
Digital Ink Compression via Functional Approximation

Vadim Mazalov and Stephen M. Watt
University of Western Ontario

London, Ontario, Canada
vmazalov@csd.uwo.ca, watt@csd.uwo.ca

Abstract

Representing digital ink traces as points in a func-
tion space has proven useful for online recognition. Ink
trace coordinates or their integral invariants are writ-
ten as parametric functions and approximated by trun-
cated orthogonal series. This representation captures
the shape of the ink traces with a small number of coef-
ficients in a form quite compact and independent of de-
vice resolution, and various geometric techniques may
be employed for recognition. The simplicity and high
performance of this method lead us to ask whether the
same idea can be applied to another important aspect
in online handwriting – the compression of digital ink
strokes. We have investigated Chebyshev, Legendre and
Legendre-Sobolev orthogonal polynomial bases as well
as Fourier series and have found that Chebyshev repre-
sentation is the most suitable apparatus for compress-
ing digital curves. We obtain compression rates of 30×
to 50× and have the added benefit that the Legendre-
Sobolev form, used for recognition, may be obtained by
a single linear transformation.

1. Introduction
Digital ink has become an important medium for

communication. Each year more devices support dig-
ital ink in some form, for capture, processing or recog-
nition. These devices have a wide range of form factors
and resources, from small hand-held devices to digital
whiteboards. These devices are used in various config-
urations, individually, tethered for a single user, or in
multi-party collaboration. Various vendor-specific bi-
nary formats are used to represent digital ink, and there
is the vendor-neutral XML format InkML. With this in-
creased use of digital ink, its efficient handling has be-
come increasingly important. Small devices need to be
able to handle it efficiently. On more powerful devices
ink-handling applications may need to store a signifi-
cant amount of model data to support recognition.

In our work on symbol recognition we have found it
useful to represent ink strokes in a functional form, as
coefficients of truncated orthogonal series [5, 7]. This
form, described in more detail below, has the prop-
erty that the shapes of the curves are given quite suc-
cinctly. It is natural to ask how this form may be used
for compression. This is the subject of this paper. A
consequence of this work is that we almost directly do
recognition on compressed ink. We note that orthog-
onal polynomial methods have been used to compress
speech and other signals, e.g. [1, 10, 15].

We take the view that lossless compression at time
of ink capture is not a meaningful objective as each ink
capture device has a resolution limit and sampling ac-
curacy. So long as the reconstructed curve lies within
these limits, lossy and lossless compression are equiv-
alent. For our own applications involving recognition,
lossless compression has no benefit. Small perturba-
tions in strokes give symbols that a human reader would
recognize as the same.

This paper studies how functional approximation
techniques may be used for digital ink compression. We
compare the compression rates obtained using a vari-
ety of functional bases, and find that a quite satisfactory
compression rate may be achieved. Indeed, we see that
a curve, compressed with functional approximation at
device resolution, occupies about twice less space than
the lossless compression with second differences.

The rest of the paper is organized as follows. Sec-
tion 2 provides the necessary preliminaries: we review
applicable ink formats, related work and the basics of
functional approximation. Section 3 explains the prob-
lem we solve and gives an example of approximation of
curves with different error limits. Section 4 describes
the compression method. The experiments to evalu-
ate the compression method are described in Section 5.
Compression results for representing coefficients in text
and binary formats are given in Sections 5.2 and 5.3 re-
spectively. Section 6 concludes the paper.

2. Preliminaries

2.1 Ink Representation

A variety of digital ink standards are in use to-
day. Among these one can mention vendor-specific or
special-purpose formats: Jot [13], Unipen [8], Ink Se-
rialized Format (ISF) [12] or Scalable Vector Graphics
(SVG) [4]. In 2003, W3C introduced a first public draft
of an XML-based markup language for digital trace de-
scription, InkML. This has evolved to the current stan-
dard definition in 2010 [14]. InkML has received an in-
creasing attention due to its vendor neutrality and XML
base. In the general case, a trace is given in InkML as a
sequence of multidimensional points. Each coordinate
gives the value of a particular channel at that point. Pre-
defined channels include x and y coordinates, pressure
and various angles.

2.2 Other Ink Compression Methods

A lossy algorithm was presented in [11], based on
stroke simplification. It suggests to eliminate excessive
points, forming a skeleton of the original curve. The
algorithm is based on iterative computation of chordal
deviation (the distance between the original curve and
the simplified one) and elimination of the point with the
minimum distance until the minimum distance becomes
larger than a predefined threshold. Intuitively, such sim-
plification may make curves jagged. Indeed, authors
address this issue and propose to interpolate strokes on
the decompression stage with Hermite splines. How-
ever, since the interpolated values are obtained from a
subset of the original points, noticeable approximation
error is unavoidable.

A lossless compression scheme was proposed in [12]
and similarly in [3]. The algorithm computes the sec-
ond order differences of data items in each data chan-
nel. The sequence of second differences is proposed
to have low variance and, therefore, be suitable for an
entropy encoding algorithm. We show further on in the
paper that compression of our algorithm is considerably
better, even though it has a disadvantage of being lossy.

Another method, proposed in [3], is a so-called
“substantially lossless”, which allows the compression
error’s magnitude to be not greater than the sampling er-
ror’s magnitude. In this approach, the original curve is
split into segments and each segment is represented by
some predefined shape, such as a polygon, ellipse, rect-
angle or Bezier curve. It is however not mentioned how
to obtain the shapes from a curve and what compression
this approach gives.

In contrast to the above methods, we look at piece-
wise functional approximation of a curve. Our approach

allows flexible approximation with a desired level of
precision by increasing the degree of approximation or
decreasing the segment arc length. In addition, it yields
high compression, as shown in the experimental part of
the paper.

2.3 Orthogonal Bases

We have used polynomial bases extensively in our
previous work. For details see, e.g., [7] and works cited
there. Here we summarize a few basic facts.

LetBi be a set of basis functions orthogonal with re-
spect to the inner product 〈f, g〉 =

∫ b
a
f(λ)g(λ)w(λ)dλ

on the interval [a, b] with weight function w. If we are
given an inner product, we may compute an orthogonal
polynomial basis by Gram-Schmidt orthogonalization
of the monomials 1, λ, λ2,

Let f(λ) be an arbitrary continuous real-valued func-
tion on [a, b]. According to the Weierstrass approxima-
tion theorem, f(λ) can be uniformly approximated to a
desired degree of accuracy by a polynomial. In practice,
orthogonal polynomials are usually taken as the basis
for approximation, since they are uncorrelated and al-
low fast computation of coefficients. The expression of
f(λ) in the orthogonal basis Bi is

f(λ) =

∞∑
i=0

ciBi(λ)

where the ci are real coefficients. The coefficients of the
functional expansion are found as

ci = 〈f,Bi〉 /hii, hij = 〈Bi, Bj〉 .

For our purposes, the function f(λ) is given by a dis-
crete set of points, assembled in a stroke.

The interval of orthogonality in the definition of
most of the classical orthogonal series is τ ∈ [−1, 1].
Therefore a mapping to a more general interval is re-
quired. If f(λ) is defined on [a, b], coefficients of
the mapping function can be obtained by taking λ =
(b− a)τ/2 + (a+ b)/2

ĉi =
1

hii

∫ 1

−1
f̂(τ)Bi(τ)w(τ)dτ

= Ki

∫ b

a

f(λ)Bi(
2λ− a− b
b− a

)w(
2λ− a− b
b− a

)dλ

where Ki =
2

hii(b−a) . Then coefficients of the degree d
approximation of the original stroke can be found as

f(λ) ≈
d∑
i=0

ĉiBi(
2λ− a− b
b− a

).

2.4 Bases for Approximation

We wish to determine which bases will be suitable
for compression. We have investigated three families of
orthogonal polynomials with useful properties and have
included Fourier series for comparison.

Chebyshev polynomials of the first kind, defined
as Tn(λ) = cos(n arccosλ), have weight function
w(λ) = 1√

1−λ2
and are used in numerical approxima-

tion for their property of minimizing the maximum er-
ror. In [2] it was reported that Chebyshev polynomials
are suitable for succinct approximation of strokes and
perform better than Bernstein polynomials.

Legendre polynomials are defined as

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n

and have weight function w(λ) = 1.

Legendre-Sobolev polynomials are constructed by
applying the Gram-Schmidt orthogonalization to the
monomial basis {λi} using the inner product

〈f, g〉 =
∫ b

a

f(λ)g(λ)dλ+ µ

∫ b

a

f ′(λ)g′(λ)dλ

where µ = 1/8 as described in [7].
A property of the Legendre and Legendre-Sobolev

orthogonal bases, as applied to online stroke modeling,
is the ability to recover a curve from moments computed
in real time, while the stroke is being written. The coef-
ficients of the stroke may then be calculated on pen-up
in constant time depending only on the degree of ap-
proximation [6].

Fourier series on [−L,L] are provided for compari-
son, since we are not restricted in our selection of ap-
proximation basis.

f(x) ≈ α0

2
+

d∑
n=1

(αn cos(
nπx

L
) + βn sin(

nπx

L
))

where[
αn
βn

]
=

1

2L

∫ L

−L
f(x)

[
cos
sin

]
(
nπx

L
)dx.

3. Problem Statement

The question asked is whether it is feasible to ap-
ply the theory of functional approximation to describe a
stroke up to some given threshold of the maximal point-
wise error and root mean square error. If so, what is the
compression one could expect as the result of such ap-
proximation?

O R C C A
Max. pt-wise err., % 1 2 3 4 5
RMSE, % 0.33 0.67 1 1.33 1.67

Table 1. Different approximation thresholds.

We have empirically investigated different ap-
proaches to obtain the minimal overall size of coeffi-
cients of an approximation that satisfies the given er-
ror constraints. We have considered compression of
handwritten regular text, since it commonly occurs in
pen-based computing and incorporates different kinds
of patterns. An example word and its approximation
with different thresholds are shown in Table 1 and the
corresponding figure. We have observe that limiting the
maximum error also limits the root mean square error,
but not vice versa. Therefore, in our experiments we
have limited the maximum error. To measure the qual-
ity of approximation independently of application and
device, we have computed errors (and other lengths) as
a fraction of the height of the characters in a stroke.

4. Algorithms
4.1 Overview

At a high level, our compression method takes the
following steps for each stroke:

1. Segment the stroke using one of the methods de-
scribed below. Ensure the segments overlap by an
amount at segmentation points.

2. For each segment, compute the orthogonal se-
ries coefficients for each coordinate function (e.g.
x, y, p, where p is pressure).

3. Compress the stream of coefficients.

To reconstruct a stroke, the process is reversed:

1. Decompress the coefficient stream to obtain the
curve segments.

2. Blend the curves on the overlaps to obtain the
piecewise coordinate functions.

3. Obtain traces by evaluating the coordinate func-
tions with the desired sample frequency.

On a given segment, the series coefficients are com-
puted by numerical integration of the required inner

products. The cost to compute the compression is linear
in the number of trace sample points and in the number
of coefficient size/approximation degree combinations
allowed.

To obtain a more compact form for the coefficient
stream, it may be compressed with a deflation tool. In
the experiments below we use gzip, which implements a
combination of LZ77 [16] and Huffman coding [9].This
is for convenience only — a more specialized method
would be used in a production setting.

4.2 Parameterization Choice

We tested two used choices for curve parameteri-
zation widely used in pen-based computing: time and
arc length. We observed that parameterization by time,
while being easier to compute, also gives better com-
pression. Comparison of the results is presented in Fig-
ure 2 for approximation with Chebyshev polynomials
with integer coefficients.

4.3 Segmentation

We cannot expect long, complex strokes to be well
approximated by low degree polynomials. Instead of
varying the degree to suit any stroke, we segment
strokes into parts that we can separately approximate.
We have explored the three methods to segment traces,
described here.

Fixed Degree Segmentation We fix the degree of the
approximating functions. Intervals of approximation
are constructed to allow the maximal length within the
given error threshold. If the available interval can be
approximated with a lower degree (e.g. the end of the
curve has been reached), it is handled appropriately.

Fixed Length Segmentation We fix the length of in-
tervals and approximate each interval with the minimal
degree possible, but not greater than 20 (to keep the al-
gorithm computationally feasible).

Adaptive Segmentation The most comprehensive
variant is to fix a maximum permissible degree and
maximum permissible coefficient size (digits for text,
bits for binary), and to perform fixed degree segmen-
tation for each combination. Then the combination of
degree and coefficient size that gives the smallest re-
sulting total size is selected. The degree and coefficient
size are saved together with the coefficient data.

4.4 Segment Blending

If we allow a large error threshold (e.g. 4%), then
it becomes possible to notice naı̈ve segmentation be-
cause we do not match derivatives at the segmentation

Figure 1. Example of blending.

points. This can be observed in the Table 1. To make the
stroke smooth, and to improve the approximation, we
blend the transition from one piece to another by over-
lapping the segments slightly and transitioning linearly
from one segment to the next on the overlap. Therefore,
the approximation is given in segments, fj , and takes
form

f(λ) =

N∑
j=1

Wj(λ)fj(λ) ≈
N∑
j=1

Wj(λ)

d∑
i=0

cijPi(λ)

with the weight function

Wj(λ) =


0, λ ≤ λj − a
λ−(λj−a)

a , λj − a < λ ≤ λj
1, λj < λ ≤ λj+1 − a
−λ+λj+1

a , λj+1 − a < λ ≤ λj+1

0, λ > λj+1

where a is a proportion of approximation pieces and λj
are the segment transition points. The value of amay be
estimated empirically, but different types of curves will
have a certain portion of overlap necessary for smooth
transition. An example of a blended sample is given in
the Figure 1.

5. Experiments
We have performed two sets of experiments using

our compression method for both text and binary repre-
sentations of curves. Before describing the experiments
in detail, we describe the setting.

5.1 Experimental Setting

The dataset of handwritten samples was collected in
the Ontario Research Center for Computer Algebra with
various tablet devices. The highest resolution device’s
specifications were: 512 pressure levels, 2540 dpi reso-
lution and 133 pps max data rate. The sampling error of
the device was ±.02 in and the resolution of the moni-
tor was 94 dpi. Therefore, the absolute sampling error,
as the stroke is rendered on the screen, is ≈ ±2 pixels.
Error, relative to the height of writing, is ≈ 2.5%.

Different individuals were asked to write various
parts of regular text to ensure variations in the length
of strokes and writing styles. Overall, we obtained
108,094 points split in 1,389 strokes.

Compressed size reported for the experiments is ob-
tained by comparing the compressed size of the entire
database to the original size, reporting it as a fraction
between 0% and 100%.

5.2 Compression of Textual Traces
Representation One set of experiments used a textual
representation of trace data. It may seem odd to explore
methods to represent text more compactly as text, but
this is relevant for standard XML representations.

For these tests we stored coefficients in UTF 8 for-
mat and define approximation packets as

λ0; c
1
00, c

1
01, ..., c

1
0d01 ; ...; c

N
00, c

N
01, ..., c

N
0d0N

λ1; c
1
10, c

1
11, ..., c

1
1d11 ; ...; c

N
10, c

N
11, ..., c

N
1d1N ...

λD

where λi is the initial parameterization value of piece i
in the stream, N is the number of channels (such as x
and y coordinates of points, pressure, etc.) and dij is the
degree of approximation of the piece i for j-th channel.
Pen-based devices typically provide three channels: x,
y coordinates of points and pen pressure p. In the exam-
ple, the stream consists of D approximation pieces and
the last packet defines the final value of parameteriza-
tion. These packets define the approximation functions
f ji (λ), i = 0..(D − 1), j = 0..N for corresponding
intervals [λi, λi+1]. The end of a stroke can be defined
with a special character, such as “%”. The proposed
model is independent of the choice of parameterization,
which can be time, arc length, etc.

In the experiments below we found the combination
of size of coefficients and degree that gives the best
compression for error of 3%. Fixing these parameters,
we estimate compression for other error values.

Size of Coefficients The next question was how de-
pendent is the compression on the size of fractional part
of coefficients. The result of the experiment for Cheby-
shev polynomials for the fixed degree method for differ-
ent fractional sizes is presented in the Table 2 for differ-
ent degrees of approximation for the maximal error of
3%. Even though the fractional size of 0 seems to be a
more optimal combination for the given error threshold,
for smaller error bounds it becomes inefficient. There-
fore, we took the combination of the size of fractional
part to be 1 and degree to be 7 and found the compressed
size for other error thresholds. The same procedure was
performed for other bases methods and the results are
shown in Figure 3(a).

A similar experiment for Chebyshev polynomials
has been performed for the fixed length method. Re-
sults are shown in the Table 3. Intervals that cannot be
approximated with degree ≤ 20 are recorded as “–”.

Figure 2. Compression for parameterization by
time (dot) vs. arc length (dash) for series with in-
teger coefficients. Compressed sizes measured
for all (integer) degree values from 3 to 12.

We observed that the fixed degree method performs
significantly better than the fixed length method, while
eliminating the associated risk of intervals that can not
be approximated. Therefore, all subsequent experi-
ments were performed with variations of the fixed de-
gree method.

Fixing the Size of Coefficients In the next experi-
ment we asked whether compression would change if
we took coefficients as real numbers with fixed num-
ber of digits. Similarly to the previous experiment, we
looked at the rates for different degrees (1-12) and the
number of digits to find the optimal combination for
maximal error of 3%. Taking this combination, we then
found compression for other values of maximal point-
wise and RMS errors. We observed, however, that ap-
plying this algorithm literally is not a preferred solu-
tion, since the coefficient of the 0-th degree polynomial
is usually significantly larger than the other coefficients.
This can be explained by the fact that the degree 0 poly-
nomial serves as a position translator. We therefore al-
low this coefficient to be twice of the size of coefficients
of higher degree. In Table 4 results are shown for differ-
ent degrees of approximation and the size of coefficients
of degree > 0 for Chebyshev polynomials. Compres-
sion for other error threshold for all bases is given in
Figure 3(b).

5.3 Compression of Binary Traces

We next explored how to compress data for appli-
cations that can store ink data in binary form. To do
this we stored the sequence of approximation coeffi-
cients in an exponential format as ab where a and b are
two’s complement binary integers, standing for signifi-
cand and a power of 10 respectively. We fixed the size
of b to be 3 bits and changed only the size of a.

(a) (b) (c)
Figure 3. Compressed size for different values of error for Chebyshev (solid), Legendre (dash), Legendre-
Sobolev (dot) and Fourier (spaced dot). Graph (a) is for coefficients with 1 digit fractional part. Graph (b) is
for fixed coefficient size for the best degree (Chebyshev: F=2,D=7, Legendre: F=3,D=8, L-S: F=3,D=7, Fourier:
F=2,D=6). Graph (c) is for adaptive binary representation with the best degree/coefficient size chosen dynamically
from degrees between 1 and 12 and coefficients between 3 and 9 bits. Compressed sizes measured for maximum
pointwise error from 0.5% to at least 3.6% in .1% increments.

F\D 3 5 7 9 11 13 15
0 2.62 2.49 2.53 2.79 3.05 3.31 3.59
1 3.91 3.69 3.62 3.70 3.69 3.70 3.64
2 5.36 5.18 5.10 5.29 5.24 5.27 5.21
3 6.82 6.65 6.58 6.87 6.81 6.84 6.80
4 8.29 8.13 8.07 8.45 8.37 8.42 8.38

Table 2. Compressed size (%) by degree of ap-
proximation (D) and fractional size of coefficients
(F) for Chebyshev polynomials and max. error of
3%, fixed degree method.

F\L 10 20 30 40 50 60
0 4.67 – – – – –
1 6.79 5.01 4.29 4.09 3.87 –
2 9.10 6.81 5.94 5.74 5.45 –
3 11.22 8.63 7.59 7.37 7.04 –
4 13.43 10.44 9.23 9.01 8.63 –

Table 3. Compressed size (%) by length of in-
tervals (L) and fractional size of coefficients (F)
for Chebyshev polynomials and max. error of 3%,
fixed length method.

S\D 3 5 7 9 11 13 15
2 2.95 2.99 3.00 3.15 3.20 3.19 3.35
3 4.39 4.44 4.48 4.71 4.71 4.76 4.76
4 5.85 5.92 5.96 6.30 6.26 6.32 6.32
5 7.31 7.39 7.46 7.88 7.82 7.90 7.92

Table 4. Compressed size (%) for different ap-
proximation degrees (D) and coefficient sizes (S)
for Chebyshev polynomials with max. error of 3%,
fixed degree method.

We note that the fixed degree and fixed length
segmentation schemes have parameters whose optimal
choice depend on the application. Certain types of
strokes have their own optimal combination of param-
eters. This becomes especially noticeable when curve
patterns have completely different styles: from straight

line to curly handwriting. Therefore, for our final exper-
iment, we used the adaptive segmentation scheme and
chose stroke-wise approximation parameters for each
input channel separately. Compression packets for each
stroke i took the form

bi; di;λ1; c10, ..., c1di , λ2; c20, ..., c2di ... λD

where bi is the number of bits, di degree, λj initial value
of parameterization of piece j and cj0, cj1, ..., cjdi are
coefficients. This method gives significantly better
compression, as shown in Figure 3(c) and Table 5.
Compression with Chebyshev polynomials for 1% max-
imum error yields 2.6% compressed size, for 2.5%
(sampling error of the device) it yields 1.9% size. A
maximum error of < 2.5% is indistinguishable by a hu-
man and such compression can be accepted as equiva-
lent to lossless for the most of applications in pen-based
computing.

5.4 Comparison with Second Differences
The second differences method yields high compres-

sion for low-resolution devices. Compression for high-
resolution devices is lower, at the same sampling rate,
because of higher variance. A stroke may be repre-
sented by the values of the first two points and a se-
quence of second differences, since xi42 = xi −
2xi−1 + xi−2. We stored these values as binary num-
bers of fixed size, similar to the manner described in
Section 5.3. The size for the first two values was dif-
ferent from the size of second differences. Because the
method is lossless, it was necessary to use a number
of coefficient bits sufficient to store all values exactly.
We then performed gzip encoding on this binary stream
to model the compression algorithm described in [12].
For the handwriting collected with our device (see Sec-
tion 5), this method yields compression to 8.64%.

B\E,% 0.0 0.6 1.1 1.5 2.0 2.5 3.1 3.5
C – 7.50 6.22 5.93 5.26 5.14 4.87 4.65
L – 9.22 6.97 6.32 5.64 5.25 5.20 5.04

L-S – 12.64 11.21 10.19 8.67 8.55 8.26 7.51
42 23.35 – – – – – – –

(a) binary coefficients

B\E,% 0.0 0.6 1.1 1.5 2.0 2.5 3.1 3.5
C – 3.07 2.61 2.31 2.05 1.90 1.80 1.72
L – 3.41 2.86 2.53 2.26 2.08 2.00 1.91

L-S – 9.36 7.27 6.25 5.51 4.98 4.64 4.49
42 8.64 – – – – – – –

(b) binary coefficients, compressed

Table 5. Compressed size (%) for binary repre-
sentation with different pointwise error limits (E)
and bases (B): Chebyshev (C), Legendre (L) and
Legendre-Sobolev (L-S). The lossless second dif-
ference method is shown for comparison (42).

The approach of representing handwriting by orthog-
onal series approximation has an important advantage
other than better compression. It allows to build the
database of handwritten samples and use it almost di-
rectly in recognition algorithms [7] without recomput-
ing the coefficients. It does not restrict classification
method to a specific orthogonal basis, since the basis
can be changed by one matrix multiplication (albeit pos-
sibly with high condition number).

6. Conclusion and Future Work
We have presented an approach to compression of

digital strokes using functional approximation. We have
shown that Chebyshev polynomials give very high com-
pression and allow flexible approximation with desired
accuracy. The compressed format of written samples
serves as a suitable input for the character classification
algorithms [7] and allows to integrate compression and
recognition in a unified efficient infrastructure.

Certain other algorithms may prefer to use Legendre
and Legendre-Sobolev bases as they allow online mo-
ment computation and function recovery [6]. One can
gain the most space advantage by storing compressed
strokes represented by Chebyshev coefficients and con-
verting them to Legendre or Legendre-Sobolev format.

The relationship between the precision of coeffi-
cients in different bases is affected by the condition
number of conversion matrix. For conversion from
Chebyshev to Legendre basis in the range of degrees,
d, of interest, the condition number is approximately
0.15 + 0.73d. The condition number for conversion to
Legendre-Sobolev basis is approximately 3.74d−0.40.

For future work, an interesting topic is to estimate
the relationship between compression and recognition

for different orthogonal bases. Another important as-
pect is to consider different error measures – computing
the Legendre-Sobolev distance allows to estimate qual-
ity of approximation in the first jet space where other
error measures may be more appropriate.

References

[1] I. Al-Jarwan and M. Zemerly. Image compres-
sion using adaptive variable degree variable segment
length Chebyshev polynomials. Springer LNCS,
3540/2005:1196–1207, 2005.

[2] B. W. Char and S. M. Watt. Representing and character-
izing handwritten mathematical symbols through suc-
cinct functional approximation. In Proc. ICDAR, pages
1198–1202. IEEE Computer Society, 2007.

[3] M. Chatterjee. System and method for ink or handwrit-
ing compression. United States Patent No US 6,549,675
B2, April 2003.

[4] J. Ferraiolo, F. Jun, and D. Jackson. Scalable vector
graphics (SVG) 1.1 specification. W3C, January 2003.

[5] O. Golubitsky, V. Mazalov, and S. M. Watt. Orientation-
independent recognition of handwritten characters with
integral invariants. In Proc. Joint Conf. ASCM 2009 and
MACIS 2009, volume 22 of COE Lecture Notes, pages
252–261, Japan, Dec. 2009. Kyushu University.

[6] O. Golubitsky and S. M. Watt. Online stroke model-
ing for handwriting recognition. In Proc. CASCON ’08,
pages 72–80, New York, NY, USA, 2008. ACM.

[7] O. Golubitsky and S. M. Watt. Distance-based classifi-
cation of handwritten symbols. International J. Docu-
ment Analysis and Recognition, 13(2):113–146, 2010.

[8] I. Guyon. Unipen 1.0 Format Definition. AT&T Bell
Laboratories, 1994. http://unipen.nici.ru.
nl/unipen.def.

[9] D. A. Huffman. A method for the construction of
minimum-redundancy codes. In Proceedings of the
I.R.E., pages 1098–1102, September 1952.

[10] H. Levitt and A. Neuman. Evaluation of orthogonal
polynomial compression. Journal of the Acoustical So-
ciety of America, 90(1):241–252, July 1991.

[11] Z. Liu, H. S. Malvar, and Z. Zhang. System and method
for ink or handwriting compression. United States
Patent No US 7,302,106 B2, November 2007.

[12] Microsoft Inc. Ink serialized format specification.
[13] Slate Corporation. Jot - a specification for an ink

storage and interchange format, May 1996. http:
//unipen.nici.kun.nl/jot.html.

[14] S. M. Watt and T. Underhill (editors). Ink markup lan-
guage (InkML). W3C Working Draft, May 2010.

[15] H. Zenkouar and A. Nachit. Images compression using
moments method of orthogonal polynomials. Materials
Science and Engineering B, 49(3):211–215, 1997.

[16] J. Ziv and A. Lempel. A universal algorithm for sequen-
tial data compression. IEEE Transactions on Informa-
tion Theory, 23:337–343, 1977.

