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ABSTRACT
We outline an approach to abstract data types (ADTs) that
allows an object of the type specified by the ADT to take
on one of many possible representations. A dynamic ab-
stract data type (DADT) is dual to dynamic algorithm se-
lection and facilitates profiling of data in conjunction with
the profiling of code. It also permits a programmer to de-
lay or ignore details pertaining to data representation and
enhance the efficiency of some algorithms by changing rep-
resentations at run time without writing code extraneous to
the algorithm itself. Additionally, we demonstrate that run
time optimization of data objects is possible and allows for
acceptable performance compared to traditional ADTs. An
implementation is presented in Common Lisp.

1. INTRODUCTION
In writing a program, there are often choices regarding what
algorithms and data structures to use. The justification for
choosing one over another may be related to the difficulty of
the implementation, availability of existing code, or the pro-
grammer’s familiarity with the concepts involved. A more
reasonable strategy, however, is to pick an implementation
that is computationally efficient with respect to the input.

If only one algorithm or data representation is chosen, there
will likely be occasions where the program will perform poor-
ly. Special cases can be added to the code to deal with these
problems, but that makes the program code more complex.
One approach to solving this problem is to use a library
that implements multiple versions of the desired functional-
ity and can be tailored for certain input characteristics.

In this paper, we outline the design and implementation of a
system for multiple implementations of abstract data types
(ADTs) that we call dynamic abstract data types (DADTs).
Dynamic abstract data types are dual to dynamic algorithm

selection. We define a dynamic abstract data type as an
abstract data type with multiple implementations that al-
lows individual objects to change representation dynami-
cally. Representation changes may be made by explicit re-
quest or performed automatically. Explicit changes have
been considered by other authors [21, 13]. In this paper
we concentrate on automatic variation of object representa-
tion. Furthermore, making use of dynamic ADTs with our
implementation does not require changes to existing code.

During the development process, a programmer can spend
a significant amount of time trying to come up with con-
structs that will exhibit acceptable performance. This effort
is practically for naught if the portion of code being written
contributes little to the run-time profile of the program. The
practice of profiling has shown that it is just as effective to
first write simple code and specialize it later after profiling
has shown where the bottlenecks lie.

Dynamic ADTs are a way to do the same for data. Data
objects can be monitored in order to provide the program-
mer with information as to what operations are actually per-
formed on the object, how often they are performed, and the
nature of the operands. It is useful to view DADTs through
the lens of the code/data duality that is well understood in
the Lisp world. Just as profiling and just-in-time compila-
tion provide a metrics-based approach to dynamic improve-
ment of program representation, DADTs provide a metrics-
based approach to dynamic improvement of data represen-
tation. In both cases it is possible to vary the degree of
monitoring to balance the benefits of the changes with the
cost of the overhead.

Furthermore, by incorporating dynamic ADTs into a pro-
gramming workflow, it delays the need for the programmer
to consider representation at the time of object creation; this
can prevent accidental complexity arising from the ad hoc
creation of data representations. For example, in OCaml
and Haskell, the standard libraries contain some data types
(sets) that specify an internal representation and mandate
certain properties of the elements that are associated with it.
A dynamic ADT ignores these issues until it becomes nec-
essary to address them, at which point it is possible for the
dynamic ADT to remember the circumstances under which
the problem arose and handle it cleanly in the future.



Dynamic ADTs also facilitate a reactive form of data struc-
turing and operation support using predefined conditions.
For example, the act of filling a set with integers is enough
to know that the minimum element can be found without
stating that the set will contain only integers. This can be
achieved by monitoring the activity of a set object and re-
sponding to an operation requiring an ordering by changing
the representation to accommodate the operation, assuming
the preconditions for the operation are met.

It is common to have situations where changing an object’s
representations is beneficial. The computational complexity
of many algorithms is greatly influenced by the represen-
tation of the data structure being operated on. With sets,
the fundamental operation of membership can be constant
when hash tables are used, but is O(n) or O(log n) for lists
and balanced trees, respectively. The all-pairs shortest path
problem for graphs can be solved in O(|V |3) using a matrix
representation instead of O(|V |4) for the adjacency list, as-
suming the graph is dense [5, chapter 25]. In fact, any graph
algorithm that performs extensive lookup of edges is better
served by a matrix representation as finding the existence of
an edge is effectively constant. Other times, computational
complexity may be less important than raw performance.
Choosing a representation that fits in cache is preferred to
one that does not, even if the complexity of the algorithm
on the available representations is the same.

Reconfiguration of the underlying structure of a data type
is similar to the notion of a dynamic ADT. Hash tables
are commonly implemented so that they are resized when
the number of keys reaches a certain threshold. This is an
effective technique for preventing a high number of accesses
to find a key in the average case [11, section 6.4]. Resizing
involves allocating a new table and re-inserting all the keys,
which is fundamentally the same as changing the underlying
representation.

With DADTs, the ADT is not bound to a single represen-
tation at run time and the programmer no longer implicitly
requests a specific structure when creating an object. Fur-
thermore, the ADT is not required to hint at its internals.
In this sense, we informally refer to DADTs as a “don’t ask,
don’t tell” policy for data abstraction.

In summary, DADTs demonstrate the following advantages
over traditional ADTs:

• by facilitating the profiling of data objects, a metrics-
based approach to data representation can be achieved
without adding special cases to existing code;

• decisions regarding representation can be delayed dur-
ing program development;

• allows for optimizations at run time through the mon-
itoring of data objects.

The remainder of the paper is organized as follows: Sec-
tion 2 outlines definitions, principles and the protocol used
by interface operations for DADTs; Section 3 gives an ex-
ample of a DADT for sets; Section 4 demonstrates various
optimization techniques; Section 5 provides a discussion of
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Figure 1: Basic outline of the approach. When some
operations are executed, certain data objects passed
to them are monitored and may be changed based
on information in a knowledge base.

related and future work. Source code for the implementation
is publicly available (see [23]).

2. OUTLINE OF A DADT PROTOCOL
The basic outline of dynamic ADTs is shown in Figure 1. In-
stances of dynamic ADTs have information associated with
them that is accessed by a monitor when certain operations
are executed. The monitor has the ability to change the
representation of the actual data object contained within
the instance. In this section, we describe a protocol used by
interface operations of dynamic ADTs to perform the extra
work alluded to in Figure 1.

We define an abstract data type as a set of functions that
define an interface, called the interface operations, and one
or more implementations that can be captured in an object
that structures data in some manner such that the interface
operations adhere to their semantics when operating on the
object.

Formally, a dynamic abstract data type is an abstract data
type whose instances contain a data object that works with
a specific implementation of an abstract data type as well
as extra information about that data object. An instance
of a DADT (also called a DADT object) works in the same
manner as the contained data object, that is, the operations
defined for the contained data object are also defined for the
DADT object. It is possible (and likely) that the data object
contained in a DADT object is one of multiple representa-
tions. This means the interface operations defined for the
DADT cannot rely on a specific data layout and must make
use of the interface operations for the data objects them-
selves. The data object contained with a DADT object is
called the current representation of the DADT object. An
interface operation that operates on the current represen-
tation is called an actual (interface) operation. A dynamic
abstract data type protocol is a procedure for collecting infor-
mation about a DADT object’s current representation and
altering it with respect to certain conditions.

First, we note that the class of a DADT object is not a sub-
class of the current representation because, strictly speak-
ing, it is not inheriting behaviour but rather observing the
original object. As a consequence, the interface operations



must also be wrapped (but not necessarily re-implemented).

DADT objects have slots to hold information from obser-
vations and associations with actions. Information can be
collected and actions can be taken when the interface oper-
ations are executed. Note that an interface operation is an
operation that is specifically meant to work on DADT ob-
jects. Stipulating that DADT objects can collect informa-
tion in other contexts would mean changing existing code
bases, something we want to avoid. We think this is a rea-
sonable restriction. There may be merit to letting objects
observe their environment in other situations, but it is not
clear that this is worth the effort.

An interface operation has three primary tasks: execute the
expected functionality associated with the operation (which
likely involves invoking the actual interface operation on the
appropriate data), allow the DADT object(s) passed to the
operation to collect information, and allow the same DADT
object(s) to perform actions. Strictly speaking, the only
task that is required for a working program is performing the
expected operation. The others constitute the extra work.
Thus, we will examine them more closely.

Collecting information. Within the context of interface
operations, there are a multitude of things that can be ob-
served. We may want to examine the arguments to the in-
terface operation, the data contained in a DADT object, or
observe the time taken to perform the actual operation. For
simplicity, we designate that there be two points where an
observation or measurement take place. These two points
will be known as the initial and final measurement points
(or stages), respectively. The initial measurement must be
taken prior to the execution of the actual operation and the
final measurement must be made afterwards.

To indicate what should be measured, each DADT object is
associated with a set of other objects called resources. Re-
sources are data stores for observations. When a measure-
ment point is reached, a function is applied to each resource
and passed data for making an observation. Thus, differ-
ent types of measurements are indicated by the different
resources associated with a DADT object.

One important point remains with respect to taking mea-
surements: communication. In order to make an accurate
measurement, it may be necessary to store an intermediate
value with the initial measurement and use it to compute
a result with the final measurement; the canonical example
here is execution time. We will call such values intermedi-
ate resource values and dictate that if a value is returned
when an initial measurement is taken with respect to some
resource, that value is made available when the final mea-
surement (if any) is taken.

Detecting conditions. Also associated with DADT ob-
jects are actions. An action will likely only be taken if some
condition is met. Similar to measurements, the possibilities
for actions are numerous. What is problematic is that after
one action is taken, it is likely to affect the outcome of other
actions. This may or may not be desirable. To deal with
this situation, we divide the types of actions into two groups:
those that have an effect on the current representation and

those that do not. Since the current representation is the
focus of the actions in the first place, it seems reasonable to
consider it the point of differentiation.

We call actions, possibly with a condition attached to them,
triggers. Triggers that have a direct effect on the current
representation are called active, whereas ones that do not
are passive. Each DADT object is associated with a (possi-
bly empty) set of triggers that are all run in succession at
the same point in the execution of an interface operation.
The reason for grouping them together in such a fashion is a
pragmatic one. Specifying a precise time for running a trig-
ger would become too complicated outside of simply writing
every interface operation manually.

The specification for triggers, however, is more involved than
would first appear. There are still some important points to
consider:

• In what order are the triggers to be run?

• How can we prevent one trigger from affecting the con-
ditions of another?

• How are triggers handled when multiple DADT objects
are considered in tandem?

The first concern can be addressed by providing a mech-
anism by which triggers can be sorted, although for most
purposes, the order in which they are provided is sufficient.
For the second, we will take the approach that if a trigger
is active, any subsequent triggers will not be run. (This is
analogous to the cond form.)

The final concern (multiple DADT objects) is the most trou-
blesome. Triggers are associated with individual objects and
thus, are ill-suited for dealing with cases where objects must
cooperate in some manner. For example, if O1 and O2 are
DADT objects passed to an interface operation, it may be
the case that a trigger for O1 could alter its current represen-
tation such that it is no longer compatible with the current
representation of O2 when passed to the actual interface op-
eration.

To solve this problem, we introduce a different classifica-
tion of triggers that ensure compatibilities between multiple
DADT objects as well as any other conditions. These are
called class triggers because they are associated with the
class of DADT objects and not the DADT objects them-
selves. A non-class trigger is called a local trigger. Class
triggers behave as local triggers except that the conditions
in which they are run are mutually exclusive: if class triggers
are executed then local triggers are not and vice versa.

Finally, we stipulate that a trigger is given access to three
things: the DADT object(s) the trigger is associated with,
the interface operation from which the trigger is being called
and the arguments passed to that operation. This provides
the context in which the trigger is being executed.

Common experiences and feedback. At this point, we
have enough to enable a DADT object to make observa-
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Figure 2: The usual order of operations taken for
an interface operation. The dashed lines indicate
values set by or passed to different stages. The solid
lines represent the flow of control.

tions about the context in which it is used (to a limited ex-
tent) and act on that information. However, any such data
can only be accessed by a single DADT object, that is, the
DADT object that makes the observation. It would be use-
ful to allow different DADT objects to share “experiences”
with each other in order to determine what constitutes a
common situation in a context outside of a single object.

We will provide three primary contexts for sharing informa-
tion: local, class and global. The local context is that of
an individual DADT object. Class context refers to a class
of DADT objects and the global context is the environment
of the computation. Each portion of information within a
context will be called a directive because they are used to
guide the behaviour of DADT objects.

The set of directives available to a DADT object can be
thought of as a knowledge base from which the object can de-
termine behaviour based on observations. By adding to the
knowledge base, it is possible for DADT objects to choose
reasonable defaults in the absence of certain information.

Furthermore, directives provide a convenient way to com-
municate information in the event of an error. If a situation
arises in which a DADT object does not know how to pro-
ceed, it is conceivable that an error could be signaled which
prompts the user for guidance. The answer can then be
stored for future reference and if the situation is detected
again, the previous experience can be drawn upon to pre-
vent further interruption.

Summary Figure 2 provides a summary of the usual exe-
cution of an interface operation.

3. A DYNAMIC SET
To demonstrate use of the protocol, we will outline the im-
plementation of a set data type in which individual objects
observe how they are being used and adjust aspects of them-
selves to meet certain conditions.

We start by noting that the contents of a set have a profound
impact on the behaviour of a set in a programmatic setting.
Most issues that arise with the specification or representa-

tion of a set are a result of what we intend (or expect) the
contents to be. One obvious problem is testing for member-
ship by way of equality. In order for the set to behave as
intended, it is important that the notion of equality meet
with expectations. The situation is further complicated by
the desire to provide the convenience of ordering statistics
when the situation presents itself. When the elements of a
set have a “natural” ordering, we would like to take advan-
tage of it.

In both of these cases, it is the type of the elements con-
tained in the set that have the most significant effect on its
structure and the operations it supports. Thus, we will build
a set that monitors the types of the elements put into it, and
watch for the conditions that affect how to test for equality
within a set and whether the elements can be ordered based
on some commonly accepted methodologies.

First, a word on types. In order to accommodate common
situations, it may be convenient to think of 5 and 5.0 as the
same thing: a number. The two primitives in Common Lisp
for getting the type of an object (type-of and class-of) will
return a more specialized type than number when applied to
these objects. For example, (class-of 5) will likely return
a the fixnum class metaobject whereas (class-of 5.0) will
return single-float. To facilitate a convenience mapping,
we define a function class-of* that returns a common su-
pertype for some objects (namely numbers and strings) so
that the minutiae of type specialization can be avoided when
desired. This mapping can be changed to meet the user’s
needs.

Lastly, we note that taking advantage of the common situ-
ations (such as using class-of*) is not mandatory. If spe-
cific parameters are provided for equality testing or ordering,
such parameters take precedence over any defaults decided
upon by the system.

3.1 Interface
The interface for sets will consist of the usual set func-
tions as well as some ordering statistics operations, such
as nth-smallest and nth-largest.

In order to reliably keep track of the types of elements
within a set, we stipulate that the only operations that
add or remove elements from a set are insert-element,
delete-element and clear; no other operations may ma-
nipulate the underlying representation to change the con-
tents.

3.2 Resources
We only need to keep track of the types of elements that are
present in a set; however, we must know how many of each
type are present to reliably handle some situations. Without
the number of each type present, we would not know when
some type is no longer present without investigating every
element in the set. This is not desirable.

To define a resource for the protocol, we define a class that
collects the information we need. Then, the protocol op-
erations that facilitate such information collection are spe-
cialized to that class. For purposes of collecting type in-
formation about the elements in the set, we focus on the



(defmethod measure-resource-initial

((tc type-counter) set

(op (eql ’insert-element)) args)

(let ((elem (args-required args 1)))

(unless (member-p set elem)

(increment-counter tc (class-of* elem)))))

(defmethod measure-resource-initial

((tc type-counter) set

(op (eql ’delete-element)) args)

(let ((elem (args-required args 1)))

(when (member-p set elem)

(decrement-counter tc (class-of* elem)))))

(defmethod measure-resource-initial

((tc type-counter) set

(op (eql ’clear)) args)

(clear-counter tc))

(defmethod reset-resource ((tc type-counter))

tc)

Figure 3: Specialization of the protocol functions for
taking measurements by counting the types of each
element present in a set.

operations insert-element, delete-element and clear.

The class for collecting the information is called type-coun-

ter and the operation specializations are given in Figure 3.

The function measure-resource-initial is called on each
resource when the initial measurement stage is executed. It
takes four arguments: the resource to measure, the current
representation of the DADT object the resource is associated
with, the operation the resource is being measured from (as
a symbol) and the arguments passed to that operation as
a single object. The operations that require measurements
are specified in the lambda list. The call to args-required

returns the second required argument (indexing starts at
0), which is the element to be inserted or deleted. We then
check to see if the element is present or not and adjust the
type counter accordingly.1

The function reset-resource is called when the current
representation of a DADT object is changed. The function
should return an instance of the resource class. In this case,
the resource is not affected by a change in the current rep-
resentation so it simply returns the resource object passed
into it.

The function measure-resource-final is called on each re-
source when the final measurement stage is executed. Since
no measurements need to be taken in the final stage of re-
source measurement, we do not define any methods for it.

1Strictly speaking, we should verify that the element is
present or missing by mandating that the insertion and dele-
tion functions return whether the element was deleted or
not, but this requires considerably more work (although do-
ing so is possible). For simplicity, we won’t second-guess the
actual interface operation.

Each resource function mentioned above has a method where
each argument is specialized to the class t; this method does
nothing, so there is no need to define methods for the default
case.

3.3 Triggers
In the definition of a DADT, defining triggers is the most
complicated part of the process. This is because triggers
are meant to detect conditions that arise from the use of
the DADT objects and act on them. Some conditions can
be particularly complicated to act on, especially if the fuzzy
goal of familiarity is desired.

The conditions we need to detect with a dynamic set amount
to ensuring that the equality function within the set properly
handles the different types of elements present, and chang-
ing the current representation to facilitate ordering statistics
when possible. Intuitively, these are straightforward condi-
tions to detect and act on. In practice, there are many
subtleties to consider.

Instead of discussing all the problems involved, we will out-
line the basic framework used to solve them. The primary
tool used to infer what course of action to take is a simple
knowledge base of previous situations and specified prefer-
ences made available to the triggers; these are made avail-
able through directives. For example, the knowledge base
holds the names of functions used to test for equality be-
tween elements of the same type and how confident we are
in those functions. In the knowledge base, the class number

may be associated with the function equalp with high con-
fidence because it meets the normal expectation of equal-
ity for numbers (that is, (equalp 5 5.0) is true). The
other standard equality functions may also be associated
with number, but with lower confidence: while they will not
fail, they don’t work in the expected fashion. The knowledge
base is also used to define the “natural” ordering function
for different types.

To ensure the equality testing function is reasonable, a trig-
ger is defined that adjusts the current representation when
an element is inserted into a set. If this element is not of a
type that is handled properly by the equality testing func-
tion in the current representation, then the trigger adjusts
the representation to work as expected with the given types.

There is also the issue of the computational efficiency of the
current representation. The trigger should strive to pick the
best possible representation based on the equality functions
specified. For example, if all the elements work best with
equalp, then a native hash table representation is likely to
be the best choice. More complex representations can be
selected when multiple equality functions are necessary to
exhibit expected behaviour.

Deleting elements is somewhat simpler. In this case, when
the number of elements of a certain type in the set reaches
zero, we may be able to undo the changes made earlier to
the current representation. In this case, care must be taken
in specifying when such a trigger is run. It cannot happen
before the element is actually deleted; the reconfiguration of
the current representation may adversely affect the actual
operation’s execution. Thus, the trigger that compacts a



(defun compaction-trigger (dset op args)

(declare (ignore args))

(when (compaction-condition-met-p dset op)

(compact-set dset)

(values nil t)))

Figure 4: Example of a simplified trigger for use
with dynamic sets (dsets).

representation must be run on some operation following the
deletion or immediately following the deletion.

Handling ordering operations is straightforward: if an oper-
ation that requires an ordering representation is performed,
the trigger verifies that the contents can be ordered in some
known way and then changes the current representation to
one that supports the ordering operations if it does not al-
ready. There is no need to revert the representation back
since an ordered representation supports all other set op-
erations. It will only change if an element is inserted that
is not compatible with the ordering relation or the equality
testing function.

The triggers outlined above are meant to make common sit-
uations easy to work with by recognizing them and adjusting
the current representation to prevent an error. Nevertheless,
some situations will not be recognized because the knowl-
edge base does not contain anything meaningful about them.
Some situations are legitimate errors, but others may be
something we can recover from. This can be accomplished
by invoking a restart when a lookup to the knowledge base
returns an unrecognized condition. This restart can query
the user to indicate how to correctly manage the situation,
saving the information for later.

Triggers are defined as functions that take three arguments:
the DADT object the trigger is associated with, the opera-
tion the trigger is being called from (as a symbol), and the
arguments passed to that operation. It returns two values,
the second of which is significant in the current context.2

When the second value is t, it states that the trigger is ac-
tive; otherwise, it is passive. We do not include the complete
code for a trigger – the listing would be too long – but the
basic code for the trigger used to compact the representation
is given in Figure 4.

3.4 Class definition
Defining a class for DADT object is done using define-

-dadt-class. It is an extension to defclass that properly
sets up the superclasses and default initialization arguments.
It takes a list of superclasses and slots as defclass, but
allows more class options. Most class options correspond
to the slots that hold the metadata for the current repre-
sentation. There is also an option to provide the default
representation of the data object being observed.

The example in Figure 5 defines a class dset. It dictates
that an instance of a dset will be created with the local
triggers indicated above and an instance of type-count as

2The first is reserved for a system of recommendations which
is not described in this paper.

(define-dadt-class dset ()

((strict-p :initform nil

:initarg :strict-p

:accessor dset-strict-p))

(:local-triggers insertion-trigger

compaction-trigger

orderable-trigger)

(:resources type-count)

(:default-rep unordered-set))

Figure 5: The DADT class definition for sets.

its only resource. Also, the default type for the current
representation is an instance of unordered-set.

We also define a slot strict-p that indicates whether the
set object is strict or not. A strict instance of dset is an
instance where the user has explicitly provided certain op-
tions meaning that the triggers should not try to adjust for
common situations; in this case, the user knows what should
be used and is being direct.

3.5 Operation definitions
The operations defined on DADT objects must conform to
the expected semantics of the operations as if they were
defined for regular objects. Additionally, DADT interface
operations may need to perform the extra operations of
the DADT protocol. Considerable flexibility is permitted
in defining interface operations so that complex situations
can be addressed when needed, but reasonable defaults are
provided so that the operation can be defined easily.

To demonstrate the flexibility of DADT operation definition,
we give some examples with explanations of the features
present. The first example is a simple operation where the
defaults are adequate. This is given in Figure 6 (A).

The define-dadt-operation macro takes four arguments:
the name of the DADT class the operation is defined for, the
name of the function, a lambda list suitable for defmethod

and an optional body. In this case, the body has not been
given, meaning the defaults will be used. This defines a
method on the member-p function with the given lambda
list. The arguments specialized to the name of the DADT
class are assumed to be the significant arguments, that is,
the arguments representing DADT objects whose current
representations must be passed to the actual interface oper-
ation for the operation to be executed correctly.

The body of the method will perform the following actions
(see Figure 2):

1. Run the triggers for each significant DADT object.

2. Take the initial measurement for each significant
DADT object.

3. Execute the actual interface operation – which is as-
sumed to be a method on the same generic function –
substituting the current representation of each signifi-
cant DADT object, saving the results.



;; (A)

(define-dadt-operation dset member-p

((set dset) elem))

;; (B)

(define-dadt-operation dset insert-element

((set dset) elem)

(declare* (returns (self set))))

;; (C)

(define-dadt-operation dset delete-element

((set dset) elem)

(declare* (manual t))

(measure-initial)

(let ((val

(delete-element (dadt-rep set) elem)))

(measure-final)

(run-triggers)

val))

;; (D)

(define-dadt-operation dset filter ((set dset) fn)

(declare* (manual t))

(let ((new (make-dset)))

(iterate-set set

#’(lambda (e)

(when (funcall fn e)

(insert-element new e))))

new))

Figure 6: Interface operation examples for a DADT.

4. Take the final measurement for each significant DADT
object.

5. Return the results from the actual operation.

The default is to assume that the actual operation only re-
turns a single value that is not of the type indicated by the
first argument to the macro (in this case, of type dset).

The issue of capturing return values is more difficult than
would first appear. The actual operation can return zero
or more values, but it is the nature of each value that is
the problem. A value returned may be one of the current
representations, in which case its DADT object should be
updated. Another possibility is that a value may be a new
object that should be wrapped in a DADT object. The last
case is that the value is passed along without being examined
or altered.

Properly specifying these types of values is done using an
extended declaration for the function definition, called de-

clare*. An example is given in Figure 6 (B). The returns

specification indicates how many values the actual operation
returns and how to alter them. In the example given, only
one value is returned, but it is the current representation
of the set parameter, which is indicated by the (self set)

specifier. This means that the current representation of the
DADT object set is updated with the first (and only) value
returned by the actual interface operation.

When more control is needed over how an interface operation
is performed, the manual specification can be provided to
the declare*, which overrides the auto-generated body and
allows the user to define the method body. When this is
done, each stage of the protocol is available by way of a
local function of the appropriate name.

Suppose we want to define the delete-element to run the
triggers as the last step in the protocol instead of the first.
(We may want to do this so that we could adjust the com-
paction trigger such that the element to be removed is actu-
ally removed before the trigger is run.) An example of this
is given in Figure 6 (C). The local functions run-triggers,
measure-initial and measure-final allow us to run each
extra operation directly. We call the actual operation man-
ually, passing the current representation of the only signif-
icant DADT object (the (dadt-rep set) form), save the
result then perform the final measurement stage and then
run the triggers. The value of the actual operation is then
returned.

Finally, we can define operations and ignore the DADT pro-
tocol when necessary. Figure 6 (D) shows an implementation
of the filter function, which takes a set and a predicate
function. It creates a new set containing the elements e of
set where (funcall fn e) is non-nil. Note that the the
protocol is not needed here because the configuration of the
newly created set is handled by the calls to insert-element.

The ability to control how the protocol is performed for each
operation is very useful for non-standard cases, but also for
optimization and debugging. Although not shown here, it is
also possible to redefine each stage locally to inject code for
debugging purposes or to alter the basics of the protocol to
handle particularly difficult cases.

4. OPTIMIZATIONS
Augmenting objects and operations in the fashion outlined
above, unsurprisingly, leads to code that imposes significant
overhead. General statements regarding the exact overhead
cannot be made in a reliable fashion because the overhead
is dependent on what resources and triggers are defined for
each DADT object.

Looking at a DADT object, we note that there may come
a time during its lifetime where the extra work done by
the DADT operations is of no help; the object may have
stabilized in that no changes have been made to the current
representation and information collected about the use of
the object is no longer needed. At such time, the overhead
of the DADT protocol is unnecessary.

Recognizing that the overhead of the DADT protocol can be
significant and that its usefulness waxes and wanes, a sys-
tem for controlling the application of the protocol has been
devised so that the extra work can be avoided. The system
can control both the generation of code for the operations as
well as the effect the operations have on individual objects.
For the operations, the control comes at evaluation/compile
time, whereas objects can further be controlled at run time.

The system for controlling the protocol is done through di-
rectives. We define some standard directives that are al-



ways present. These directives dictate what is to be per-
formed by the protocol at any given time. They can be
specified at a global level, for individual operations, DADT
classes, and most importantly, for individual objects. The
standard directives correspond with the extra operations:
run-triggers, measure-initial and measure-final. We
also provide a directive dadt-protocol, which is an alias for
all three. Each directive is either associated with the value
t, nil or no value.

Additionally, we define the directive environment as follows.
If a directive has no value in an individual object, look in
the global environment. If a directive has no value for a
DADT class, look in the global environment. If a directive
has no value in the global environment, it is assumed to be
nil. The global environment is initialized with each of the
standard directives associated with the value t.

For operations, the standard directives dictate how the op-
eration is to be carried out. Within the declare* form of
a DADT operation, each standard directive can be given as
a specifier (defaulting to t if not provided). If a directive is
associated with nil in the declare* form, then the code for
that stage is not generated for that operation.

If the code for a stage is generated, the value for the directive
corresponding to the stage is looked up when the stage is
executed. When there is only one significant DADT object
for the operation, the object is queried; if there is more than
one significant DADT object, the corresponding DADT class
is queried. In either case, the stage is executed when the
value associated with the corresponding directive is t and
not executed if it is nil. (Note that it will never be without
one of these two values in the directive environment.)

Directives provide a way to make run time optimizations at
the individual object level. If we can determine that an ob-
ject is, for the most part, not taking advantage of the extra
operations, we can set the standard directives within the
object to nil and the protocol will no longer be run on that
object. Such an optimization does not necessarily preserve
the semantics of every operation: it is possible that an oper-
ation will behave differently when applied to an object that
is employing the DADT protocol versus one that is not. A
simple example can be seen with the sets described above.
If the trigger that reconfigures the set based on the elements
inserted is not run, then any new elements inserted may not
result in the expected behaviour (strings being tested using
eql instead of equal, for example).

We justify this by noting that high-level optimizations of
this kind generally take place on already working programs.
Thus, some understanding of the problem likely exists be-
fore any large-scale optimization is applied. The approach
to program development with the DADT protocol is one
of close interaction with the program in order to facilitate
rapid realization of an idea. In short, the DADT protocol
was designed for working toward a specialized program by
starting out with a very general one. Run time optimiza-
tions based on statistical inference are provided as another
tool for creating sufficiently useful programs.

Due to the wide variance possible in overhead, it is mean-

Standard directives SBCL ACL CLISP Mean
Local Global

no value t 7.94 4.87 23.3 11.1
no value nil 1.46 1.55 5.86 2.89

t n/a 2.46 3.24 19.2 8.35
nil n/a 0.06 0.60 4.15 1.61

Table 1: Execution overhead in microseconds (10−6)
for operations on DADT objects associated with no
triggers or resources. The Lisp implementations
used are SBCL 1.0, ACL 8.0 Express Edition, and
CLISP 2.4 running on a 2.16 GHz Intel Core Duo.

ingless to say much about the execution speed of DADT op-
erations when triggers and resources are defined for DADT
objects, except that it will be slower than without triggers
and resources. To give some idea as to the overhead, we will
examine the overhead involved in executing operations when
the DADT object has no triggers and no resources. When
no triggers and no resources are defined for a DADT object,
the overhead is effectively constant, although the constant
differs for each possible configuration.

It should be pointed out that in most cases, a DADT oper-
ation will be an elaborate wrapper for an already existing
implementation of the desired operation. Hence, we do not
seek to address the speed of an already existing implemen-
tation, but rather analyze the overhead involved with ob-
serving and reacting to the situations surrounding the use
of the operation.

Table 1 shows the overhead of the execution time in mi-
croseconds of interface operations applied to DADT objects
with the value of the standard directives found in four differ-
ent ways compared to actual operations across three differ-
ent Lisp implementations. The operations were all applied
to the same underlying data and the DADT objects had no
resources or triggers associated with them. The values of
the standard directives were found in four different ways:
with the local values empty (that is, the DADT object has
no value for the directive) and the global values being either
t or nil, or the local value being either t or nil.

The values in Table 1 were obtained by running the following
code (where the set is created with suitable directives, if
necessary, by the omitted code represented by the ellipsis).

(let ((s (...)))

(time (loop repeat 30000 do (empty-p s)))

(time (loop repeat 30000 do (size s)))

(time (loop for i from 1 to 30000 do

(member-p s i)))

(time (loop for i from 1 to 30000 do

(insert-element s i)))))

The base value was taken to be the test as performed on a
regular set object. The value 30000 was chosen because it
provided enough repetitions to account for anomalous times
and higher values tended to trigger a garbage collection. The
four operations were selected as a sample of simple opera-
tions applied to individual sets. The mean overhead across



the four operations provides the results found for each imple-
mentation. The code was compiled using the default com-
piler settings.

The results show that the overhead can change drastically
based on the values of the standard directives and where
their values are found; such overhead is directly related to
the time needed to execute a function call in the Lisp imple-
mentation being used (SBCL seems to be quite good when
the directives are set locally to nil). Thus, over many op-
erations, it will be considerably more efficient to disable the
protocol locally. This is not surprising. Indeed, it is con-
siderably more efficient to set the directives locally in either
case. As these overhead values are for DADT objects with
no resources and triggers, the overhead will likely get much
higher when the protocol is enabled in an actual program.
We would expect that when the protocol is disabled, the
overhead would be nearly constant regardless of what re-
sources or triggers are present since the extra work involving
them is not performed.

The overhead can be lessened further by defining the DADT
operations in such a way that the code to perform the extra
operations is not even present. This means that the run
time checks to are not done, further reducing the extra work
involved. When the protocol is disabled within a DADT
interface operation, the operation becomes little more than
a wrapper call. There is great flexibility allowed when it
comes to enhancing the performance of DADT operations,
although removing the ability of an operation to perform
any of the protocol should be done with care.

We see that disabling the protocol has a significant effect,
but we must find a way to do this at run time. An obvious
solution is to use the protocol itself by defining a trigger
that will turn the protocol off for individual objects when a
certain condition is detected.

The conditions that dictate when a DADT object should
have the protocol disabled locally (that is, when the object
should be stabilized) are not entirely clear. It is likely that
complete information is not available and that a reasonable
guess has to be made.

We will build on the previous example of sets. The trigger
most likely to alter the current representation is the inser-
tion trigger because sets are going to be populated with
elements at some point. (Lots of empty sets aren’t generally
useful.) However, once a set has “seen” the different types
of elements that will populate it, the insertion trigger is not
of much use. It is likely that the different types that will
be present in a set will be seen relatively early with respect
to the insertion of elements. If we program in a functional
style, then it is also likely that once a set is populated, it
will not be changed again.

Using these assumptions, we can define a trigger that stabi-
lizes an instance of dset in the following manner. We count
the number of operations performed on the set since the
last change triggered by an insertion or deletion. When the
number reaches a certain threshold n, we will disable the
protocol for that particular object. In other words, when a
dynamic set has had n operations performed on it without

(defclass call-counter ()

((count :initform 0 :accessor counter)))

(defmethod measure-resource-initial

((cc call-counter) rep op args)

(incf (counter cc)))

(defmethod reset-resource ((cc call-counter))

(setf (counter cc) 0)

cc)

(defun stability-trigger (dset op args)

(declare (ignore op args))

(with-resources ((ccount call-counter))

(dadt-resources dset)

(when (<= (or (lookup-directive

:stability-threshold)

most-positive-fixnum)

(counter ccount))

(run-ordering-trigger mset)

(enact mset ’(dadt-protocol nil))

(values nil t))))

(direct (stability-threshold 50))

Figure 7: Resources and triggers used to stabilize
dsets.

any changes having taken place to the current representa-
tion, we assume that it won’t experience anything new or
profound in the future and we can effectively remove it from
consideration in the DADT interface operations.

Determining a threshold value is likely to rely on some in-
tuition about the task at hand and defining it to be static is
probably unwise. Hence, we will define it as a directive so
that we can change it when necessary.

There is one problem with this kind of definition: order-
ing statistics. Stabilizing a dset instance in this manner
means that it may preclude the ability to support ordering
functions. We can get around this problem by having the
stability trigger run the trigger that adjusts for an ordering
operation.

Some of the code for adding this ability is given in Figure 7.

We define a resource call-counter that increments a coun-
ter whenever an operation is called.3 This gets reset to zero
when reset-resource is called on it. Note that reset-

-resource is called on every resource object associated with
a DADT object when the current representation changes.

stability-trigger is simple: it first finds the counter re-
source associated with the dynamic set and checks to see if
the counter is greater than or equal to the stability thresh-
old as defined in the global directives; a default of most-

-positive-fixnum is given if the directive has not been de-
fined, which effectively means the trigger will not do any-

3More correctly, whenever the initial measurement stage is
executed for a DADT interface operation.



(defun find-s-dset (file)

(with-open-file (stream file)

(let ((s (make-dset)))

(ignore-errors

(loop (insert-element s (read stream))))

(filter s

#’(lambda (e)

(and (stringp e)

(member-p s (length e))))))))

(defun find-s-vanilla (file)

(with-open-file (stream file)

(let ((str-set (make-set ’associative-array

:test ’equal))

(num-set (make-set ’associative-array

:test ’equalp)))

(ignore-errors

(loop

for elem = (read stream)

if (stringp elem)

do (insert-element str-set elem)

else

do (insert-element num-set elem)))

(let ((tmp (make-set ’associative-array

:test ’equal)))

(iterate-set str-set

#’(lambda (e)

(when (member-p num-set

(length e))

(insert-element tmp e))))

tmp))))

Figure 8: Two programs to compute S. The first
takes advantage of the dset implementation; the sec-
ond uses a more traditional approach.

thing.

If the threshold has been reached, it first runs the trigger
that adjusts the set in the event of an ordering operation
being called. If the set supports ordering functions, then
the representation will be adjusted to one that can support
those operations before the set is stabilized. It calls enact,
which takes a DADT object or class and sets the directives
to that object or class as provided. In this case, the standard
directives are set to nil. The function then returns indicat-
ing it has changed the current representation. In reality it
hasn’t done so, but it has turned off the protocol for the
object, so further processing of triggers should be avoided.

The call to direct (which is actually a macro) sets directives
at the global level; here we have chosen a stability threshold
of 50. (The syntax for directives is analogous to specifi-
cations for declare, and enact and direct are similar to
proclaim and declaim.)

To examine the efficacy of the stability trigger, we will write
a simple program that does the following. Given a set D,
find the subset S of D where S = {s|s ∈ D, |s| ∈ D}. For
simplicity, we assume that D contains numbers and strings,
and that the elements of D reside in a file.

Two versions of a program to compute S are given in Fig-
ure 8. The first uses dsets and the second uses a specific
set representation.4 In order to properly handle equality
between numbers and strings, we must make a set for each
type of element in the “vanilla” example, which results in
more code. It also requires the user to specify two pieces of
information about each set created: the kind of structure to
use and how to test for equality.5

Under SBCL 1.0, find-s-dset takes approximately 45%
longer than find-s-vanilla when the stability threshold
values is set to 50 and |D| = 100000. This is reasonably
close to what we might expect. Although slower, find-s-
-dset is considerably shorter to write and arguably more
“natural” in terms of computing with sets due to the pres-
ence of a filter function.

It should be noted that filter is not used in find-s-va-

nilla because it does not exist. filter is a DADT opera-
tion that does not call an actual interface operation; instead,
it implements the algorithm directly (see Figure 6). In or-
der for a “vanilla” filter function to exist, it would have
to combine sets properly and the implementations that the
DADT set uses do not provide these operations.

5. DISCUSSION
The approach of dynamic abstract data types is not meant
to optimize the run time of production code — as the data
clearly indicates — so much as it is a foray into optimizing
developer time. The example program in Figure 8 shows
that taking advantage of familiar and common situations
means that some programs can be very simple to write and
have acceptable performance.

Gabriel and Goldman [7] recently proposed the idea of con-
scientious software, asserting that software should aid in its
installation and customization, as well as adapting to new
situations. Dynamic ADTs provide a way to achieve part of
this idea by allowing a program to observe the use of its data
objects and employ the information gathered. This is done
by introducing more unknowns to the program initially and
specializing over time.

Filling in the unknowns means addressing them directly by
using errors as a source of information. In our implementa-
tion, we have made a conscious effort to provide execution
paths that can continue the running of the program using the
Lisp restart system. This, in effect, means the program/run
time can learn from its mistakes. Our current implementa-
tion is not very robust — it only learns from rudimentary
situations — but we are working on detecting and handling
more complex conditions in an intuitive manner.

Rinard [17] has asserted that flawed software has enormous
value. The dset DADT adds further support to this claim
by permitting a program to work in a familiar way even in

4The representation is taken from Gary King’s CL-
containers package [9].
5In fact, the equality test can affect the choice of struc-
ture. In this example, the user must know that the
associative-array class uses a standard hash table as the
underlying representation, so only one of the standard equal-
ity functions will work.



the absence of complete information. Looking at the way
dset works, one may notice that it allows for the incre-
mental creation of a data structure suitable for some task
without devising the particulars ahead of time. As we know
more about the problem, the software “knows” more about
the problem and helps the user deal with the complexity
in a pragmatic and usable fashion. It doesn’t necessarily
solve every aspect of the problem, but it mitigates some of
the labour involved in doing so by eschewing the notion of
building one part before moving on to another.

Some of the techniques behind changing data representa-
tions for a single object can be found in the programming
language SETL [19]. SETL is a programming language that
focuses on the use of sets and uses a form of automatic
data structure selection, but it does not change representa-
tions at run time. Instead, it uses static analysis by way
of the compiler [18]. Development of SETL focused on de-
termining efficient representations for sets based on what
was stated in the program rather than what happened at
run time. Low [12] also did work on techniques for choosing
data representations automatically, but also did not focus
much on dynamic aspects. SETL and Low’s thesis provided
some ideas for managing multiple data representations in the
DADT protocol. Richardson [16] has investigated automatic
changes in functional programs by program transformation.
An analysis of multiple data representations within a com-
putation can be found in [22]. A theoretical approach to
extending data types with dynamic features can be found in
[24].

To a limited extent, the “tables” of Symbolics Common Lisp
are similar to DADTs.6 Tables would change internal rep-
resentation based on the options given when the table was
created [1]. For example, a table with few elements that are
tested with eq may result in faster lookups using an alist
than a hash table. Changing representations primarily for
performance reasons is more a function of the program than
the data. Tables in Symbolics Common Lisp encompass
some of the abilities of DADTs, but lack the dynamism af-
forded by extensible monitoring capabilities. Furthermore,
Tables are an attempt to work across all programs on a spe-
cific data type whereas DADTs can be used to on multiple
data types, at different stages of development, and offer the
option to be disabled.

The KIDS [20] and DTRE [4] systems for semi-automatic
program development and transformation contain some of
the same ideas as the DADT protocol, although again they
are more focused on writing static program specifications.
The tuple space of Linda implementations provides for an
opportunity to determine what data layout should be used
for a given data set. [15] shows that this is possible, also
through static analysis.

More recently, work has been done on adjusting programs
while they are running. [10] looks at delaying code gener-
ation until load time. The results show that this must be

6According to Barry Margolin [14], the original design of
tables involved changing the class of the table object, but
this was found to be problematic. Instead, it was redesigned
so that a slot in a hash table object contained the “actual”
representation of the hash table.

done with care, but in some circumstances it can be bene-
ficial. The ideas of using monitoring information to guide
decisions are used to decide what parts of the code to op-
timize, similar to a just-in-time compiler. Acar’s work on
self-adjusting computation [2] looks at remembering parts
of a computation such that changes to the input propagate
through the computation without having to recompute ev-
erything. In both cases, past experiences are remembered
in order to make use of them later.

Dynamic algorithm selection is demonstrated by the GNU
MP library. Different algorithms for the same operation
are used depending on the number of machine words the
operands occupy and the nature of the operands [8]. Addi-
tionally, the parameters dictating when one algorithm is cho-
sen over another are user-configurable at compile time. Each
algorithm for a given operation performs the same task, but
the efficiency is different for each one depending on the in-
put. A prototyping tool for dynamic algorithm selection
using reinforcement learning that works on pre-existing bi-
naries is presented in [3] and demonstrates some of the same
principles as dynamic ADTs.

In the future, it would be interesting to explore a dynamic
ADT implementation of the sequences interface in Common
Lisp. Using the profiling features of dynamic ADTs, it would
be possible to help determine specialized representations for
some sequences, such as specific dimensions for vectors. It
may also be beneficial to combine unit tests with the profil-
ing information to deduce some traits of the expected input.
This would likely require the test suite to interact with the
dynamic ADT in some fashion to prevent the accumulation
of misleading data. (For example, the DADT may need to
know if a test is supposed to pass or fail.)

We find that the dynamic abstract data type is a way of
blurring the boundary between the programmer and the pro-
gram in interesting ways. The tenets behind the DADT pro-
tocol were meant to mirror the basic workflow of program
development: start with an idea and get something working
so that the problems can be found and dealt with. In this
sense, we took inspiration from the idea of flow put forth by
Csikszentmihalyi [6], specifically that flow tends to be char-
acterized by immediate feedback to one’s actions. Looking
for common occurrences in the use of certain constructs by
the developer allows for some aspects of the program to be
left unspecified meaning that fewer details are needed for
such feedback to be given. This may end up simply delaying
the inevitable, but the path taken may be more enjoyable.

6. CONCLUSION
We have outlined dynamic abstract data types, a construct
and protocol for monitoring and altering data objects at run
time that can make some programming tasks simpler by al-
leviating the need to specify certain details about a data ob-
ject’s structure; the overhead involved can be mitigated by
reasonable heuristics. This was demonstrated by the imple-
mentation of an abstract data type for sets that restructures
its instances based on how they are used. Additionally, it
allows for the profiling of data in a manner analogous to pro-
filing of code, which can be used to specialize the program.
With the profiling data accessible at run time, it presents
opportunities for dynamic optimization.
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