
A Technique for Generic Iteration and Its Optimization

Stephen M. Watt
Department of Computer Science

University of Western Ontario
London Ontario, Canada N6A 5B7

watt@csd.uwo.ca

Abstract
Software libraries rely increasingly on iterators to provide generic
traversal of data structures. These iterators can be represented ei-
ther as objects that maintain state or as programs that suspend and
resume control. This paper addresses two problems that remain in
the use of iterators today: The first problem is that iterators repre-
sented as state-saving objects in languages such as C++ or Java typ-
ically have logic that is much more complicated than control–based
iterators. This paper presents a program structuring technique that
allows object–based iterators to be implemented with the same clar-
ity as control–based iterators. The second problem is that the usual
implementations of control–based iterators are not sufficiently effi-
cient for high-performance applications. This paper presents a code
optimization technique that can be applied to control–based itera-
tion to produce efficient natural loops at the machine code level.
Combined, these two results allow iterators for complex data struc-
tures to be easily written and efficiently implemented.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors—compilers, optimization

General Terms Languages, Design, Performance

Keywords Generic programming, Iterators

1. Introduction
The concept of the iterator has been well established in com-
puter programming languages for some thirty years now. Itera-
tors were introduced as constructs to allow looping over abstract
data structures without revealing their internal representation. They
have since become one of the cornerstones of object-oriented and
generic programming.

Initially, support for iterators was provided through special pro-
gramming language control-flow constructs. The yield statement
of CLU [1] and the suspend statement of ICON [2], are two exam-
ples. These provided a mechanism for a structure-traversing pro-
gram to give a value to a loop variable, then temporarily suspend
execution until a value was needed for the next iteration. This al-
lowed a very natural implementation of iterators: an abstract type

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WGP’06 September 16, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-492-6/06/0009. . . $5.00

would provide an iterator that traversed the data structure, knowing
its representation, and yielding values as it went. This approach had
the advantage of clarity, but required non-trivial language support
and could incur substantial overhead. We call these “control–based
iterators.”

As more traditional programming languages adopted data ab-
straction mechanisms, another approach to implementing iterators
became more common. An iterator could be implemented as a re-
lated data structure with fields to record the state of a traversal. For
example, an array iterator would record a pointer to the head of the
array and the current index. Iterators for complex data structures
might require several fields to save the position in the object be-
ing traversed and have complex logic to restore the position in the
traversal logic for the subsequent iteration step. This approach had
the advantage that no new language features were needed, but the
programs to traverse complex data structures were quite difficult to
write and to understand. We call these “object–based iterators.” To-
day, major software libraries most often adopt this approach, for ex-
ample the C++ Standard Template Library [3] and Java JDK5 [4, 5].

We note that the concept of abstract iterators quickly followed
the introduction of data abstraction [6, 7]. Despite a minority opin-
ion that they are a flawed concept [8], with the increased use of
generic programming, newer programming languages, such as Al-
dor [9, 10, 11] (our own language), C# 2.0 [12], Python [13],
Ruby [14] and Sather [15], provide native support for control–
based iterators. In some cases, the use of iterators is defined in terms
of library classes for object–based iterators. For example, in C#, a
function returning an iterator block creates an enumerator object
with a MoveNext method.

This paper solves two problems that remain with iterators today:
how to make object–based iterators easier to understand, and how
to make control–based iterators more efficient. Taken together,
these solutions allow clear and efficient implementation for both
object–based and control–based iterators.

Some authors use the term iterator, and others the term genera-
tor. Some make subtle distinctions between the two. For clarity, we
uniformly use the terms object–based iterator for cases in which it
is the library programmer’s responsibility to save traversal state in
some structure and use the control–based iterator for cases in which
this is automatic and the programmer writes an explicit traversal
with suspending execution.

The remainder of this paper is organized as follows: Section 2
presents examples of generic iteration, a non-trivial object–based
iterator and a control–based iterator. Section 3 describes the most
important previous implementations of iterators. We present our
implementation of control–based iterators in Section 4. Section 5
then shows how our iterator implementation can be optimized with
value numbering and dataflow analysis. This is illustrated with
extended examples in Section 6. We present our conclusions in
Section 7.

2. Iterator Examples
2.1 Generic Iteration
We give a simple first example of generic iteration to serve as a
starting point for our discussion. In C++, we may write an abstract
base clase for a simple object–based iterator as shown in Figure 1a.
The step method is called to position the iterator at the next value,
if there is one. The empty method tells whether there is another
value available and, if so, the value method returns it. A function
using this iteration interface is shown in Figure 1b.

Iterators for specific classes can be derived from the abstract
base class. Figure 1c shows an iterator that traverses an array. Note
that this iterator object has fields argv and argc to represent the
original object to be traversed, and the field i representing the state
of the iteration. Similarly, the iterator shown in Figure 1d extends
the abstract base class to provide iteration over a linked list. The
function sum in Figure 1b may be passed objects of type AIter,
LIter or other derived types.

2.2 A Nontrivial Object-Based Iterator
In the previous example there was only a trivial amount of state to
be maintained between successive calls to the step method. For
the array iterator it was the single array index, i, and for the list
iterator it was the pointer to the current position in the list, l.

We now look at an only slightly more complicated data structure
to see how maintaining a consistent state and continuing a traversal
is not always so easy. For this we use a simple hash table type,
defined in Figure 2a as a vector of buckets, each bucket being a
blocked linked list. It is straightforward, as shown in Figure 2b,
to write a program to iterate over all values in the hash table by
making direct use of the representation. This may also be achieved
using abstract iteration, as shown in Figure 2c.

While the use of this abstract iteration is simple, it is not so
straightforward to provide an implementation. In Figure 2d we
show one possible implementation of the hash table iterator. Be-
tween invocations of the step method, it is necessary to save the
values that correspond to i, blk and j of the function printvals1.
In writing this iterator class, one must establish (at least informally)
some invariant about the state variables that is true after each call
to step. Here we have: if i == ht->buckc the iterator is done,
otherwise blk->entv[j].val is the current value.

Note, in step, the cascading set of tests that work from the
innermost part of the data structure back to the outermost part of
the data structure. For a complicated data structure, re-entering the
traversal logic in this way can be awkward and difficult to manage.
The state of the traversal must be deduced from the values of the
fields in the iterator object and some invariant associated with the
step method. Because all resumptions of the iterator come through
the same entry point, this invariant must simultaneously address
the state of all variables involved in the traversal. This leads to
more complicated reasoning than the separate loop invariants we
have with a complex explicit traversal. Not only does this make
programming error-prone for the library developer—it also makes
it more difficult for a compiler to deduce what must be true in loops.

2.3 Control-Based Iterators
Figure 3a shows how a control–based iterator looks using the syn-
tax of Aldor. We have assumed the same data structure fields as
in the previous example. Ignoring the syntactic details, we see that
implementing this iterator is essentially the same as writing explicit
loops to traverse the structure, as in the printVals1 function.

The Aldor language keyword generate heads a block of code
that produces a Generator object. The keyword yield is used to
return a value and suspend the program for later resumption. These
keywords are underlined for clarity in the example. In the Aldor

template <typename T>
class Iter {
public:

virtual T value() = 0;
virtual bool empty() = 0;
virtual void step() = 0;

};

(a) Iterator abstraction

template <typename T>
T sum(Iter<T> &it) {

T s = 0;
for (; !it.empty(); it.step())

s += it.value();
return s;

}

(b) Iterator use

template <typename T>
class AIter : public Iter<T> {

T *_argv;
int _i, _argc;

public:
AIter(int ac, T *av) : _argc(ac),_argv(av),_i(0) { }
void step() { _i++; }
bool empty() { return _i == _argc; }
T value() { return _argv[_i]; }

};

(c) Array iterator

template <typename T>
struct ListLink {

T first;
ListLink *rest;

};

template <typename T>
class LIter : public Iter<T> {

ListLink<T> *_l;
public:

LIter(ListLink<T> *l) { _l = l; }
void step() { _l = _l->rest; }
bool empty() { return _l == 0; }
T value() { return _l->first; }

};

(d) List iterator

Figure 1. A simple example of generic iteration

language, we would more naturally use a representation where
sub-objects were traversable with their own iterators, as shown in
Figure 3b.

We note that the code implementing these iterators is com-
pletely straightforward, using an explicit traversal of the data struc-
ture. For this control–based iterator there is no need for complex
reasoning about the state of the object between method calls — this
is manifest in the program. For complex data structures (e.g. trees,
graphs) or lightweight structures with special cases (e.g. ascending
vs descending integer ranges), it would be normal and natural to
have multiple yield statements in the same generator. In object–
based iterators, these situations lead to convoluted programs.

template <typename Key, typename Val>
struct HBlock {

HBlock *next;
int entc;
struct {Key key; Val val;} entv[10];

};

template <typename Key, typename Val>
struct HTable {

int buckc;
HBlock<Key,Val> **buckv;

};

(a) Hash table type

template <typename Key, typename Val>
void printVals1(HTable<Key,Val> *ht) {

for (int i=0; i < ht->buckc; i++) {
HBlock<Key,Val> *blk = ht->buckv[i];
while (blk != 0) {

for (int j=0; j < blk->entc; j++)
blk->entv[j].val.print();

blk = blk->next;
}

}
}

(b) Explicit traversal

template <typename Key, typename Val>
void printVals2(HTable<Key,Val> *ht) {

HIter<Key,Val> hi(ht);
for (; !hi.empty(); hi.step())

hi.value().print();
}

(c) Generic traversal

template <typename Key, typename Val>
class HIter : public Iter<Val> {

HTable<Key,Val> *ht;
HBlock<Key,Val> *blk;
int i, j;

public:
HIter(HTable<Key,Val> *ht0) {

ht = ht0;
i = 0;
j = -1; // ++j gives entv[0]
// Find first non-empty block
while (i < ht->buckc) {

blk = ht->buckv[i];
if (blk && blk->entc > 0) break;
i++;

}
step();

}
void step() {

if (++j < blk->entc) return;
j = 0; // Try start of a block.
blk = blk->next; // Try next block in chain.
if (blk && blk->entc > 0) return;
i++; // Try next chain.
while (i < ht->buckc) {

blk = ht->buckv[i];
if (blk && blk->entc > 0) break;
i++;

}
}
Val value() { return blk->entv[j].val; }
bool empty() { return i == ht->buckc; }

};

(d) Iterator definition

Figure 2. A non-trivial object–based iterator

generator(ht: HTable(Key,Val)): Generator(Val) ==
generate

for i in 0..ht.buckc-1 repeat {
blk := ht.buckv.i;
while not null? blk repeat {

for j in 0..blk.entc-1 repeat
yield blk.entv.j.val;

blk := blk.next;
}

}

(a) Using explicit indexing

generator(ht: HTable(Key,Val)): Generator(Val) ==
generate

for blk in ht.buckv repeat
while not null? blk repeat {

for v in blk.entv repeat
yield v;

blk := blk.next;
}

(b) Using array iterators on sub-parts

Figure 3. Control–based iterators

3. Previous Implementations
3.1 Object-Based Iterators
With object–based iterators the burden is on the library programmer
to determine how best to save the traversal state between successive
iteration steps.

Different environments have different conventions for the set of
methods used for traversal. In our examples we used the methods
empty, value and step. Sometimes the act of extracting the cur-
rent value is combined either with stepping to the next value or with
the end test. Java 5 libraries use the method hasNext as an end test
and the method next both to extract the current value and to step to
the next one. C# 2.0 libraries use the method MoveNext to advance
the iterator and perform the end test, setting the value of Current
as a side-effect.

To obtain the same efficiency as explicit traversal of the data
structure, substantial additional compiler support is required. First,
the compiler must support inlining and apply it to the iterator con-
structor and the methods used in traversal. Second, the compiler
must be able to deduce and use loop invariants to simplify these
inlined methods. Finally, the compiler must support data structure
elimination to convert the iterator object to a collection of tempo-
rary variables, one for each field, and allow these fields to be placed
as some combination of registers and memory.

3.2 Control-Based Iterators
Functional Transformation
An elegant implementation of control–based iterators is that adopted
by CLU: When the loop begins execution, the iterator is activated
and a stack frame is pushed for it. The iterator then runs until it
encounters the first yield. At this point, the body of the loop is
executed, without popping the stack frame for the iterator. This can
be implemented simply with closures, or with a more specialized
treatment. The result is equivalent to a transformation of the pro-
gram skeleton shown in Figure 4a to the form shown in Figure 4b.
We have hypothesized support for lexically nested functions that
may be passed as parameters. The control–based iterator is then
implemented as a function that takes a function for the loop body
as a parameter, as shown in Figure 4c.

There are two concerns with this implementation: First, the
efficiency depends critically on the cost of function calls and on
the compiler’s ability to do cross-module inlining. Second, and

example() {
...
for v in ht repeat { body }
...

}

(a) Original client

example() {
...
local bodyfun(v) { body }
iterator(ht, bodyfun);
...

} (b) Transformed client

void iterator(HTable *ht, void (*bodyfun)(Val)) {
for (int i=0; i < ht->buckc; i++) {

struct HBlock *blk = ht->buckv[i];
while (blk != 0) {

for (int j=0; j < blk->entc; j++)
// A yield statement would go here.
bodyfun(blk->entv[j].val);

blk = blk->next;
}

}
}

(c) Iterator implementation

Figure 4. Functional control–based iteration

perhaps more importantly, with this implementation of control–
based iterators one cannot traverse multiple objects in parallel.

Continuations
Continuations, as supported by Scheme and other programming
languages, provide a general mechanism to implement non-local
control flow and may easily be used to implement control–based
iterators. The iterator saves a continuation of where it is to resume
and the loop saves a continuation to resume the loop body after
advancing the iterator.

To show how these may be used, in Figure 5 we define a
function my-generator that yields the symbol before-first,
then yields the elements of the argument list xx one by one, and
finally yields the symbol after-last.

While continuations provide a conceptually elegant implemen-
tation of iterators, there is an overhead for their naı̈ve use. This
includes the loss of a stack–based model for function calls, imply-
ing an increase in the complexity of memory management. There
has been considerable work on the optimization of continuations,
but many important programming languages do not support them
at all. To introduce continuations in existing frameworks would re-
quire re-developing compiler implementations and would compli-
cate language interoperability.

Co-routines and Threads
Implementation of control–based iterators using continuations does
not make use of their full generality. In fact, the swapping back and
forth between a continuation for the loop body and a continuation
for the iterator is equivalent to setting up a pair of co-routines. The
use of threads has also been proposed to provide co-routines for
more natural iterators in Java [16]. In fact, the principal benefit
cited in that paper was the ability to write the traversal procedures
naturally, as is our objective. The problem with this approach,
again, is the overhead associated with setting up and running co-
routines or threads, making this strategy unsuitable for efficient
inner loops.

;;;;;; Interface to create and use iterators
;; Macro (generate label e1 e2 e3 ...)
(define-syntax generate (syntax-rules () (

(_ g expr ...)
;; g will have pair value (continuation . yield val)
(let ((g (cons ’dummy ’dummy)))

(if (eq? ’continue
(call/cc (lambda (startcn)

(set-car! g startcn)
’start)))

(begin expr ... (set-car! g #f)))
(g-step! g)
g))))

(define (yield g value)
;; (car g) saves continuation to resume loop body
(let ((loopcn (car g)))

(if (eq? ’yield
(call/cc (lambda (yieldcn)

(set-car! g yieldcn)
(set-cdr! g value)
’yield)))

(loopcn ’yield))))

;;;;;; Interface to use iterators
(define (g-step! g)

(if (car g)
;; (car g) saves continuation to point after yield
(let ((yieldcn (car g)))

(if (eq? ’continue
(call/cc (lambda (loopcn)

(set-car! g loopcn)
’continue)))

(yieldcn ’continue))))
g)

(define (g-empty? g) (not (car g)))
(define (g-value g) (cdr g))

;;;;;; Example of definition and use
(define (my-generator xx) (generate g0

(yield g0 ’before-first)
(do ((l xx (cdr l))) ((null? l)) (yield g0 (car l)))
(yield g0 ’after-last)))

(do ((g (my-generator ’(a b c d e f)) (g-step! g)))
((g-empty? g))

(write (g-value g)))

Figure 5. Continuation control–based iteration

4. Our Technique for Control–Based Iterators
We now describe our implementation of control–based iterators, as
initially developed for Aldor. This implementation has the follow-
ing properties:

• It allows parallel iteration over multiple objects.

• It admits optimizations that make it no more expensive than
explicit hand-written loops.

• It can be applied (in some programming languages) to make
object–based iterators look like control–based iterators.

The basic idea of our control–based implementation is to make
the traversal function free of local state by lifting its variables to
a higher lexical level and suspending the traversal function by re-
membering its instruction pointer. This instruction pointer can then
become one more field in an object–based iterator and resuming the
traversal function consists of jumping to the saved location.

generator(HTable *ht) == generate {
for (int i=0; i < ht->buckc; i++) {

HBlock *blk = ht->buckv[i];
while (blk != 0) {

for (int j=0; j < blk->entc; j++)
yield blk->entv[j].val;

blk = blk->next;
}

}
} (a) Original control–based iterator (pseudocode)

// Two distinguished values.
void *_Start = 0, *_End = (void *)(-1);

template <typename Key, typename Val>
class Generator : public Iter<Val> {

int i, j;
HTable<Key, Val> *ht;
HBlock<Key, Val> *blk;
void * _L; // Saves the instruction pointer.
Val _val; // Saves the yielded value.

public:
Generator(HTable<Key,Val> *ht0) : ht(ht0), _L(_Start)
{ step(); }

void step() {
if (_L != _Start) goto *_L; // GNU C++ notation
for (i=0; i < ht->buckc; i++) {

blk = ht->buckv[i];
while (blk != 0) {

for (j=0; j<blk->entc; j++) {
_L = && L1; // GNU C++ notation
_val = blk->entv[j].val;
return;

L1: ;
}
blk = blk->next;

}
_L = _End;

}
}
bool empty() { return _L == _End; }
Val value() { return _val; }

};
(b) After transformation

Figure 6. Our approach to control–based iterators

With these alterations, the natural control–based traversal func-
tion replaces the complex object–based step function. It is no longer
necessary for the library programmer to provide code to work back
into the middle of a complex data structure. This approach amounts
to creating a specialized light-weight continuation in a program-
ming language that does not support continuations natively.

We illustrate this with our hash table example. For those not
familiar with Aldor, we use a C++ syntax, extended with generate,
yield and label variables. We begin with the control–based iterator
shown in Figure 6a.

The control–based iterator is transformed to an object with three
methods, step, empty and value, sharing a common environment.
The original traversal function becomes the step method. All local
variables (i, j, ht and blk) are lifted out of the traversal function,
and two new variables (_L and _val) are introduced.

Suspension is achieved by replacing each yield statement in
the original program by

• a statement saving the resumption point in _L,
• a statement placing the value to yield in _val,

#define GI0 -2 // Start label
#define GIX -1 // Exit label

#define GIBegin switch (this->_L) { case GI0: ;
#define GIEnd {this->_L=GIX; case GIX: return;} }

#define GIYield(n,v){this->_L=n;this->_val=v;return;case n:;}
#define GIReturn {this->_L=GIX; return; }

template <typename Val>
class GIter {
protected:

int _L;
Val _val;

public:
GIter() : _L(GI0) { }
Val value() { return _val; }
bool empty() { return _L == GIX; }
virtual void step() = 0;

};

(a) Cosmetic macros and iterator base class

template <typename Key, typename Val>
class HIter : public GIter<Val> {
private:

HTable <Key,Val> *ht;
HBlock <Key,Val> *blk;
int i, j;

public:
HIter(HTable <Key,Val> *ht0) : ht(ht0) { step(); }

void step() {
GIBegin;
for (i=0; i < ht->buckc; i++) {

blk = ht->buckv[i];
while (blk != 0) {

for (j=0; j < blk->entc; j++)
GIYield(1, blk->entv[j].val);

blk = blk->next;
}

}
GIEnd;

}
};

(b) Creating an iterator
Figure 7. Realization in Standard C++

• a simple return statement, and
• a label after the return statement.

Resumption is achieved by adding a multi-way branch to the saved
resumption point as the first statement of the traversal function.
When the traversal program completes, the label variable is given
the end label value as the resumption point. This is then used as a
test to determine whether the iterator has completed.

With these conventions, the control–based hash table iterator
is transformed to the program shown in Figure 6b. We have used
the GNU C++ syntax (&&) for label variables. Although computed
gotos are now typically viewed with disfavour, in fact this use
increases the clarity of the code as compared to Figure 2d.

The Aldor implementation does not actually construct an object
with methods accessing the object’s fields. Instead, it equivalently
constructs a triple of closures (empty?, value and step!) sharing
an environment. All of the for loops in Aldor use iterators com-
piled in this way. The closures are then inlined and further opti-
mized, as described in Section 5, to obtain the same efficiency as
explicit traversal.

If the target language does not support label variables, but does
support arbitrary branching, it is straightforward to re-cast the sav-
ing of the control flow point. This is done by associating an distinct
identifying value with each yield.

We illustrate this for Standard C++ in Figure 7. We have used an
integer variable instead of a label variable to save the resumption
point, and have used a switch statement in place of the computed
goto. To resume the traversal at an arbitrary point in the step
function, we make novel use of an often undesirable property of
the C++ switch statement: A switch’s cases can occur anywhere,
simply as labels in the compound statement of the switch body.
Although it is different, this use of a switch statement to resume
a function is reminiscent of Duff’s device [17], in which a switch
statement is used in loop unrolling.

The judicious use of a few macros can improve the readability of
control–based iterators written this way. This is shown in Figure 7a.
We arbitrarily fix -2 and -1 as the labels for the start and end of the
traversal. This allows us to have a base class providing a common,
trivial, implementation for the empty and value methods. With
this, our control–based hash table iterator is simplified, as shown
in Figure 7b. We note that GIYield may appear any number of
times, provided each occurrence uses a different integer label. This
is useful for iterators over complex structures. The GIReturn may
also occur any number of times, and when it is used it causes the
iterator to complete. (Subsequent calls to empty will return true.)
The function body must start and end with GIBegin and GIEnd.

5. Optimization of Control-Based Iterators
Before we can adopt our implementation of control–based iterators
without reservation, we must ensure that it can be at least as effi-
cient as the usual object–based iterators, and preferably as good as
hand-written loops.

The problem with our implementation, as presented, is the
multi-way branch at the beginning of the step function. This form
of computed jump breaks branch prediction on modern architec-
tures and obscures loop invariants. Furthermore, a naı̈ve imple-
mentation would have a number of unnecessary jumps in each loop
iteration.

We use the following optimization strategy to improve code
arising in our control–based implementation:

1. Perform function inlining. Inlining thresholds will determine
whether step, empty and value get inlined. If they are not
suitable inlining candidates, then optimizing this loop is not
critical.

2. Apply data structure elimination. This will merge the data of
the iterator objects (or the environments of the iterator function
closures) into the enclosing scope’s set of local/temporaries.

3. Compute the flow graph.

4. Establish a value numbering for the loop control variables. The
loop control variables are the variables that are either tested to
determine a multi-way branch or are the labels of a computed
goto/switch. There will be one value number for each yield
statement, as well as one each for the beginning and end of the
iterator.

5. Repeat the following steps until loop control variables are dead,
or flow graph does not change:

(a) Clone selected nodes. The nodes to be cloned are those
modifying or testing loop control variables with multi-way
input or multi-way output. If necessary, clone all blocks
from natural loop header to this node.

(b) Associate distinct instances of each cloned block to each of
that block’s predecessors

(c) Apply dataflow analysis. Assignments to loop control vari-
ables and branch tests generate and kill value numbering
properties.

(d) Specialize the program. The loop control variables will now
have determined value in particular basic blocks. Specialize
the block where this occurs.

6. Clean up. Copy propagation, common subexpression elimina-
tion, constant folding, dead variable elimination, block consol-
idation.

This optimization can be applied to low-level intermediate code and
does not require any knowledge of the suspend–resume semantics.
Indeed, this optimization might beneficially be applied to programs
that make use of computed branches of any sort. These would in-
clude computed gotos of Fortran, branching through label vari-
ables, switch statements with arbitrary structure (e.g Duff’s device,
our device), or tail calls of function variables.

We emphasize that our implementation of control–based itera-
tors is the only form of for loop provided in Aldor. We have relied
on this optimization to remove iterator overhead since the original
language implementation [9] and have found it to be effective.

Int ==> Integer;

generator(seg:Segment Int):Generator Int ==
generate {

a := lo seg;
b := hi seg;
while a <= b repeat { yield a; a := a + 1 }

}
client() == {

ar := array(...);
s := 0;
-- n..m forms a Segment
for i in 1..#ar repeat s := s + a.i;
stdout << s

} (a) Original program

client() == {
local ar, s, i, a, b, val, lab, seg;
ar := array(...);
seg := 1..#ar;
lab := L0;
step!() == {

goto @lab;
L0: a := seg.lo;

b := seg.hi;
while a <= b repeat {

lab := L1;
val := a;
return;

L1:
a := a + 1

}
lab := LX;

LX: }
empty?() == { lab = LX }
value() == { val }
s := 0;
repeat {

step!();
if empty?() then break;
i := value();
s := s + a.i

}
stdout << s

}
(b) Iterator constructor inlined

Figure 8. Example 1: Integer range iteration

6. Optimization Examples
We illustrate our optimization strategy with two examples. In the
first case, we show how it can be applied to a simple range counting
iterator. In the second case, we show the optimization of the parallel
traversal of two iterators.

6.1 Integer Range Iterator
We apply our optimization to the use of a simple integer range
iterator, shown in Figure 8a. We begin by inlining the generator
for the for loop. This gives the program in Figure 8b, shown in
a pseudo-code notation. We inline the step!, empty? and value
functions. Converting the flow-control to gotos gives the program
with flow graph shown Figure 9.

According to our criteria, the blocks B1 and B7 must be cloned.
We split B1 to B1a and B1b, with B1a having predecessor B0 and
B1b having predecessor B8. We clone B7 as B7a, B7b, B7c with
predecessors B4, B6 and B1a, respectively. For convenience we
split B8 and B9 to B8a/8b, B9a/B9b respectively so we have a place
to put dataflow information. Whenever a multi-way exit is based
on the value of a loop control variable, we can put information

client() == {
local ar, s, i, a, b, val, lab, seg;

B0: ar := array(...);
seg := 1..#ar;
lab := B2;
goto B1;

B1: goto @lab;
B2: a := seg.lo;

b := seg.hi
s := 0;
gotoB3;

B3: if not (a <= b) then goto B6 else goto B4;
B4: lab := B5;

val := a;
goto B7;

B5: a := a + 1
goto B3;

B6: lab := B7
goto B7;

B7: if not not (lab = B7) then goto B9 else goto B8;
B8: i := val;

s := s + ar.i;
goto B1;

B9: stdout << s;
return

}

B6
yn

B0

B1

B3

B4

B7

B2 B5

B9 B8

lab := B7

ny

lab = B7

lab := B5

goto lab

lab := B2

a > b

done

a := a + 1

Figure 9. After inlining empty?, value and step!

about its value in the branch destinations. In this case, we insert
the information that lab = B7c in B9a and lab != B7c in B8a.
The resulting flow graph is shown in Figure 10.

We set up forward dataflow equations for the value numbering
with bits 1, 2, 3 corresponding to the variable lab having values
B2, B5, B7a respectively, and obtain the results shown in Figure 11.
From this, we see that block B1a must exit to B2, because that is
the only value that lab can have. Coming into block B7a, we see
that only the second bit is on so lab must have the value B5. Since
this is not equal to B7c, we know that block B7a must exit to B8a.
Similarly B7b must exit to B9a, and B7c must exit to B8a.

We use this information to specialize the exits of the affected
blocks, update the flow graph, recompute the Gen and Kill sets,
and perform a second dataflow computation. This shows that B1b
must exit to B5. We update the flow graph with this information.
We obtain no further changes and so proceed to the clean up step.
We obtain the program shown in Figure 12.

We have been able to optimize away all overhead associated
with the simple control–based iterator, and obtain the same low-
level code as explicit iteration written by hand.

B0

B2

lab := B2

a := a + 1

goto lab goto lab

a > ba > b

lab := B5

B6
n y ny

B7aB7bB7c

done

B9b B8b

B1a B1b

B3a B3b

lab := B7c

lab := B7c

B4

lab = B7c lab = B7c lab = B7c

y y
n

n
B9a B8a

n
y

B5

Figure 10. After cloning nodes

Block Preds Succs Gen Kill In Out

B0 B1a 1.. .11 ... 1..
B1a B0 B2 B5 B7c 1.. 1..
B1b B8b B2 B5 B7c 11. 11.
B2 B1a B1b B3 11. 11.
B3 B2 B5 B4 B6 11. 11.
B4 B3 B7a .1. 1.1 11. .1.
B5 B1a B1b B3 11. 11.
B6 B3 B7b ..1 11. 11. ..1
B7a B4 B8a B9a1. .1.
B7b B6 B8a B9a1 ..1
B7c B1a B1b B8a B9a 11. 11.
B8a B7a B7b B7c B8b1 111 11.
B8b B8a B1b 11. 11.
B9a B7a B7b B7c B9b ..1 11. 111 ..1
B9b B9a1 ..1

Figure 11. Dataflow results for a simple iterator.
Bits represent possible values for labels.

client() == {
local ar, s, a, b;
ar := array(...);
a := 1;
b := #ar;
s := 0;

B3: if a > b then goto B9b;
s := s + ar[i];
a := a + 1;
goto B3;

B9b: stdout << s;
return

}

Figure 12. Control-flow optimization complete

generator(seg:Segment Int):Generator Int == generate {
a := lo seg;
b := hi seg;
while a <= b repeat {

yield a;
a := a + 1

}
}
generator(l: List Int): Generator Int == generate {

while not null? l repeat {
yield first l;
l := rest l

}
}
client() == {

ar := array(...);
li := list(...);
s := 0;
for i in 1..#ar for e in l repeat {

s := s + ar.i + e
}
stdout << s

}

Figure 13. Example 2: Parallel traversal

6.2 Parallel Iterators
We give a second example of our optimization strategy, applying it
to the case of parallel traversal of two iterators, one over an integer
range, the other over a linked list. The starting program is shown
in Figure 13. In Aldor, parallel iteration is indicated by placing two
for iteration controls on a single repeat loop. We show the two
iterator-producing functions, even though they would normally be
placed in other files associated with the type constructors Segment
and List

The first step is to inline the iterator functions into the client
program, represent all control flow as gotos, and perform data
structure elimination and some boolean expression simplification.
The code resulting after data structure elimination is illustrated in
Figure 14. We identify B1 as the head node of a loop and lab1
as its controlling variable. We also note that B7 has a branch that
depends on the label variable lab1. Therefore, by our criteria, we
must clone B1 and B7 into copies for each of their predecessors.
This is illustrated in Figure 15.

We determine that the possible values for lab1 are B2, B5 and
B7 and give these value numbers 1, 2 and 3 respectively. A first
round of dataflow analysis determines the possible values for lab1
in each basic block, as shown in Figure 16a. We use the results of
this first dataflow analysis to specialize the program and recompute
the dataflow. This yields the results shown in Figure 16b. These
results allow us to specialize each of the cloned nodes B1a, B1b,
B7a, B7b, B7c. After clean up, we obtain the program represented
by Figure 17.

client() == {
local ar, l,

a: Int, b: Int, s: Int, val1: Int,
lab1: Label, seg: Segment Int,
l2: List Int, val2: Int, lab2: Label;

B0: ar := array(...);
l := list(...);
seg := 1..#ar;
lab1 := B2;
l2 := l;
lab2 := B9;
s := 0;
goto B1;

B1: goto @lab1;
B2: a := seg.lo;

b := seg.hi;
goto B3;

B3: if a > b then goto B6; else goto B4;
B4: lab1 := B5

val1 := a;
goto B7;

B5: a := a + 1
goto B3;

B6: lab1 := B7
goto B7;

B7: if lab1 = B7 then goto B16; else goto B8
B8: i := val1;

goto @lab2;
B9: goto B10
B10: if null? l2 then goto B13; else goto B11
B11: lab2 := B12

val2 := first l2;
goto B14;

B12: l2 := rest l2
goto B10

B13: lab2 := B14
goto B14

B14: if lab2 = B14 then goto B16; else goto B15
B15: e := val2;

s := s + ar.i + e
goto B1;

B16: stdout << s
}

B0

done

B3

B1

B2 B5

B6 B4

B7

B8

B12 B9

B11 B13

B16 B15

B10

B14

lab1 := B2
lab2 := B9

a > b

y n

a := a + 1

lab1 := B7

lab1 = B7
y

n

goto lab1

goto lab2

null?

yn

lab1 := B5

lab2 = B14

lab2 := B12 lab2 := B14

y n

Figure 14. Inlined parallel iterators

client() == {
/* lab1 := B2, B5, B7a */

B0: ar := array(...);
l := list(...);
seg := 1..#ar;
lab1 := B2;
l2 := l;
lab2 := B9;
s := 0;
goto B1a;

B1a: goto @lab1;
B1b: goto @lab1;
B2: a := seg.lo;

b := seg.hi;
goto B3;

B3: if a > b then goto B6; else goto B4;
B4: lab1 := B5

val1 := a;
goto B7b;

B5: a := a + 1
goto B3;

B6: lab1 := B7a
goto B7c;

B7a: if lab1 = B7a then goto B16; else goto B8
B7b: if lab1 = B7a then goto B16; else goto B8
B7c: if lab1 = B7a then goto B16; else goto B8
B8: /* lab1 != B7 */

i := val1;
goto @lab2;

B9: goto B10
B10: if null? l2 then goto B13; else goto B11
B11: lab2 := B12

val2 := first l2;
goto B14;

B12: l2 := rest l2
goto B10

B13: lab2 := B14
goto B14

B14: if lab2 = B14 then goto B17; else goto B15
B15: e := val2;

s := s + ar.i + e
goto B1b;

B16: /* lab1 = B7 */
goto B17/

B17: stdout << s
}

B0

B2

a := a + 1

goto lab1 goto lab1

B7b

B1a B1b

lab = B7a lab = B7a

y y
n

n n
y

B5

a > b

B3

B16 B8

B12B9

B10

B13B11

B14

B15B17

lab1 := B2
lab2 := B9

B7a B7c

lab = B7a

B4

lab1 := B5

yn
B6

goto lab2

null?

lab2 := B14lab2 := b12

lab2 = B14

y n

lab1 := B7a

Figure 15. Split blocks for 1st iterator

Block Preds Succs Gen Kill In Out

B0 B1a 1.. .11 ... 1..
B1a B0 B2 B5 B7a 1.. 1..
B1b B15 B2 B5 B7a 11. 11.
B2 B1a B1b B3 11. 11.
B3 B2 B5 B6 B4 11. 11.
B4 B3 B7b .1. 1.1 11. .1.
B5 B1a B1b B3 11. 11.
B6 B3 B7c ..1 11. 11. ..1
B7a B1a B1b B8 B16 11. 11.
B7b B4 B8 B161. .1.
B7c B6 B8 B161 ..1
B8 B7a B7b B7c B9 B12 B141 111 11.
B9 B8 B10 11. 11.
B10 B9 B12 B11 B13 11. 11.
B11 B10 B14 11. 11.
B12 B8 B10 11. 11.
B13 B10 B14 11. 11.
B14 B8 B11 B13 B17 B15 11. 11.
B15 B14 B1b 11. 11.
B16 B7a B7b B7c B17 ..1 11. 111 ..1
B17 B16 B14 111 111

(a) First round

Block Preds Succs Gen Kill In Out

B0 B1a 1.. .11 ... 1..
B1a B0 B2 1.. 1..
B1b B15 B2 B51. .1.
B2 B1a B1b B3 11. 11.
B3 B2 B5 B6 B4 11. 11.
B4 B3 B7b .1. 1.1 11. .1.
B5 B1b B31. .1.
B6 B3 B7c ..1 11. 11. ..1
B7a B1b B81. .1.
B7b B4 B81. .1.
B7c B6 B161 ..1
B8 B7a B7b B9 B12 B141. .1.
B9 B8 B101. .1.
B10 B9 B12 B11 B131. .1.
B11 B10 B141. .1.
B12 B8 B101. .1.
B13 B10 B141. .1.
B14 B8 B11 B13 B17 B151. .1.
B15 B14 B1b1. .1.
B16 B7c B171 ..1
B17 B16 B1411 .11

(b) Second round
Figure 16. Dataflow for the first iterator

client() == {
B0: ar := array(...);

l := list(...);
seg := 1..#ar;
l2 := l;
lab2 := B10;
s := 0;
a := seg.lo;
b := seg.hi;
goto B3;

B3: if a > b then goto B17; else goto B4;
B4: val1 := a;

i := val1;
goto @lab2;

B10: if null? l2 then goto B13; else goto B11
B11: lab2 := B12

val2 := first l2;
goto B14;

B12: l2 := rest l2
goto B10

B13: lab2 := B14
goto B14

B14: if lab2=B14 then goto B17; else goto B15
B15: e := val2;

s := s + ar.i + e
a := a + 1
goto B3;

B17: stdout << s
}

B0

B3

B4

B10 B12

B11 B13

B14

B17 B15

a > b
y

n

goto lab2

null?

yn

lab2 = B14

y n

done a := a + 1

lab2 := B12 lab2 := B14

lab2 := B10

Figure 17. Resolution of 1st iterator

Having dealt with the first iterator, we continue. We recognize
B3 as a loop head and B4 as a computed goto that depends on the
loop variable lab2. We clone the blocks from the loop head to the
computed goto block. This is shown in Figure 18a. We determine
that the variable lab2 may take only the values B10, B12, B14, do
dataflow and specialize. Then block B14 is identified and split, as
shown in Figure 18b. After dataflow, specialization and clean up,
we obtain the program shown in Figure 19.

B0

B10

B11 B13

B14

B15

null?

yn

lab2 = B14

y n

a := a + 1

a > b a > b

done

B3a B3b

B17

y
n n

B4a B4b

goto lab2 goto lab2

B12

B17p

lab2 := B12 lab2 := B14

lab2 := B10

y

(a) After splitting B3 and B4

B0

B10

B15

null?

a := a + 1

a > b a > b

done

B3a B3b

B17

y
n n

B4a B4b

B12

B17p

lab2 := B10

B13

lab2 := B14

B11

lab2 := B12

y n

B14b B14a

y

(b) After splitting B14
Figure 18. Split blocks for 2nd iterator

Our optimization has eliminated the overhead of the abstract
control–based iterators, including that arising from obscured branch
prediction. Normally, further optimizations would be applied to the
program at this stage. For example, the list operations first, rest
and null? would be inlined, and the null tests inside first and
rest would be eliminated as redundant.

client() == {
ar := array(...);
l := list(...);
l2 := l;
s := 0;
a := 1;
b := #ar;
if a > b then goto L2

L1: if null? l2 then goto L2
e := first l2;
s := s + ar.a + e
a := a + 1
if a > b then goto L2
l2 := rest l2
goto L1

L2: stdout << s
}

a > b

n

n

a := a + 1

a > b

n

null? l2

done l2:=rest l2

L2

y

y

y

L1

Figure 19. Resolution of 2nd iterator

7. Conclusions
Interest in iterators has renewed with the increased use of generic
programming. Although they have a long history, certain practical
problems relating to iterators have remained open.

In languages that do not support iterators natively, writing
object–based iterators has been overly complicated for library pro-
grammers, requiring complex logic to recover previous traversal
state. In languages that do support iterators natively, their perfor-
mance has made them unsuitable for use in critical inner loops. In
this situation, generic loop traversal is often avoided and replaced
by explicit iteration over more basic values such as integer ranges
or arrays. This paper solves both these problems.

First, we have shown how to write iterators clearly in a setting
where only object–based iterators are supported. We have shown
a straightforward way to simulate control–based iterators in with
object–based iterators. With this, it is possible to use a clear pro-
gramming style for iterators even in settings where control–based
iterators are not directly supported. As one particular instance, we
have shown a C++ programming device to write iterators in the
control–based style.

Second, we have shown how to optimize the complex branch-
ing that arises with control–based iterators. We have implemented
this optimization in the Aldor compiler, where it has proven very
effective. In Aldor, abstract iterators serve as the only mechanism

to iterate over a set of values and, in particular, there is no spe-
cial treatment for low-level types. The compiler is relied upon to
optimize away all overhead from abstract iteration. The resulting
machine code is what one would write explicitly by hand.

These two results, combined, offer a useful direction for im-
proved iterators, easily applicable to mainstream programming lan-
guage implementations.

References

[1] Liskov, B., Atkinson, R., Bloom, T., Moss, J.E., Schaffert, J.C.,
Scheifler, R., Snyder, A.: CLU Reference Manual. Springer Verlag
LNCS 114 (1981).

[2] Griswold, R.E., Hanson, D.R., Korb, J.T.: Generators in Icon. ACM
Transactions on Programming Languages and Systems 3 (1981)
144–161.

[3] Musser, D.R., Derge, G. J., Saini, A.: STL Tutorial and Reference
Guide, Second Edition: C++ Programming with the Standard
Template Library. Addison Wessley (2001).

[4] JDK 5.0 Documentation. Sun Microsystems (2004)
http://java.sun.com/j2se/1.5.0/docs .

[5] JSR 201: Extending the Java Programming Language with Enu-
merations, Autoboxing, Enhanced for loops and Static Import. Sun
Microsystems (2004)
http://java.sun.com/j2se/1.5.0/docs/guide/language/
foreach.html .

[6] Atkinson, R.: Toward more general iteration methods in CLU.
Technical Report CLU Design Note 54, Programming Methodology
Group, MIT Laboratory for Computer Science, Cambridge MA, USA
(1975).

[7] Shaw, M., Wulf, W., London, R.: Abstraction and verification
in Alphard: Defining and specifying iteration and generators.
Communications of the ACM 20 (1977).

[8] Baker, H.G.: Iterators: Signs of weakness in object-oriented
languages. ACM SIGPLAN OOPS Messenger 4 (1993) 18–25.

[9] Watt, S.M., Broadbery, P.A., Dooley, S.S., Iglio, P., Steinbach,
J.M., and Sutor,R.S.: A First Report on the A# Compiler, Proc.
International Symposium on Symbolic and Algebraic Computation
(ISSAC 1994), July 20-22 1994, Oxford, England, ACM Press (1994)
25–31.

[10] Watt, S.M.: Aldor. In Grabmeier, J., Kaltofen, E., Weispfenning,
V., eds.: Handbook of Computer Algebra, Springer Verlag (2003)
265–270.

[11] Aldor Users Guide. Aldor.Org (2003)
http://www.aldor.org/AldorUserGuide .

[12] C# Version 2.0 Specification. Microsoft Corporation (2005).

[13] van Rossum, G., (editor), F.L.D.J.: Python Language Reference
Manual (Release 2.3). Python Labs (2003).

[14] Thomas, D., Fowler, C., Hunt, A.: Programming Ruby: The Pragmatic
Programmer’s Guide (2nd Ed.) The Pragmatic Bookshelf (2004).

[15] Murer, S., Omohundro, S., Stoutamire, D., Szyperski, C.: Iteration
abstraction in Sather. ACM Transactions on Programming Languages
and Systems 18 (1996) 1–15.

[16] Kim, M.H.: Generalized enumeration mechanism for Java. Java
Developer’s Journal 3 (1998).

[17] Duff, T.: E-mail to Dennis Ritchie Thu 10 Nov 83 17:57:56 PST
(1983).

