Linear Compression of Digital Ink via Point Selection

Vadim Mazalov and Stephen M. Watt
Ontario Research Centre for Computer Algebra
Department of Computer Science
University of Western Ontario
London, Canada
vmazalov@uwo.ca, Stephen.Watt@uwo.ca

Abstract—We present a method to compress digital ink
based on piecewise-linear approximation within a given error
threshold. The objective is to achieve good compression ratio
with very fast execution. The method is especially effective
on types of handwriting that have large portions with nearly
linear parts, e.g. hand drawn geometric objects. We compare
this method with an enhanced version of our earlier func-
tional approximation method, finding the new technique to
give slightly worse compression while performing significantly
faster. This suggests the presented method can be used in
applications where speed of processing is of higher priority
than the compression ratio.

Keywords-digital ink; compression; sandwich algorithm;
functional approximation

I. INTRODUCTION

Handwriting is one of the most common forms of human
expression and, today, in this information era, pen-based
devices are able to capture handwriting in digital form. Ink is
typically represented as a sequence of points sampled from
a traced curve, often taken uniformly in time. Points are
typically given as and y values in a rectangular coordinate
system, (2o, yo), (€1,Y1)s ---s (Tn, Yn), but other coordinates,
such as pressure and angles, may be given as well. The
sampling frequency and spatial resolution of hardware has
been increasing over time, creating opportunities and chal-
lenges for ink processing applications. The opportunities are
associated with the possibility of more detailed analysis,
since a device can capture in high precision variations of
pen movement. On the other hand, such high volumes of
ink data require extra resources for processing and storage.

In this work we address the question of how to preserve
the high precision of a curve, while decreasing the number
of points representing it. In simple terms, this problem is
solved by removing points that do not affect the shape of
the curve significantly, while the error between the original
and the approximating curves remains within a threshold.
The method can be viewed as a dynamic adjustment of the
density of points, depending on the shape of a stroke. More
points are removed from straighter regions than regions with
high curvature. Thus, we would expect geometric drawings
with many lines to compress particularly well.

We have two subproblems that need to be solved:

1) decomposition of digital ink into pieces, suitable for
compression, and
2) compression of the individual pieces.

We present fast, easy to implement solutions to both of
these problems and show experimentally that the technique
yields good compression for handwritten text and even
better compression for hand drawn geometric objects. The
discussed method is most useful for compression of linear
pieces of a curve and can be implemented as a part of a
multipurpose hybrid compression algorithm.

We also implement an enhanced version of the com-
pression method [1], based on functional approximation,
by representing coefficients in a more compact form. We
measure the compression rate and time required to process
the experimental datasets and compare with the performance
of the linear method. While losing in compression, the linear
method is found to perform more than 100x faster.

The paper is organized as follows. Section II gives a few
background comments on existing compression approaches
and on linear approximation. An improvement to the func-
tional approximation method is proposed in Section III. The
linear compression algorithm is explained in Section IV.
Section V presents details about the experimental setting
and the results obtained. Section VI concludes the paper.

II. RELATED WORK

Digital ink compression: A number of digital ink
compression algorithms have been developed to date. One
of the most popular lossless schemes is to use second
differences followed by secondary compression [2]. The
algorithm computes the second order differences of the
data items in each information channel. For X the second
difference is

ATX; = Aif(Xip1 — X)) = Xio — 2Xi 01 + X

As consecutive coordinate values tend to be close, the first
differences will be small, and the second differences smaller
and suitable for an entropy encoding algorithm.

An efficient lossy method was developed in [1]. This was
based on piecewise functional approximation of curves by
truncated orthogonal polynomial series and representation

of the pieces by the approximating series coefficients. The
desired approximation accuracy is achieved by dynamically
changing the degree of approximation and the size of pieces.

Another lossy algorithm was presented in [3], based
on stroke simplification. It suggests to eliminate exces-
sive points, forming a skeleton of the original curve. The
algorithm is based on iterative computation of chordal
deviation — the distance between the original curve and
its approximation. Points with the minimal distance are
removed until the distance becomes larger than a threshold.
A “substantially lossless” method was proposed in [4]. It
allows the compression error’s magnitude to be not greater
than the sampling error’s magnitude. In this approach, the
original curve is split into segments and each segment is
represented by some predefined shape, such as a polygon,
ellipse, rectangle or Bezier curve. It is not mentioned how
to obtain the shapes from a curve and what compression this
approach gives.

Approximation of univariate convex functions: Several
“sandwich” algorithms have been proposed for approxima-
tion of univariate convex functions. For example, see [5]
for a method that requires derivative information along with
the function values, and [6] for an iterative algorithm when
only function values are available. The latter technique can
be briefly described as follows. Consider a convex function
defined on an interval I and some threshold of approxima-
tion error . Approximation on the interval is obtained by
joining its boundary points. Let the approximation error of
the interval I be d; and 6; > J. Then the interval I is split in
subintervals, according to a partitioning rule. The procedure
is repeated until the approximation error becomes less than
¢ for each subinterval. Several partitioning rules are consid-
ered, e.g. the maximal error rule that selects the point located
on the maximal distance to the approximation curve. The
algorithm converges quadratically if certain conditions on
derivatives are satisfied, and linearly under other conditions.

Decomposition of digital curve in inflection-free parts:
Several methods exist for decomposition of digital curves
in segments without inflection, e.g. see [7], [8]. However,
these algorithms are primarily designed for digital images
to extract convex/concave pieces of an object to determine
meaningful parts. In contrast, we are interested in the decom-
position of digital ink. We note that the methods developed
for binary images are in most cases not suitable for our
purpose, since digital ink is represented as a sequence of
points on a curve, rather than as a field of pixels in two
dimensions.

III. ENHANCED COMPRESSION
VIA FUNCTIONAL APPROXIMATION

We propose a way to improve the functional approxima-
tion technique developed in [1]. As mentioned earlier, that
method is based on piecewise approximation of curves by
truncated series in an orthogonal polynomial basis. In [1] we

experimented with Chebyshev, Legendre, Legendre-Sobolev
polynomials and Fourier series and found Chebyshev poly-
nomials to yield the best compression, as expected. In this
work our goal is to improve performance of the method
with Chebyshev polynomials as the orthogonal basis. The
improvement is to be achieved by representing coefficients
in a more compact form.

We consider the adaptive segmentation scheme of [1]. For
each trace, the degree d of the approximation is selected
dynamically. A higher degree provides a more accurate ap-
proximation of a curve, but increases the compressed size. In
the adaptive scheme, the size of coefficients is also selected
for each trace independently. Coefficients are recorded as
floating-point numbers with base 2. The significand and the
exponent are two’s complement binary integers, encoded
in a and p bits respectively. The value of p is fixed, and
the value of a is dynamically adjusted for each stroke. The
following representation of each information channel of a
trace ¢ is proposed:

« Encode the 0 order coefficient in 2a + p bits, since this
coefficient regulates the initial position of the trace and
is typically larger than the rest of the coefficients. This
number of bits is device-dependent.

« Find the coefficient ¢); = max |¢;|,7 = 1..d and encode
it in a + p bits.

« Encode coefficients c;,j = 1..d, as two’s complement

leam]

binary integers r; = in b, bits, where |x]

“J
represents rounding of x to the integer.
Thus, a trace ¢ is recorded as

aidi)\lcwceru...rldi)\QCQOCQM’I”Ql ...’I’Qdi)\D

where a; is the number of bits for encoding the significand;
d; is the degree of approximation; A; is the initial value of
parameterization of a piece j; cjo is the O-order coefficient;
cim = max|cjgl, k=1.d; rj, = dL'"g;‘; , ¢jk is the k-th
coefficient of the j-th piece. This differs from the method
of [1] by having the coefficients c; represented as scalings
rounded to integers rather than as significand-exponent pairs.

IV. THE LINEAR COMPRESSION ALGORITHM

A. Decomposition into inflection-free parts

The method described in [6] is not suitable for digital ink
as originally presented, since it requires parameterization
and segmentation. We develop a method that does not
require parameterization and can be used as the first step
in processing.

Our compression method works with pieces locally curv-
ing in one direction or the other, but not changing back and
forth. To be more precise, the curve should be decomposed
into parts where the second derivative has constant sign, i.e
the normal vector in the Frenet frame is pointing to the same
side of the curve.

Algorithm 1 FormInflectionFreeSegments()

Input: Points — a stream of input points
Output: C' — a list of inflection-free segments

C <« [] {list of inflection-free segments found}
S <[] {current segment being collected }
i < 0 {index of current point without duplication}
while Points.hasNext() do
P < Points.getNext()
if i=0or P # P;_; then
if |S| > 2 then
if P, P = P 0 then
Append the list S to the end of the list C'
Sl
else
Ai <—Angle(i— Q,Pi_l,Pi)—Tr
ABeg < Angle(P;, Po, P) — 7
AEnd < Angle(i— 1,P1,P0) - T
if A; x A;_1 <0
or A; X Agnda < 0 or Apeg X Agna < 0 then
Append the list S to the end of the list C'
S]
end if
end if
Append P; to the end of the list S
1+ 1+1
end if
end if
end while
If S is non-empty, append it to the end of the list C'
return C'

Definition We say that a sequence of points
(z1,y1), (2,Y2), -y (Tn, yn) is an inflection-free segment
if and only if the polygon formed by these points, after
joining (z1,y1) and (z,,y,), is convex.

The property of a convex polygon that every internal angle
is less than or equal to 7 is used in the online decomposition
Algorithm 1. The algorithm, in the body of the while loop,
lists operations performed on each incoming ink point to
obtain a sequence of inflection-free segments. This takes into
account that

o Two points are considered equal, if their coordinates
are equal.

e |P| denotes the number of points in the list P.

. Angle (P, Q, R) is the “oriented” angle between vectors

QP and QR. In other words, Angle(P, Q, R) = 2w —
Angle(R7 Q, P). These angles can be found with the
dot and cross products of given vectors.

o Apeg is the complemenﬂ> the oriented angle made
by the beginning vector PyP; and the last point. Ag,q
is the complement of the oriented angle made by the
ending vector P;_1P; and the first point. A; is the
complement of the oriented angle made by the most
current three points.

o We test for products less than zero to detect changes in

direction of curvature. Two angles in the same direction
will give a positive product (either as + X 4+ or — x —)
and three collinear points will give a zero product.

B. Compression of inflection-free parts

Once the curve is decomposed as a collection of
inflection-free segments, each piece is a subject to compres-
sion. Our compression technique is similar to the sandwich
algorithm proposed in [6]. However, rather than looking
at the lower and upper bounds of a function, we find the
distance between a curve and its approximation. If either the
maximal error ||-||max Or the root mean square error ||+ ||rms
on an interval is greater than the respective thresholds €,ax
Or €5, the curve is split into two parts. Other norms on
the space of curves could be used if desired. The steps are
presented in Algorithm 2, considering that j.first and j.last
are respectively the first and the last points of the interval j.

Definition We write pw(L) for the piecewise linear curve
defined by the list of points L. If two points a and b occur
in a list L, with a preceding b, then we say that [a, b] is an
interval in L. We write L|I for the sublist of L restricted to
the interval I.

The point of division is found with one of the partitioning
rules:
Rule 1: Based on the maximal distance: the decomposition
point is selected based on the distance from the point to the
line that goes through the boundary points of the interval.
Rule 2: Based on the angle formed at the point: if all of
the oriented angles within the segment are less than 7 then
the minimal angle is considered, otherwise (when all of the
angles are greater than 7) the maximal angle is found.

C. Complexity

The decomposition algorithm processes each incoming
point in constant time O(1). There are no additional op-
erations at the last input. It is online, in that after each point
a valid decomposition is maintained.

The best case time complexity of compression of a piece
is O(n). If the splits always divide a segment into two equal
parts, and continue until there is a split at every point, the
cost is O(nlogn). If the splits are made unequally, always
splitting n points as 1 and n — 1, then the cost is O(n?).

D. Correctness

The termination condition of CompressCurve merits at-
tention. If a function satisfies a maxnorm bound on each
element of a partition, then it satisfies the maxnorm over
the union of the parts. For RMS, note that if a domain D
is partitioned as Dy, ..., D,, and \/ZaeD, f(a)/|D;] < e,

then (34cp, -+ uep,)f(@) < (|Di|+:--[Dn|)e so
S wen J(@)/ID] < ¢, and take f(a) = (S(a) — S*(a)).

Algorithm 2 CompressCurve(S, R)

Input: S — a list of points for an inflection-free segment
R — a partitioning rule (rule 1 or 2)

Output: L — a list of points such that
|[PW(S) = pW(L)||max < €max and
|lpw(S) = pw(L)|[rms < €rms

{J is a stack of intervals to be refined.}
J < [Interval with first and last point of S]
L 1]
while J # [] do
j < Pop an interval from J
a < j.first; b < j.last
it [[pw(S]7) — pW(j)llmx > ema
or ||pw(S|j) — pw(j)[rms > €rms then
{Split j according to rule R at some point ¢ in S}
Ji1 < [a,d]
j2 <~ [C, b]
Push j2 and then j; onto the stack J
else
Append a and then b to the end of list L
end if
Remove element j from J
end while
return L

E. Discussion

Binary Encoding of Points: The sequence of points of
a compressed trace can be encoded in binary for compact
representation. Coordinates in our dataset have absolute
value not greater than 2'3 and can be recorded as two’s
complement integers in a sequence of groups of 14 bits.

Drifting of Approximation: The presented compression
method is not suitable for repeated resampling. While the
approximation to each inflection-free segment will lie within
any required error bound, the approximation will lie com-
pletely on one side of the input curve. If the resulting piece-
wise linear function is then resampled and recompressed
repeatedly, systematic drift may occur. To address the issue
of drift under repetitive resampling and recompression, the
line segments could be positioned to cross the original curve
so that the error is equal on both sides of the original.

V. EXPERIMENTS
A. Experimental Setting

The experimental dataset was collected in the Ontario
Research Centre for Computer Algebra with a tablet device
with the following specifications: 2540 dpi resolution, 133
pps data rate, and £.02 sampling error.

Two types of digital ink were collected for the experi-
ments

o Handwriting. Different individuals have provided var-
ious parts of regular English text to ensure variations
in length of strokes and writing styles. From the whole
collection, we randomly selected 46 traces containing,
on average, 51 points each.

o Geometric objects. We collected simple two-
dimensional geometric objects, such as triangles,
rectangles and lines. Then we randomly selected 33
traces containing, on average, 68 points each.

In the experiments, the root mean square error was taken
as a portion of the maximal error €, = %emax. Unlike the
results reported in [1], we look at the absolute, not relative,
approximation error and the binary stream of coefficients
does not undergo further gzip compression. The compressed
size is reported as S./S, where S. is the size of the
compressed dataset and .S, is the size of the original dataset.

The compression algorithms were implemented and run
on Maple 13 on an Intel Core 2 Duo 2.40 GHz CPU
with 2GB RAM, running Ubuntu Linux version 2.6.24-19-

generic.

B. Experimental Results

Optimal values of p and b,: In the experiments we
measure compressed size for different values of approxi-
mation error. Figure 1 shows an original curve and linear
approximation for different maximal error thresholds. From
the figure, one can observe that compressing the curve
with the maximal error of up to 5 has almost no effect
on representation of the curve and can be used in the
applications that do not require high precision of ink, e.g.
recognition.

In the first set of experiments, we look for the optimal
values of p and b,, see Section IIl. With fixed b, = 7,
the value of p was changed and the compressed size was
measured for both datasets. Results for handwriting and
geometric objects are shown in Tables I and II respectively.
The value of p = 4 was found to be the most efficient.

With fixed p = 4, b, was changed to find the optimal
value. The compressed sizes for the datasets of handwriting
and geometric objects are shown in Tables III and IV
respectively. The value of b, = 5 was selected.

Comparison of functional approximation with linear
compression: The compression rate of the linear method
was measured for the two segmentation rules explained in
Section IV-B on both datasets. Figure 2 presents the results
of the functional approximation and linear compression
methods for different values of €. The partitioning rules
show similar performance on the handwriting dataset and
almost identical on geometric objects. As expected, due
to the nature of the linear algorithm, we obtained higher
compression of geometric objects than handwritten text. The
functional approximation method shows similar performance
on both datasets.

The compression time is given in Table V for the dataset
of handwriting and Table VI for geometric objects. The
linear method performs almost instantly, compared to the
compression with higher-order functional approximation.
One can observe a trend of increase of the execution time of

100 10 - | == T wo| =m0 s
; \ ooy \ 1000 ““‘
900 ao0q | \ oood | \
00 ‘ soo] o \ s
o0 \ 0] \ 00 \ 00 N

600 &0 N e

e 1000 110 120 e 1000 10 1200 0 1000 1100 1300 9o

€max = 1 €max = O €max = 10 €max = 15
Figure 1. Approximation of a sample with different error thresholds (dash line) and the original curve (solid line)

Table 1
COMPRESSED SIZE (%) AS A FUNCTION OF THE MAXIMAL ERROR (€max) AND THE NUMBER OF EXPONENT BITS (p) FOR 7 COEFFICIENT BITS (b;)
FOR THE HANDWRITING DATASET

Cmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21.5 14.7 125 11.6 103 196 | 90 [85 | 81 79 176 [73 171 1 69 | 67
4 19.2 13.2 11.3 10.3 9.2 8.7 | 8.1 76 | 73 [7.1 68 | 65 [63 | 62 | 60
19.0 13.6 [11.7 10.8 9.5 89 [B3 [79 [75 73 170167]65] 647162

o8

[

Table IT
COMPRESSED SIZE (%) AS A FUNCTION OF THE MAXIMAL ERROR (€max) AND THE NUMBER OF EXPONENT BITS (p) FOR 7 COEFFICIENT BITS (b;)
FOR THE DATASET OF GEOMETRIC OBJECTS

» Cmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 | 223 172 | 15.0 | 137 12.5 11.7 10.9 105 | 98 | 95 | 89 [87 | 84 [81 | 7.8
4 1 20.6 15.0 13.0 I1.9 10.8 10.0 9.3 9.0 85 [82 [77176 [73 | 71 | 6.8
5 | 218 162 | 13.9 12.8 11.6 | 10.8 9.9 9.6 9.1 86 | 82 | 80 | 7.7 | 74 | 7.1

Table III
COMPRESSED SIZE (%) AS A FUNCTION OF THE MAXIMAL ERROR (€max) AND THE NUMBER OF COEFFICIENT BITS (b;-) FOR 4 EXPONENT BITS (p)
FOR THE HANDWRITING DATASET

b Cmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 20.3 14.6 12.2 11.0 9.7 8.7 8.2 7.5 7.2 7.0 6.6 6.3 6.1 5.9 5.8
5 18.6 13.5 114 10.0 9.0 8.4 7.6 7.2 7.0 6.7 6.5 6.2 6.0 5.8 5.6
6 18.5 13.0 11.1 10.0 8.9 8.3 7.8 7.4 7.0 6.8 6.6 6.3 6.1 5.9 5.8
7 19.2 13.2 11.3 10.3 9.2 8.7 8.1 7.6 73 T1 6.8 6.5 6.3 6.2 6.0
8 19.1 13.6 11.7 10.7 9.6 9.0 8.4 7.9 7.6 7.4 7.1 6.8 6.6 6.5 6.3
Table IV

COMPRESSED SIZE (%) AS A FUNCTION OF THE MAXIMAL ERROR (€max) AND THE NUMBER OF COEFFICIENT BITS (b,-) FOR 4 EXPONENT BITS (p)
FOR THE DATASET OF GEOMETRIC OBJECTS

b, Cmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 19.5 14.6 12.8 11.6 [10.6 9.8 9.1 88 [82 [79 [74 17269] 67163
5 19.5 144 | 124 11.4 10.4 9.7 90 | 87 [80 | 77 | 73 | 7.1 68 | 6.6 | 6.3
6 | 202 14.7 12.6 11.6 10.5 9.9 9.1 88 |83 [79 [75 [73 [71 6.8 | 6.6
7 | 206 | 150 | 13.0 11.9 | 10.8 100 | 93 [90 | 85 [82 | 7.7 [76 | 73 | 7.1 6.8
8 [202 14.7 12.6 11.6 10.5 9.9 9.1 88 [83 | 79 [75 | 73 [7.1 6.8 | 6.6

Table V
TIME (IN SECONDS) FOR COMPRESSION OF THE HANDWRITING DATASET

€max
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L 25 20 21 21 17 17 17 19 18 15 16 15 15 20 16
F 879 1083 1287 1498 1700 1982 2188 2326 2479 2618 2727 2915 3019 3138 3327
Table VI
TIME (IN SECONDS) FOR COMPRESSION OF THE DATASET OF GEOMETRIC OBJECTS
€max
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L 12 10 8 9 8 7 8 8 9 9 9 8 8 9 8
F 1188 1355 1781 2034 2185 2346 2475 2593 2710 2830 2980 3086 3180 3281 3333

25

N X
FECE
> %
3 3
g £ 154
1S) 8 °
© 15

< <

. <
10 . 101 C e
° o o
<
< ° <
o e ° o o LN o R
T T T T T T T T T T T T T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Maximal error Maximal error
Angle — — Distance Angle — — Distance

¢ Enhanced functional approx.

Handwriting

Figure 2.
Rule 2 (based on the angle), and for enhanced functional approximation

the functional approximation technique with the increase of
the error threshold. In fact, the running time is around three
times higher for €,,,x = 15 compared to the execution time
for eax = 1. This growth arises because more combinations
of approximation degree and number of coefficient bits
become suitable for approximation of pieces. Evaluation
of those combinations is computationally intensive and can
require significantly more time for high resolution devices.

VI. CONCLUSION

We have examined two methods for the compression
of digital ink or, more generally, sampled curves in any
dimension. One method selects a subset of the sample points
to give a piecewise linear function that is within a given
tolerance of the original. The second method adapts previous
work based on orthogonal series approximation, representing
the coefficients more efficiently. Our experiments show the
piecewise linear approximation method to perform about
100x faster than the functional approximation algorithm,
but it yields a less compact representation. The proposed
piecewise linear compression technique can be used when
simplicity or speed are important, such as for hardware
implementation and data transmission. On the other hand,
the functional approximation method is suitable for ap-
plications that require compact storage of ink. Depending
on the application and the choice of functional basis, in
this representation certain recognition operations may be
performed without decompression.

¢ Enhanced functional approx

Geometric objects

Compressed size depending on the maximal approximation error for handwriting and geometric objects: for Rule 1 (maximal distance) and

REFERENCES

[1] V. Mazalov and S. M. Watt, “Digital ink compression via
functional approximation.” in ICFHR’10, 2010, pp. 688—694.

[2

—

Ink serialized format specification, Microsoft Inc., 2007.

[3] Z. Liu, H. S. Malvar, and Z. Zhang, “System and method for
ink or handwriting compression,” United States Patent No US
7,302,106 B2, November 2007.

[4

—_

M. Chatterjee, “System and method for ink or handwriting
compression,” United States Patent No US 6,549,675 B2, April
2003.

[5] B. Fruhwirth, R. E. Burkard, and G. Rote, “Approximation of
convex curves with application to the bicriterial minimum cost
flow problem,” European Journal of Operational Research,
vol. 42, pp. 326-338, 1989.

[6] A. Y. D. Siem, D. d. Hertog, and A. L. Hoffmann, “A
method for approximating univariate convex functions using
only function value evaluations,” INFORMS J. on Computing,
vol. 23, pp. 591-604, Oct. 2011.

[7] L Debled-Rennesson, J.-L. Remy, and J. Rouyer-Degli, “Detec-
tion of the discrete convexity of polyominoes,” in Proceedings
of the 9th International Conference on Discrete Geometry for
Computer Imagery, ser. DGCI *00. London, UK: Springer-
Verlag, 2000, pp. 491-504.

[8] H. Dorksen-Reiter and 1. Debled-Rennesson, “Convex and
concave parts of digital curves,” in Geometric Properties
for Incomplete data, R. Klette, R. Kozera, L. Noakes, and
J. Weickert, Eds. Springer Netherlands, 2006, pp. 145-159.

