
An Analytic Model for Colluding Processes
Stephen M. Watt

University of Western Ontario
London, Canada

www.csd.uwo.ca/∼watt

Abstract—We develop a quantitative framework in order to
understand how OR parallelism can be used to reduce execution
times. In this model, tasks may either succeed or fail and any
one success completes the problem. We follow Hoare and call
these tasks “colluding”. We model the situation where tasks’
execution times are not known in advance, but instead have
some probability distribution of execution times. We show how
expected serial and parallel execution times can be computed,
and demonstrate how parallel execution can give a lower expected
execution time than any serial order, even on a single processor.
This model can be applied in domains, such as computer algebra,
which use algorithms whose execution times cannot be readily
predicted by examining the inputs.

I. INTRODUCTION

Most of the work in parallel computing has focused on
“AND” parallelism, where a number of tasks must all be per-
formed and their results are assembled to give the final result.
Another form of parallelism that occurs is “OR” parallelism,
where the result of any one of a number of tasks is enough to
solve the overall problem. This later situation may arise when
there are a number of different methods to solve a problem,
when there are a number of different starting points, or a
number of parameter values that may be used. A more general
situation also occurs, where some number of tasks must be
completed, but not all of them. We consider OR parallelism
here.

The most obvious useful setting for OR parallelism is a
multiprocessor with each task allocated to a real processor.
All tasks can run and the first one to complete gives the
result and the others are be terminated. Another, less obvious,
possibility is to run several tasks in parallel on a single
processor and to take the first result. Several authors have
noticed that this can give useful speedups in practice. We
also note that this approach of interleaving computations is
standard in theoretical work where one has to avoid non-
halting computation.

In this article we present a model for analyzing the expected
execution times of parallel computations. This model can be
usefully applied when the running times of the tasks cannot
be determined in advance, but some probability distribution of
running times can be estimated. We show that if the precise
running time of each task is not known in advance, or if
tasks have some possibility of failing, then it can be the
case that running the tasks in parallel on a single processor
gives a smaller expected execution time than running them in
any particular order sequentially. Interestingly, even when the
probability distributions for all of the tasks are identical, it can

be the case that running several in parallel yields a lower ex-
pected execution time than running them sequentially. In order
to best understand the issues that pertain to OR parallelism, we
restrict the investigation to its use on a single processor: How
does running the tasks in parallel on a uniprocessor affect
the execution time? Once this question has been addressed,
then using a multiprocessor to exploit OR parallelism is not
substantially different than using it to

The paper is organized as follows. Section II reviews
the possible relations among parallel processes and draws
attention to the notion of “colluding” processes, capturing the
notion of OR parallelism. Section III presents a probabalistic
model of task execution duration. Section IV introduces time-
sharing into the execution model. Section V models collusion
and Section VI analyzes the expected serial and parallel
execution times for colluding processes. Section VII works
an example to illustrate the concepts. Section VIII shows how
even when all tasks’ execution times have the same probability
distribution, time sharing execution can still be beneficial.
Finally, Section IX concludes the paper.

This work was part of an earlier study [1] that has not
appeared elsewhere in the formal literature. The increased
current interest in parallel computing suggests that the results
may find use today, even though they are now 25 years old.
We present them here with only minimal revision to stand
independently.

II. COLLUDING PROCESSES

Hoare has categorized the relationships between parallel
processes based on the exchange of information between them
[2]. We outline his classification here.

Disjoint processes are completely independent. They do not
communicate and they do not share data. Competing processes
also neither share data nor communicate, however, they do
contend for resources such as disks and line printers. It is
clear that on a uniprocessor these two forms of parallelism
cannot lead to a speed up because the computations that must
be performed for any task are independent of the results
obtained by others. Cooperating processes are allowed to
update common data but are not allowed to read it. Again, with
this type of relationship between processes a certain amount of
work must be done and the use of parallelism cannot possibly
decrease the total execution time.

Communicating processes pass information between one
another. This is done through shared variables which may be
both updated and read or some other sort of message passing.

If several tasks are to be performed, it could be that the
necessity of executing (or even completing, if execution has
commenced) some of the tasks is determined by the results of
other tasks. In this case, the order of execution will influence
the total amount of work that is done. For example, one
process may tell the others that it has “the result” and they
may terminate.

A particular case of this would be processes which follow
alternate strategies for attaining a common goal. Hoare calls
such processes colluding. Colluding processes work together
toward a common goal; when one process succeeds in ac-
complishing that which was desired, all the processes are
terminated. The colluding processes may communicate to
share partial results but aside from this the work spent on
the processes which do not “succeed” is wasted.

We shall call tasks collusive if they may be executed as
colluding processes. If, in performing one of a group of
collusive tasks, the common goal is attained by a particular
task, then we say that task succeeds. If in the execution of
a group of collusive tasks, a task terminates without having
attained the common goal, then we say that task fails.

If colluding processes can be exploited to give a decrease
in computation time, then this fact will be of practical import
only if there are real problems which take advantage of
collusion. Kornfeld has reported timings in which colluding
processes more than doubled the speed in a particular heuristic
search program [3]. We give three broad problem categories
which use collusion in essentially different ways:
• problems in which there are alternate methods for attain-

ing the common goal
• problems for which there are several equally acceptable

solutions
• divide and conquer problems.

We shall discuss each of these classes in turn.

Alternate Methods

In this category, a problem has a single ultimate goal
and there is more than one known method of achieving it.
In many problems it is not possible to determine which
alternate method is the least expensive for given data without
performing a costly analysis. The cost of the analysis may well
outweigh the savings gained from using the most economical
method.

This situation can occur if the operation to be performed
can be done cheaply using special methods for certain types
of input. This is illustrated in the following example.

a) Example: We consider two methods of computing the
GCD of a pair of polynomials, each of which is much cheaper
than the other under particular circumstances.

The first method is a generalization of Euclid’s method
for computing the GCD of integers, the subresultant PRS
algorithm (see, for example, [4]). If the GCD of two poly-
nomials is large, then this method finds it quickly, since only
a few iterations are required. However, if the GCD of the
polynomials is small, then this method becomes extremely
costly due to the exponential growth of intermediate results.

The second method, the EZGCD finds the GCD of related
polynomials in one variable and with coefficients in a finite
field. From this GCD, the GCD of the original polynomials
can be constructed [5]. The cost of this construction depends
on the size of the final GCD — the larger the GCD the greater
the cost.

Comparing these two methods we find the first is less costly
when the GCD is large and the second is less costly when the
GCD is small. We may take advantage of collusion in the
following way: To compute the GCD of two polynomials,
two processes are used — one using each method. When
either of the processes produces the GCD, the goal has been
attained. (On a uniprocessor, it would be desirable for one
of the methods to give up gracefully when it discovered a
problem was not one of its good cases, otherwise the parallel
algorithm could take twice as long as the quicker method.)
�

Alternate Goals

Another class of problems well suited for collusion are those
for which there are equally acceptable different solutions. An
example of this would be to find a divisor of a large integer —
any integer that exactly divides the given number is as good as
any other. A more detailed example is the “satisficing search”
problem which is analyzed later in this chapter.

Divide and Conquer

The divide and conquer approach is to divide a problem into
subproblems, solve the subproblems, and combine the results
[6]. In some divide and conquer algorithms the subproblems
contribute different amounts toward the final solution, depend-
ing on the problem instance. This type of problem can use
collusion in situations where not all the subproblems’ results
are needed to determine the final answer. In cases such as this,
OR parallelism is used in conjunction with AND parallelism.

III. EXECUTION DURATION

The first step in building our mathematical model is to
incorporate the expected execution duration for tasks. Exactly
what do we mean by the “expected” duration? It is clear that
any given program with particular input data will either require
a certain fixed amount of execution time, if it terminates, or it
will require an infinite amount of execution time, if it does not.
However, even when a task is guaranteed to halt, to determine
the exact time needed for execution may be just as costly as
performing the execution in the first place. Therefore, it is
not reasonable to assume that, in practice, the execution time
required can be known prior to performing the task. Rather
than assigning to each task an exact assessment of the required
time, we shall treat it as a random variable, based on the
behavior of the program over many inputs.

Both in theoretical models of computation and in real
machines, computation proceeds in discrete steps. To perform
a serious computation takes very many basic machine oper-
ations. In view of this, we can simplify the calculations that

arise in using our model by taking execution time to be a
continuous, rather than a discrete, variable.

To each task we will assign a probability density for the
execution time. The choice of the density will be based on
the overall behavior of the algorithm for the domain of input.
From this density, we get the expected execution time.

b) Example: Consider the following Pascal procedure:

procedure action(x: real);
var k : integer;
begin

k := trunc(1000 * sin(x)) mod 100;
if k <> 37 then

subaction1(x);
subaction2(x)

end

It can be seen that with uniform random x the routine
subaction1 is called for roughly ninety-nine out of every one
hundred inputs, while the routine subaction2 is always called.
Suppose that the computation of k takes time Tk and that
the routines subaction1 and subaction2 take times T1 and
T2 respectively. Then roughly 1% of the valid inputs will
take time Tk + T2 and the remaining 99% will take time
TK + T1 + T2.

If the inputs to this routine are uniformly distributed in the
input domain, then the probability density for execution time
is

p(t) = .01 δ(Tk + T2 − t) + .99 δ(Tk + T1 + T2 − t) .

Here δ is the Dirac delta function, defined by

δ(x) =
1
2π

∫ ∞

−∞
eikxdk

and having the properties

δ(x− x′) = 0, if x 6= x′∫ a

b

δ(x− x′) dx′ =
{

0, if x < a or b < x
1, if a < x < b

�
As in the above example, it is sometimes possible that the

input domain can easily be seen to be divided into a number
of disjoint subsets where the time required for an instance of
the problem depends only on the subset to which the input
belongs. In fact, for any procedure the input domain may be
partitioned based on the criterion of execution duration; there
exists a partition of the input domain into classes such that
all the elements (i.e. inputs) in a particular class require the
same amount of execution time. As noted before, sufficiently
analyzing a given element of the input domain to determine
this membership may be exactly as costly as performing the
operation. Instead of examining each input, we assign a weight
to each of the classes in the partition. This gives the probability
density for the execution time. The assignment of weights can
be done either theoretically through analysis of the application,
or empirically through simulation or collection of data on
actual usage.

IV. PARALLELISM

There is a broad range of possible degrees of parallelism in
executing processes for a set of tasks on a uniprocessor. At
one extreme, we could execute the tasks completely serially
(no parallelism at all). Another possibility would be to give
all the tasks an equal share of the available processing time
(complete parallelism). In the general case, it must be decided
for each time interval what portion of the processor time each
process should receive. This budgeting of time can be done
either statically, before execution begins, or dynamically, with
the time allotments based on the processes’ dynamic behavior.

For simplicity of the model we shall use static time al-
lotment. We do this by assigning a time allotment function
νi(t), to each task Ti. The function νi(t) has as a value the
amount of processor time that the process for task Ti will
have received after a total time t has passed. Suppose that the
set of tasks to be executed is {T1, ...,Tn}. The νi(t) may be
any non-decreasing functions such that

n∑
i=1

νi(t) ≤ t

and
νi(0) = 0.

We allow the inequality in the definition so that overhead may
be accounted for, if desired. So far, what we have said about
the functions νi(t) allows the time variable to be either discrete
or continuous. We will use a continuous variable for time.
In this case, the derivative ν′i(t) indicates the instantaneous
proportion of the processor time which the process for task
Ti is receiving at time t.

c) Example: If N tasks are all to receive an equal share
of time, then we let

νi(t) =
t

N
, i = 1, ..., N.

�
d) Example: Suppose we have two tasks T1 and T2

which require times T1 and T2 to complete, respectively. If
we execute task T1 and when it is done we execute task T2,
then

ν1(t) = min(t, T1)
ν2(t) = max(0, t − T1) .

�

V. MODELLING COLLUSION

In our model of collusion we start with a set of tasks
{T1,T2, ...,Tn}. The execution of each of the tasks can result
in one of three possibilities:

1) It succeeds; the execution terminates and the remaining
tasks need not be executed (or completed if execution
has commenced).

2) It fails; the execution of the task terminates and the
remaining tasks are unaffected.

3) It does not halt.

To each task Ti we assign two probability density functions,
pi(t) and qi(t). The density pi(t) gives the probability that the
task will succeed when it has consumed a total time t. The
density qi(t) gives the probability that the task Ti will fail
when it has consumed a total time t. If the execution of task
Ti halts, then ∫ ∞

0

[pi(t) + qi(t)] dt = 1.

VI. EXPECTED EXECUTION TIMES

We now develop formulas for the expected completion times
of groups of collusive tasks as we have modelled them. We
first examine the time for serial execution of the tasks and then
the time for parallel execution. After this, examples are given
to compare the expected execution duration of serial versus
parallel computations.

Collusive Tasks Executed Serially

We have a set of N collusive tasks that are to be executed
one after another until one of them succeeds or until they
all have failed. Let the tasks be labelled T1,T2, ...,TN ,
according to the order in which they would be executed if
none were to succeed. Now for each task Ti let pi(t) and
qi(t) denote the probability densities for success and failure,
respectively, as a function of the time consumed by the process
for the task.

We will now derive formulas for the probability densities,
over time, for success of any task or failure of all tasks in the
group. Let p1..m(t) denote the probability that one of the first
m tasks (i.e. T1, ...,Tm) succeeds when a total time t has
been spent on all the tasks together. Let q1..m(t) denote the
probability that the m-th task fails at time t.

By definition, we have

p1..1(t) = p1(t) (1)
q1..1(t) = q1(t) .

One of the first m (m ≥ 2) tasks succeeds at time t if either
(i) one of the first m− 1 of them succeeds at this time or (ii)
all of the first m − 1 tasks fail and the m-th task succeeds
after consuming the remaining time to t. Thus,

p1..m(t) = p1..m−1(t) +
∫ t

0

q1..m−1(t′) pm(t − t′) dt′.

If the m-th task fails at time t, the task Tm−1 must have
failed at some time prior to t. Then task Tm will have failed
after consuming the time remaining to time t. We therefore
have

q1..m(t) =
∫ t

0

q1..m−1(t′) qm(t − t′) dt′. (2)

Taking Laplace transforms of (1) through (2), we obtain the
expressions

p̃1..1(s) = p̃1(s)
q̃1..1(s) = q̃1(s)
p̃1..m(s) = p̃1..m−1(s) + q̃1..m−1(s) · p̃m(s)
q̃1..m(s) = q̃1..m−1(s) · q̃m(s),

where f̃(s) denotes the Laplace transform of f(t). Solving
these recurrences and putting m = N , we have

p̃1..N (s) = p̃1(s) + q̃1(s) · p̃2(s) + · · · (3)
+q̃1(s) · · · q̃N−1(s) · p̃N (s)

=
N∑

i=1

p̃i(s) ·
i−1∏
j=1

q̃j (s)

q̃1..N (s) =
N∏

i=1

q̃i (s). (4)

Taking the inverse transform gives the probability densities for
p1..N (t) and q1..N (t).

The performance of the N collusive tasks will be complete
under either one of two mutually exclusive conditions: (i) one
of them has succeeded or (ii) they have all failed. The expected
execution time is therefore

〈t〉ser =
∫ ∞

0

t [p1..N (t) + q1..N (t)] dt. (5)

e) Example: Suppose we have two tasks, T1 and T2,
with

pi(t) = aiλie
−λi t

qi(t) = (1 − ai)λie
−λi t

for 0 ≤ ai ≤ 1, λi > 0. This gives

p̃i(s) =
λi ai

s + λi

q̃i(s) =
λi(1− ai)

s + λi

so that

p̃1..2(s) =
λ1 a1

s + λ1
+

λ1(1− a1)
s + λ1

· λ2 a2

s + λ2

q̃1..2(s) = λ1λ2
(1− a1)(1− a2)
(s + λ1)(s + λ2)

and

p1..2(t) + q1..2(t) =

a1λ1e
−λ1t − (1− a1) λ1 λ2

e−λ1t − e−λ2t

λ1 − λ2
.

Then the expected execution time is

〈t〉ser =
∫ ∞

0

t [p1..2(t) + q1..2(t)] dt =
1
λ1

+
1− a1

λ2

�

Collusive Tasks Executed In Parallel

Here we have N collusive tasks T1,T2, ...,TN , that are
to be performed in parallel. The execution of these colluding
processes will continue until one of them succeeds or until
all of them have failed. As for the serial case, let pi(t) and
qi(t) denote the probability densities for success and failure
respectively with respect to the amount of time consumed by
the process for task Ti. Let νi(t) denote the time allotment
function for task Ti.

Ignoring the other processes for now, the probability that
the process for task Ti succeeds before a total time t is spent
(on all processes) is given by

Pi(t) =
∫ νi(t)

0

pi(t′) dt′ . (6)

Similarly, ignoring the other processes, the probability that the
process for task Ti fails by time t is

Qi(t) =
∫ νi(t)

0

qi(t′) dt′ . (7)

We now derive formulas for the probability densities for
the success of any process or the failure of all processes. Let
P∗(t) denote the probability of success in any of the processes
by time t and let Q∗(t) denote the probability of failure of all
the processes by time t.

The probability that a success occurs by a given time is
given by

P∗(t) = P1(t) ∪ P2(t) ∪ · · · ∪ PN (t) .

Here, the associative operator ∪ is the inclusive or, defined to
be a + b− ab. That is, if a and b are probabilities, then a ∪ b
is the probability of a or b or both. It is simple to prove

n⋃
i=1

ai = 1−
n∏

i=1

(1− ai)

Therefore the probability density for success at time, t, p∗(t),
is

p∗(t) =
d

dt
P∗(t)

=
d

dt
[1− (1− P1(t)) (1 − P2(t)) · · · (1− PN (t))]

The probability that all tasks have failed by time t is

Q∗(t) = Q1(t) ·Q2(t) · · ·QN (t).

This directly gives us the probability density function for
failure at time t, q∗(t):

q∗(t) =
d

dt
Q∗(t) =

d

dt
[Q1(t) ·Q2(t) · · ·QN (t)] .

The execution of the N colluding processes will be com-
plete if one of the processes succeeds or if all of them
have failed. These two conditions are mutually exclusive. The
probability density for execution completion is p∗(t) + q∗(t).
The expected execution duration is therefore given by

〈t〉par =
∫ ∞

0

t (p∗(t) + q∗(t)) dt (8)

=
∫ ∞

0

t
d

dt
(P∗(t) + Q∗(t)) dt.

Integrating by parts, we obtain the expression

〈t〉par = lim
L→∞

t (P∗(t) + Q∗(t))
∣∣∣∣L
0

−
∫ L

0

(P∗(t)+Q∗(t)) dt.

(9)
f) Example: Suppose again that we have two tasks, T1

and T2, with

pi(t) = ai λi e− λi t qi(t) = (1 − ai) λi e− λi t

for 0 ≤ ai ≤ 1, λ > 0. For both tasks let the time allotment
function be νi(t) = t/2. Then we have

Pi(t) = ai(1− e−λi t/2) Qi(t) = (1− ai) (1− e−λi t/2)

which implies

P∗(t) + Q∗(t) = 1− (1− a1) e−λ2t/2 − (1− a2) e−λ1t/2

+ (1 − a1 − a2) et(λ1+λ2)/2

Using (9), the above expression yields

〈t〉par = 2
[

1− a2

λ1
+

1− a1

λ2
− 1− (a1 + a2)

λ1 + λ2

]
.

�

VII. EXAMPLE: SATISFICING SEARCH

Several types of search problems may be distinguished
based on the aim of the search. In a satisficing search [7]
there is a set of items, a subset of which have some particular
property, and the goal of the search is to find any element
of the set with that property. An example is the search for
a block of storage in a first-fit storage allocation algorithm.
Several classes of satisficing search are treated in the literature.
In this section we model the type of satisficing search in
which the items may be examined in any order. This is known
as unrestricted satisficing search or satisficing search without
order constraints.

We can model satisficing search without order constraints in
the following way: for each element (ei) there is a probability
(pi) that the element has the goal property and there is a
fixed time (ti) required to examine the element. If we have N
elements, then we have the tasks T1...TN of examining the
elements e1, ..., eN , respectively.

From the above description, we see that the density func-
tions for the probabilities of success and of failure with the
i-th task are

pi(t) = pi δ(t − ti) (10)

qi(t) = p̄i δ(t − ti) (11)

where δ is the Dirac delta function and p̄ i = 1− pi.
We now find the expected time for serial and parallel exe-

cution of the tasks T1, ...,TN . Because the time dependence

is given by delta functions, it is quite possible to derive the
expected times using discrete methods. However, to illustrate
the use of the formulas derived in the previous sections we
will use the more general method.

Serial Execution

Taking Laplace transforms of (10) and (11), we obtain

p̃i(s) = pi e− sti q̃i(s) = p̄i e−sti .

Using (3) and (4), we therefore have

p̃1..N (s) = p1e
−st1 + p̄1p2e

−s(t1+t2) + · · ·
+p̄1 · · · p̄N−1pNe−s(t1+···+tN)

q̃1..N (s) = p̄1p̄2 · · · p̄Ne−s(t1+···+tN)

Taking the inverse Laplace transforms we find

p1..N (t) = p1δ(t1 − t) + p̄1p2δ(t1 + t2 − t) + · · ·
+ p̄1 · · · p̄N−1pNδ(t1 + · · ·+ tN − t)

q1..N (t) = p̄1p̄2 · · · p̄Nδ(t1 + · · ·+ tN).

The expected execution time is therefore

〈t〉ser =
∫ ∞

0

t (p1..N (t) + q1..N (t)) dt

= p1t1 + p̄1p2(t1 + t2) + · · ·
+ p̄1 · · · p̄N−1pN (t1 + · · ·+ tN)
+ p̄1 · · · p̄N (t1 + · · ·+ tN)

=
N−1∑
i=1

pi ·
i−1∏
j=1

p̄j ·
i∑

j=1

tj

 +
N−1∏
j=1

p̄j ·
N∑

j=1

tj

Not surprisingly, the expected execution time depends on
the values of the p’s, the t’s, and the order in which the tasks
are executed. If we know the values for the p’s and t’s it is
natural to ask in what order the tasks should be executed to
minimize the expected processing time. This is known as the
least cost testing sequence problem [8].

To solve this problem, consider the effect of exchanging the
order of two tasks,Tk and Tk+1. In the original order we have

〈t〉serk,k+1 = A + ρpk(τ + tk) + ρp̄kpk+1(τ + tk + tk+1) + B,

where

A =
k−1∑
i=1

pi ·
i−1∏
j=1

p̄j ·
i∑

j=1

tj


B =

N−1∑
i=k+2

pi ·
i∏

j=1

p̄j ·
i∑

j=1

tj

 +
N−1∏
j=1

p̄j ·
N∑

j=1

ti

ρ =
k−1∏
i=1

p̄i τ =
k−1∑
i=1

ti.

With the interchange we have

〈t〉serk+1,k
= A+ρpk+1(τ+tk+1)+ρp̄k+1pk(τ+tk+1+tk)+B

Therefore

〈t〉serk,k+1 − 〈t〉serk+1,k
= ρ

[
pk(τ + tk)− pk+1(τ + tk+1)

+ p̄kpk+1(τ + tk + tk+1)

− p̄k+1pk(τ + tk+1 + tk)
]

= ρ [pk+1tk − pktk+1]

This shows that the task with the smaller value of ti/pi should
be executed first. Since any permutation can be obtained from
successive transpositions, the optimal order for sequentially
executing the tasks will be T1,T2, ...,TN when

t1
p1

≤ t2
p2

≤ · · · ≤ tN
pN

.

If any of the ratios are in fact equal, then more than one
ordering is optimal. This solution to the least cost testing
sequence problem has been given by a number of authors,
the earliest apparently being Mitten [9].

Parallel Execution

For simplicity, we shall use the time allotment function
νi(t) = t/N for all processes. This is less than optimal, since
once some of the tasks have failed there is more processor time
available. However, taking advantage of this available time
adds to the complexity of the analysis without significantly
affecting the results.1

We label the tasks in such a way that

t1 ≤ t2 ≤ · · · ≤ tN (12)

Now, using (10) in (6), we find that

Pi(t) =
∫ t/N

0

piδ(u − ti)du = piU(t/N − ti)

where U is the Heaviside unit step function. Similarly, using
(11) in (7), we see

Qi(t) = p̄iU(t/N − ti).

Therefore, we have

P∗(t) = 1− [1− p1U(t/N − t1)] · · · [1− pNU(t/N − tN)]
Q∗(t) = p̄1 · · · p̄NU(t/N − tN),

the latter justified by (12). The expected execution time is

〈t〉par = lim
L→∞

t(P∗(t) + Q∗(t))|L0 −
∫ L

0

(P∗(t) + Q∗(t))dt.

1In particular, we could use a model for time allocation where, after a
process fails, the time formerly allocated to it is split equally amongst the
remaining processes. Call this model M. We give the results for this model
in footnotes for comparison.

When L exceeds NtN , we have

〈t〉par = lim
L →∞

L(1− p̄1 · · · p̄N + p̄1 · · · p̄N)

−
∫ Nt1

0

(1− 1)dt −
∫ Nt2

Nt1

(1− p̄1)dt

−
∫ Nt3

Nt2

(1− p̄1p̄2)dt − · · ·

−
∫ NtN

NtN−1

(1− p̄1 · · · p̄N−1)dt

−
∫ L

NtN

(1− p̄1 · · · p̄N + p̄1 · · · p̄N)dt

= Nt1p1 + Nt2p̄1p2 + · · ·
+NtN p̄1 · · · p̄N−1pN + NtN p̄1 · · · p̄N

This may be written as2

〈t〉par =
N−1∑
i=1

pi ·
i−1∏
j=1

p̄j ·Nti

 +
N−1∏
j=1

p̄j ·NtN (13)

Comparison

We now compare the expected execution duration for serial
and parallel execution of a satisficing search. First, we demon-
strate that a non-optimal ordering of serial execution can have
an expected execution time greater than for parallel execution.
Then we show that the optimal order for serial execution gives
an expected execution time less than for parallel execution.3

We show that a non-optimal ordering of serial execution
may be expected to require more time than a parallel execution
by giving a simple example. Consider the case where N =
2 and t1 = t, t2 = 10t, p1 = p2 = 39/40. The expected
time required for parallel execution is less than 5t/2 while
the expected time for serial execution is greater than 10t if
task T2 is performed before T1.

To show that optimal serial execution is better than parallel
execution, for this problem we assume that the time required
for each task is greater than zero and that each task has
a non-zero probability of success. Let the tasks be labelled
T1,T2, ...,TN so that t1 ≤ t2 ≤ ... ≤ tN . We define the
following notation:

Pk = the expected time to execute T1, ...,Tk in parallel;
S̃k = the expected time to execute T1,T2,T3, ...,Tk seri-

ally and in that order;
S0

k = the expected time to execute T1, ...,Tk serially in an
optimal order.

Since S0
k ≤ S̃k, we have

Pk − S0
k ≥ Pk − S̃k.

Therefore, we can prove PN is greater than S0
N by showing

PN − S̃N > 0. This we do by induction.

2For model M, replace Ntk with
Pk−1

i=1 tj + (N − k + 1)tk in (13).
3Both these results still hold if parallel execution is based on model M.

For the basis of the induction, consider the case when N =
2:

P2 = 2(t1p1 + t2p̄1)
S̃2 = p1t1 + p̄1(t1 + t2).

Subtracting, we find

P2 − S̃2 = p1t1 + p̄1(t2 − t1) > 0.

For the inductive step, we note that

PN =
N

N − 1
PN−1 + Np̄1 · · · p̄N−1(tN − tN−1)

S̃N = S̃N−1 + tN p̄1 · · · p̄N−1

Taking the difference and using (13), we see that

PN − S̃N = (PN−1 − S̃N−1) +
PN−1

N − 1
+ p̄1 · · · p̄N−1

(
(N − 1)tN −NtN−1

)
> (PN−1 − S̃N−1) + p̄1 · · · p̄N−1 tN−1

+ p̄1 · · · p̄N−1 ((N − 1) tN −N tN−1)
= (PN−1 − S̃N−1)

+(N − 1)p̄1 · · · p̄N−1(tN − tN−1).

So, for all N ≥ 2,

PN − S0
N ≥ PN − S̃N > 0.

This completes the proof.

VIII. THE EXISTENCE OF
EXTREMELY COLLUSIVE DENSITIES

In the previous sections we have shown how to determine
the expected times for serial and parallel execution of collusive
tasks running on a uniprocessor. The expressions derived in
these sections are quite general, allowing for each task to
have a distinct probability density. Quite often, however, we
can expect the tasks to share the same probability density,
while maintaining independence. This leads us to consider the
following question:

Given a number of collusive tasks with a common prob-
ability density for execution time, can the expected time for
performing the tasks in parallel be less than the expected time
for performing the tasks serially, even on a uniprocessor?

We define an extremely collusive density to be one for which
the expected time of two tasks using parallel execution on
a single processor is less than for serial execution. In this
section, we show that densities with this property do indeed
exist.

We demonstrate the existence of extremely collusive densi-
ties by explicitly exhibiting an example.

Let us begin with a problem for which N identical tasks
must be performed in the worst case. Call these tasks T1...TN .
With each task, Ti, we associate a probability (pi) that it
may find the solution to the overall problem and a time (ti)
which it would take to do this. We also associate with each
task the time (Ti) that would be required to compute a partial

result if it does not solve the entire problem. For each task, we
assume that Ti > ti. :p. From this description, we see that the
probability distribution functions for success and for “failure”
are, respectively given by

pi(t) = piδ(t − ti) (14)
qi(t) = p̄iδ(t − Ti). (15)

In our analysis we will ignore the time required to determine
the appropriate subproblems and to combine the results. This is
not because the time is necessarily negligible, but because it is
exactly the same regardless of whether the tasks are executed
serially or in parallel.

We now find the expected time for serial and for parallel
execution of the tasks. After this we compare the results for
the special case when the tasks share the same distribution.
Doing this we find that for certain ranges of pi and ti/Ti

these densities are extremely collusive.
g) Serial Execution: The Laplace transforms of (14) and

(15) are

p̃i(s) = pie
−sti q̃i(s) = p̄ie

−sTi .

Using formulas (3) and (4), this gives us

p̃1..N (s) = p1e
−st1 + p̄1p2e

−s(T1+t2) + · · ·
+ p̄1 · · · p̄N−1pNe−s(T1+···+TN−1+tN)

q̃1..N (s) = p̄1 · · · p̄Ne−s(T1+···+TN).

Taking the inverse Laplace transforms yields

p1..N (t) = p1δ(t1 − t) + p̄1p2δ(T1 + t2 − t) + · · ·
+ p̄1 · · · p̄N−1pNδ(T1 + · · ·+ TN−1 + tN − t)

q1..N (t) = p̄1...p̄Nδ(T1 + · · ·+ TN − t).

This gives an expected execution time of

〈t〉ser = p1t1 + p̄1p2(T1 + t2) + · · ·
+ p̄1 · · · p̄N−1pN (T1 + · · ·+ TN−1 + tN)
+ p̄1...p̄N (T1 + · · ·+ TN)

=
N∑

i=1

pi ·
i−1∏
j=1

p̄j ·

tj +
i−1∑
j=1

Tj


+

N∏
j=1

p̄j ·
N∑

j=1

Tj . (16)

As before, it is natural to ask in what order the tasks should
be executed to minimize the expected execution time. Using
a method similar to that employed in section 3.6, we find that
the optimal ordering of the tasks is to have

φ(1) ≤ φ(2) ≤ ... ≤ φ(N),

where

φ(i) = (ti − Ti) +
Ti

pi
.

h) Parallel Execution: Again, for simplicity, we shall use
the time allotment function νi(t) = t/N for all processes.
Then, using (14) and (15) in (6) and (7), we have

Pi(t) = piU(
t

N
− ti)

Qi(t) = p̄iU(
t

N
− Ti)

Without loss of generality, let t1 ≤ t2 ≤ · · · ≤ tN . Also let

TMAX = max(T1, ..., TN).

Then we have

P∗(t) = 1− [1− p1U(
t

N
− t1)] · · · [1− pNU(

t

N
− tN)]

Q∗(t) = p̄1 · · · p̄NU(
t

N
− TMAX).

Assuming L > NTMAX , the expected execution time is

〈t〉par = lim
L→∞

t (P∗(t) + Q∗(t)) |L0

−
∫ L

NTMAX

1 · dt −
∫ NTMAX

NtN

[P∗(t) + Q∗(t)]dt

−
∫ Nt1

0

P∗(t)dt −
∫ Nt2

Nt1

P∗(t)dt − · · ·

−
∫ NtN

NtN−1

P∗(t)dt

= lim
L→∞

L− [1]LNTMAX
− [1− p̄1]

Nt2
Nt1

− · · ·

− [1− p̄1 · · · p̄N−1]NtN

NtN−1

− [1− p̄1 · · · p̄N]NTMAX

NtN

= N t1 p1 + N t2 p̄1 p2 + · · ·
+N tN p̄1 · · · p̄N−1 pN + NTMAX p̄1 · · · p̄N .

This may be expressed as

〈t〉par =
N∑

i=1

pi ·
i−1∏
j=1

p̄j · Nti

 +
N∏

j=1

p̄j · NTMAX .

(17)
i) Comparison: We now compare the expected serial

execution time to the expected parallel execution time for the
special case of this example where

p1 = p2 = · · · = pN = p
t1 = t2 = · · · = tN = t
T1 = T2 = · · · = TN = T.

(18)

We show that even in this special case parallel execution may
have a better expected execution time than serial execution.

Substituting from (18), the formulas (16) and (17) reduce
to

〈t〉ser =
1− p̄N

1− p̄
· [(1− p̄) t + p̄ T]

〈t〉par = N ·
[
(1− p̄N) t + p̄NT

]
.

0.6

12

10

8

4

<t>ser/<t>par

0.2

2

0.8
0

0 10.4

pbar

6

1

0.6

pbar

1

<t>ser/<t>par

1.5

0.8

2

0
0

0.5

0.2 0.4

0.6

0.6

<t>ser/<t>par

0.8

1.2

1

0.2
0

0.4

0 10.80.4

0.2

pbar

Fig. 1. 〈t〉ser/〈t〉par for various values of p̄, N and t/T .

Serial execution of the tasks is expected to take longer than
parallel execution when the ratio

〈t〉ser
〈t〉par

=
1
N

· 1 − p̄N

1− p̄
· (1− p̄) t + p̄ T

(1− p̄N) t + p̄N T

is greater than unity.
Examining this expression, we see that when p approaches

zero, the value of the ratio approaches one and when p is one
the value of the ratio is 1/N , as would be expected. For small

values of t/T , we find that as p increases from zero the value
of the ratio increases from 1, reaches a maximum, decreases
back past 1, and eventually reaches the minimum value of
1/N when p = 1. The cross-over point, where the value of
the ratio is one, may be given in terms of p̄:

p̄ =
(N − 1) t

(N − 1) t + T
+ O (p̄N).

For example, when T = 10t and N ≥ 5, ignoring the O(p̄N)
term gives the value of p correct to within 1%.

Thus when t is small compared to T , the expected par-
allel time is less than the serial time when p̄ is between
0 and ∼ (N − 1)t/[(N − 1)t + T]. When p̄ is between
∼ (N − 1)t/[(N − 1)t + T] and 1, the expected time for
serial execution is the smaller.

To be very explicit, let

p(t) =
1
2
δ(t − 1)

q(t) =
1
2
δ(t − 4).

This is an extremely collusive density. We give graphs to show
the ratio 〈t〉ser/〈t〉par as a function of p̄ for various values of
N and t/T . (See Figure 1.)

IX. CONCLUSION

We have provided a model of OR parallelism that allows
different strategies to be evaluated for expected execution time.
This can be used to determine which tasks to run in parallel
and which to run serially to minimize expected time. This
model has been used to show why parallel execution, even on
a single processor, can be more effective than serial execution.

REFERENCES

[1] S.M. Watt, “Bounded Parallelism in Computer Algebra”, Ph.D. Thesis,
University of Waterloo, 1985.

[2] C.A.R. Hoare, “Parallel Programming: An Axiomatic Approach”, pp.11-
42 in Language Hierarchies and Interfaces, ed. F. L. Bauer and
K. Samelson, Springer-Verlag Lecture Notes in Computer Science No.
46, Berlin (1976).

[3] W.A. Kornfeld, “The Use of Parallelism to Implement a Heuristic
Search”, pp. 575-580 in The Proceedings of the Seventh International
Joint Conference on Artificial Intelligence (IJCAI-81), (August 1981).

[4] W.S. Brown and J.F. Traub, “On Euclid’s Algorithm and the Theory of
Subresultants”, J. ACM 18 (4) pp.505-514 (1971).

[5] J. Moses and D.Y.Y. Yun, “The EZ-GCD Algorithm”, pp. 159-166 in
Proceedings of the A.C.M. Annual Conference, Atlanta (1973).

[6] J.L. Bentley, “Multidimensional Divide and Conquer”, Comm. ACM 23
(4) pp. 214-229 (1980).

[7] H.A. Simon and J.B. Kadane, “Optimal Problem-Solving Search: All-
or-None Solutions”, AI 6 pp. 235-247 (1975).

[8] H.W. Price, “Least-Cost Testing Sequence”, J. Indust. Engineering (July-
August 1959).

[9] L.G. Mitten, “An Analytic Solution to the Least Cost Testing Sequence
Problem”, J. Indust. Engineering p. 17 (January-February 1960).

