrix inverse re-
quires 8 block inversions and 8 block multiplications. When
applied recursively to give an algorithm for n× n matrices,
this leads to O(n3) coefficient ring operations. Since faster
methods are well known and practical, this formulation is
not attractive for a generic algorithm.

To avoid these problems, a more common formulation
for block matrix inversion is as

M−1 =

�
I −A−1B
0 I

� �
A−1 0
0 S−1

A

� �
I 0

−CA−1 I

�

=

"
A−1 + A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

#
(1)

where SA = D−CA−1B is the Schur complement of A in
M . Alternatively, the inverse may be expressed as

M−1 =

�
I 0

−D−1C I

� �
S−1

D 0
0 D−1

� �
I −BD−1

0 I

�

=

"
S−1

D −S−1
D BD−1

−D−1CS−1
D D−1 + D−1CS−1

D BD−1

#
. (2)

This formulation requires only that either A or D and the
corresponding Schur complement be invertible. It also has
the benefit of computational efficiency, requiring only 2
inversions, 6 multiplications and 3 additive operations on
blocks. If 2 ≤ ω ≤ 3 is the exponent such that n × n
matrix multiplication requires O(nω) element operations,
then this formulation of block matrix inverse, applied re-
cursively, leads to an O(nω) algorithm for inversion. For
concreteness, Strassen’s matrix multiplication [4] requires
nlog2 7 multiplications and 6(nlog2 7 − n2) additive opera-
tions (+, −), and the above formulas give matrix inversion
in (6nlog2 7 − 1)/5 multiplicative operations (×, inverse)
and (72nlog2 7 − 165n2 + 93n)/10 additive operations.

2.3 Non-Invertible Blocks

While the complexity of the block matrix inversion given
by equations (1) and (2) is acceptable, there remains the
problem that it requires either A or D to be invertible. How-
ever, as stated earlier, all blocks may be non-invertible, even
for invertible M . For example, the following permutation
matrix is invertible:2

6664
�

1 0
0 0

� �
0 0
1 0

�
�

0 1
0 0

� �
0 0
0 1

�
3
7775

The usual approach to deal with this problem is to aban-
don the block formulation of the inverse, and use a row-
oriented divide and conquer PLU matrix factorization to



compute the inverse using pivots to avoid non-invertible el-
ements. See, for example, [5].

This has two problems: The first problem is that if we
are representing matrices in memory using a recursive block
structure (say, as quad-trees), then a row-oriented PLU de-
composition either requires converting the matrix in and out
of the desired representation or requires using an indexing
scheme that carries a high overhead. The second problem is
that if the entries are not themselves block sub-matrices, but
members of some non-commutative base ring, then there is
no internal row structure to exploit.

Some authors, e.g. [1], argue that they do not encounter
non-invertible blocks in practice. This may indeed be the
case when working with specialized families of matrices or
with matrices with elements chosen randomly from a large
ring. For a general solution, however, non-invertibility of
blocks remains a problem. For example, when the entries
are chosen from a restricted set a significant proportion of
small matrices can be non-invertible. Since recursive block
algorithms operate upon many small matrices in their ex-
ecution, non-invertible blocks may be encountered with a
significant probability. For concreteness, we show below
the proportion of Qn×n matrices that are non-invertible1 for
small n when elements are chosen from the sets {0, 1} and
{−1, 0, 1}. Note that for n < 8, most of the {0, 1} matrices
are non-invertible.

{0, 1}n×n ⊂ Qn×n

n 1 2 3 4 5 6 7 8
% non-inv. 50 62 66 66 63 58 52 45

{−1, 0, 1}n×n ⊂ Qn×n

n 1 2 3 4
% non-inv. 33 41 40 45

2.4. The Moore-Penrose Inverse

The Moore-Penrose inverse is a generalized form of ma-
trix inversion applicable to non-square matrices, discovered
independently by E. Moore [7] and R. Penrose [8]. If Z is
a complex n × m matrix, and Z∗ its conjugate transpose,
then the Moore-Penrose inverse, denoted Z+, satisfies:

ZZ+Z = Z (ZZ+)∗ = ZZ+

Z+ZZ+ = Z (Z+Z)∗ = Z+Z.

If Z is of full rank, then m ≤ n, Z∗Z is invertible and the
Moore-Penrose inverse is

Z+ = (Z∗Z)−1Z∗.

In this case, Z+ is left inverse of Z. If Z is square and
invertible, then the Moore-Penrose inverse is Z−1.

1These are calculated using the sequences A046747 and A056989 [6].

3. Pivot-Free Inversion

3.1 Preconditioning for Block Inversion

To apply the recursive block methods given by (1) or (2),
we must find a way to guarantee that the required blocks
will be invertible. We do this by preconditioning the matrix
M . For invertible M , we may choose any invertible G and
have

M−1 = (GM)−1G. (3)

A choice of G that guarantees invertibility of the required
blocks of GM using (1), leads to a block algorithm for
M−1. There is the additional cost of two matrix multipli-
cations, which can clearly be performed using block opera-
tions.

We observe that if R is embedded in a larger ring, S,
and G is an invertible matrix in Sn×n, then (3) may still
be used to compute M−1. The computation will use the
ring operations of S, but the final result will be a matrix in
Rn×n.

For convenience, we shall assume from this point for-
ward that R is a division ring. This guarantees that the in-
verses of intermediate expressions in R exist when required.
If this condition is relaxed, then it may be necessary to work
in some localization of R to deal with non-invertible ele-
ments that occur in intermediate expressions.

The matrix G may be chosen to randomize M to yield a
probabilistic block algorithm for M−1. This is often suffi-
cient for many applications.

For a deterministic algorithm for M−1, we must select a
specific matrix G based on M . We show below that such a
choice of G exists and can be constructed easily. In sections
3.3, 3.4 and 3.5 we show how to choose G depending on the
algebraic properties of R. In each case we use Lemma 1 of
section 3.2.

3.2 Two Lemmata

Lemma 1 (Block Inverse). If R is a division ring, M ∈
Rn×n is invertible and there exists G ∈ En×n, E ⊃ R,
such that all principal minors of GM are invertible, then
(GM)−1, and hence M−1 = (GM)−1G ∈ Rn×n, may
be computed using only block operations. Block operations
are ring operations in E(2×2)i

.

Proof. When the inversion scheme given by equation (1) is
applied recursively to GM , the only blocks that are ever
inverted at any level of recursion are square sub-matrices
lying on the diagonal and their Schur complements with re-
spect to their immediately containing blocks. The square
sub-matrices on the diagonal are a special case of the prin-
cipal minors and are therefore all invertible. Now suppose



that the inverse of a Schur complement is required when
inverting the containing block

H =
[

W X
Y Z

]
In this case we have already that H and W are invertible
and we require the inverse S−1

W = (Z − Y W−1X)−1. The
invertibility of H implies this exists, as S−1

W is an explicit
sub-block of H−1.

We note that the two matrix multiplications required in
the inverse computation are for special forms of matrices.
One multiplication is of a matrix with its own transpose, and
the other is the multiplication of a symmetric matrix with a
general matrix. We show that, depending on the method
used for matrix multiplication, the first of these can be per-
formed faster than a general multiplication.

Lemma 2. For M ∈ Rn×n, computing the the product
MT M requires at most

n2(2nω−2 + 2ω − 6)
2ω − 4

and requires at least nω/2ω multiplications in R.

Proof. The upper bound follows from recursive application
of the the formula

MT M =
[

AT CT

BT DT

] [
A B
C D

]
=

[
AT A + CT C AT B + CT D

(AT B + CT D)T BT B + DT D

]
.

The lower bound follows by choosing

M =
[

XT Y
0 0

]
and noting that MT M computes XY .

For the best asymptotic algorithms the upper bound from
this lemma is worse than the cost of general matrix multipli-
cation and so is not useful. When Strassen matrix multipli-
cation is used, however, general multiplication costs nlog2 7

and this method requires only 1/3n2 + 2/3nlog2 7.

3.3 The Real Case

We begin by treating matrices over a formally real ring
that need not be commutative. A ring R is formally real if,
for any subset {ai}i=1,...,n ⊂ R,

n∑
i=1

a2
i = 0 ⇒ a1 = a2 = · · · = an = 0.

In particular, the rational numbers and real numbers are for-
mally real, as are, e.g., Q[

√
2], Z(x1, . . . , xn) and R[x, ∂]

for formally real R. The complex numbers and rings of fi-
nite characteristic are not formally real.

We may now state:

Theorem 1. If R is a formally real division ring and M ∈
Rn×n is invertible, then it is possible to compute M−1 as
(MT M)−1MT using only block operations. By block op-
erations, we mean ring operations in R(2×2)i

.

Proof. If M is invertible, then so are MT and MT M . We
show that all the principal minors of MT M are invertible,
then Lemma 1 gives the required result.

Let N be a principal minor of MT M and S ⊂ {1, ..., n}
the index set of its rows and columns in MT M . Then N =
MS

T MS , where MS is the matrix of the columns of M
indexed by S. If N were not invertible, then there would be
a non-zero vector x such that Nx = 0. This would imply
xT Nx = (MSx)T (MSx) = 0. As this is a sum of squares
in the formally real ring R, it would imply MSx = 0. But
M is invertible and so MS is of full column rank, which
implies MSx 6= 0, a contradiction.

The expression (MT M)−1MT is the real form of the
Moore-Penrose inverse, since in this case M∗ = MT .

3.4 The Complex Case

We now consider the case of complex numbers in a gen-
eral algebraic setting. Let C be a division ring with a for-
mally real sub-ring R and involution “∗”, such that for all
c ∈ C, c∗ × c is a sum of squares in R. One such case
is the complexification of a formally real ring R, that is
C = R[i]/〈i2 + 1〉 with complex conjugation as the in-
volution: (a + bi)∗ = a − ib for a, b ∈ R. A second case
is to take C as the quaternions over R with the involution
(a + bi + cj + dk)∗ = a− bi− cj − dk for a, b, c, d ∈ R.

We may lift the involution on C to one on Cn×n by
defining M∗ as the transpose of the element-wise involu-
tion of M . Now the arguments presented in section 3.3 all
follow when MT is replaced by M∗. We may thus com-
pute M−1 with block operations using the Moore-Penrose
inverse:

Theorem 2. Let C be a division ring with a formally real
sub-ring R and involution “∗”, such that for all c ∈ C,
c∗ × c is a sum of squares in R. If M ∈ Cn×n is invertible,
then it is possible to compute M−1 as (M∗M)−1M∗ us-
ing only block operations. Here, block operations are ring
operations in C(2×2)i

.

Proof. Replace xT and MT with x∗ and M∗ in the proof
of Theorem 1 to obtain the same contradiction.



3.5 General Fields

For rings that do not have a formally real sub-ring, the
approach of the previous sections may not be applied di-
rectly. We can, however, work in a convenient extended
ring.

We use an idea of [9] and [10] who work in a rational
function field. Mulmuley [9] has approached the problem of
fast computation of matrix rank over an arbitrary field, K,
by working in the field of univariate rational functions K(t).
Diaz-Toca et al [10] have extended this approach to gener-
alize Cramer’s rule. They introduce a generalized form of
the Moore-Penrose inverse, which in our setting gives

M−1 = (M◦M)−1M◦

M◦ = Q−1
n MT Qn

where Qn = diag(1, t, t2, . . . , tn−1).
We find this formulation of matrix inverse to be suitable

for pivot-free block matrix inversion in Kn×n.

Theorem 3. Let K be a field. If M ∈ Kn×n is invertible,
then it is possible to compute M−1 as (M◦M)−1M◦ us-
ing only block operations. Here, block operations are ring
operations in K(t)(2×2)i

.

Proof. We show that all principal minors of M◦M are in-
vertible. Let N be a s × s principal minor of M◦M and
S ⊂ {1, ..., n}, the index set of its rows and columns in
M◦M . Let PS ∈ {0, 1}n×s ⊂ K(t)n×s be the projection
matrix that, when multiplying an n× n matrix on the right,
retains the columns indexed by S. Then we have

N = PT
S (Qn

−1MT QnM)PS . (4)

If N is non-invertible, then there is a non-zero vector
x ∈ K(t)s such that Nx = 0. In that case we also have

(xT PT
S QnPS) Nx = 0. (5)

Combining (4) and (5) gives

(xT PT
S QnPS) Nx

= (xT PT
S QnPS) PT

S (Qn
−1MT QnMPS) x

= (MPS x)T Qn(MPS x)

=
n∑

i=1

(MPS x)i
2

ti−1 = 0. (6)

But M is invertible by hypothesis and the vector PSx is
non-zero. Therefore MPS x 6= 0 and the polynomial (6)
cannot vanish, which is a contradiction.

4. Conclusions

We have shown how the Moore-Penrose inverse can be
used to give a formulation of recursive block matrix inver-
sion that rules out non-invertible sub-blocks. This is useful
for a wide range of element rings.

This formulation requires two additional matrix multi-
plications at the top level only. A software implementation
may choose to use the usual, somewhat less expensive, for-
mulation of block matrix inversion given by equations (1)
and (2) and resort to this method only if it encounters a step
where both A and D are non-invertible.

Finally we note that, because our formulation guarantees
the required blocks will be invertible, it does not require
special cases and may therefore be more suitable for a hard-
ware implementation.
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