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Algorithms: The basic methods

● Inferring rudimentary rules
● Statistical modeling
● Constructing decision trees
● Constructing rules
● Association rule learning
● Linear models
● Instance-based learning
● Clustering
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Simplicity first

● Simple algorithms often work very well! 
● There are many kinds of simple structure, eg:

♦ One attribute does all the work
♦ All attributes contribute equally & independently
♦ A weighted linear combination might do
♦ Instance-based: use a few prototypes
♦ Use simple logical rules

● Success of method depends on the domain



4Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Inferring rudimentary rules

● 1R: learns a 1-level decision tree
♦ I.e., rules that all test one particular attribute

● Basic version
♦ One branch for each value
♦ Each branch assigns most frequent class
♦ Error rate: proportion of instances that don’t belong 

to the majority class of their corresponding branch
♦ Choose attribute with lowest error rate

(assumes nominal attributes)



5Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Pseudo-code for 1R

For each attribute,
For each value of the attribute, make a rule as follows:

count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value

Calculate the error rate of the rules
Choose the rules with the smallest error rate

● Note: “missing” is treated as a separate attribute value
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Evaluating the weather attributes

3/6True → No*

5/142/8False → YesWindy

1/7Normal → Yes

4/143/7High →  NoHumidity

5/14

4/14

Total 
errors

1/4Cool →  Yes

2/6Mild →  Yes

2/4Hot → No*Temp

2/5Rainy → Yes

0/4Overcast → Yes

2/5Sunny → NoOutlook

ErrorsRulesAttribute 

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot  Overcast 

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

*  indicates a tie
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Dealing with numeric attributes
● Discretize numeric attributes
● Divide each attribute’s range into intervals

♦ Sort instances according to attribute’s values
♦ Place breakpoints where class changes (majority class)
♦ This minimizes the total error

● Example: temperature from weather data
 64       65       68     69    70       71   72   72       75    75        80      81      83        85
Yes | No | Yes  Yes Yes | No  No Yes | Yes Yes | No | Yes  Yes |  No

……………

YesFalse8075Rainy

YesFalse8683Overcast 

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook
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The problem of overfitting
● This procedure is very sensitive to noise

♦ One instance with an incorrect class label will probably 
produce a separate interval

● Also: time stamp attribute will have zero errors
● Simple solution:

enforce minimum number of instances in majority class 
per interval

● Example (with min = 3):
64        65       68     69    70       71   72   72       75    75        80      81       83       85
Yes | No | Yes  Yes Yes | No  No Yes | Yes Yes | No | Yes  Yes |  No

64        65       68     69    70       71   72   72       75     75       80      81       83       85
Yes   No   Yes  Yes Yes | No  No Yes   Yes Yes | No   Yes  Yes    No
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With overfitting avoidance

● Resulting rule set:

0/1> 95.5 → Yes

3/6True → No*

5/142/8False → YesWindy

2/6> 82.5 and ≤ 95.5 → No

3/141/7≤ 82.5 →  YesHumidity

5/14

4/14

Total errors

2/4> 77.5 →  No*

3/10≤ 77.5  → YesTemperature

2/5Rainy → Yes

0/4Overcast → Yes

2/5Sunny → NoOutlook

ErrorsRulesAttribute 
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Discussion of 1R
● 1R was described in a paper by Holte (1993)

♦ Contains an experimental evaluation on 16 datasets (using 
cross-validation so that results were representative of 
performance on future data)

♦ Minimum number of instances was set to 6 after some 
experimentation

♦ 1R’s simple rules performed not much worse than much 
more complex decision trees

● Simplicity first pays off! 

Very Simple Classification Rules Perform Well on Most Commonly 
Used Datasets
Robert C. Holte, Computer Science Department, University of Ottawa
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Discussion of 1R: Hyperpipes

● Another simple technique: build one rule for each class
♦ Each rule is a conjunction of tests, one for each attribute
♦ For numeric attributes: test checks whether instance's value is 

inside an interval
● Interval given by minimum and maximum observed in 

training data
♦ For nominal attributes: test checks whether value is one of a 

subset of attribute values
● Subset given by all possible values observed in training data

♦ Class with most matching tests is predicted
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Statistical modeling

● “Opposite” of 1R: use all the attributes
● Two assumptions: Attributes are

♦ equally important
♦ statistically independent (given the class value)

● I.e., knowing the value of one attribute says nothing about 
the value of another (if the class is known)

● Independence assumption is never correct!
● But … this scheme works well in practice
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Probabilities for weather data
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?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook● A new day:

Likelihood of the two classes

For “yes” = 2/9 × 3/9 × 3/9 ×  3/9 × 9/14 = 0.0053

For “no” = 3/5 × 1/5 × 4/5 × 3/5 × 5/14 = 0.0206

Conversion into a probability by normalization:

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

Probabilities for weather data
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Bayes’s rule
●Probability of event H given evidence E:
    

●A priori probability of H :
● Probability of event before evidence is seen

●A posteriori probability of H :
● Probability of event after evidence is seen

Thomas Bayes
Born: 1702 in London, England
Died: 1761 in Tunbridge Wells, Kent, England

Pr [H∣E]=Pr [E∣H]Pr [H]
Pr [E]

Pr [H]

Pr [H∣E]
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Naïve Bayes for classification

● Classification learning: what’s the probability of 
the class given an instance? 

♦ Evidence E = instance
♦ Event H = class value for instance

● Naïve assumption: evidence splits into parts (i.e. 
attributes) that are independent

Pr [H∣E]=
Pr [E1∣H]Pr [E2∣H]Pr [En∣H]Pr [H]

Pr [E]
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Weather data example

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook Evidence E

Probability of
class “yes”

Pr [yes∣E]=Pr [Outlook=Sunny∣yes]
×Pr [Temperature=Cool∣yes]
×Pr [Humidity=High∣yes]
×Pr [Windy=True∣yes]

×Pr [yes]
Pr [E]

=

2
9×

3
9×

3
9×

3
9×

9
14

Pr [E]
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The “zero-frequency problem”

● What if an attribute value doesn’t occur with every class 
value?
(e.g. “Humidity = high” for class “yes”)

♦ Probability will be zero!
♦ A posteriori probability will also be zero!

(No matter how likely the other values are!) 
● Remedy: add 1 to the count for every attribute value-class 

combination (Laplace estimator)
● Result: probabilities will never be zero!

(also: stabilizes probability estimates)

Pr [Humidity=High∣yes]=0
Pr [yes∣E]=0
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Modified probability estimates

● In some cases adding a constant different from 1 
might be more appropriate

● Example: attribute outlook for class yes

● Weights don’t need to be equal 
(but they must sum to 1)

Sunny Overcast Rainy

2/3
9

4/3
9

3/3
9

2p1

9
4p2

9
3p3

9
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Missing values
● Training: instance is not included in frequency count for 

attribute value-class combination
● Classification: attribute will be omitted from calculation
● Example:

?TrueHighCool?

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 3/9 × 3/9 ×  3/9 × 9/14 = 0.0238

Likelihood of “no” = 1/5 × 4/5 × 3/5 × 5/14 = 0.0343

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%
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Numeric attributes
● Usual assumption: attributes have a normal or 

Gaussian probability distribution (given the 
class)

● The probability density function for the normal 
distribution is defined by two parameters:
● Sample mean µ 

● Standard deviation σ

● Then the density function f(x) is 

=1
n∑i=1

n

xi

σ=√ 1
n−1∑i=1

n

(xi−μ)
2

f (x)= 1
√2πσ

e
−
(x−μ)2

2σ2
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Statistics for weather data

● Example density value:
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3/5

2/5
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3/9

6/9

3

6
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True

False

True

False

Windy

σ =9.7

µ =86

95,  …

90, 91,

70, 85,

NoYesNoYesNoYes

σ =10.2

µ =79

80,  …

70, 75,

65, 70,

Humidity

σ =7.9

µ =75

85,  …

72,80,

65,71,

σ =6.2

µ =73

72,  …

69, 70,

64, 68,

2/53/9Rainy

Temperature

0/54/9Overcast

3/52/9Sunny

23Rainy

04Overcast

32Sunny

Outlook

f temperature=66∣yes= 1
26.2

e
−
66−732

2⋅6.22

=0.0340
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Classifying a new day

● A new day:

● Missing values during training are not included 
in calculation of mean and standard deviation

?true9066Sunny

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 2/9 × 0.0340 × 0.0221 × 3/9 × 9/14 = 0.000036

Likelihood of “no”  = 3/5 × 0.0221 × 0.0381 × 3/5 × 5/14 = 0.000108

P(“yes”) = 0.000036 / (0.000036 + 0. 000108) = 25%

P(“no”)  = 0.000108 / (0.000036 + 0. 000108) = 75%
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Probability densities

● Relationship between probability and density:

● But: this doesn’t change calculation of a posteriori 
probabilities because ε cancels out

● Exact relationship:

Pr [c−
2
xc 

2
]≈×f c

Pr [axb]=∫
a

b

f tdt
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Multinomial naïve Bayes I
● Version of naïve Bayes used for document classification using 

bag of words model
● n

1
,n

2
, ... , n

k
: number of times word i occurs in document

● P
1
,P

2
, ... , P

k
: probability of obtaining word i when sampling from 

documents in class H
● Probability of observing document E given class H (based on 

multinomial distribution):

● Ignores probability of generating a document of the right length 
(prob. assumed constant for each class)

Pr [E∣H]≈N!×∏
i=1

k Pi
ni

ni!
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Multinomial naïve Bayes II
● Suppose dictionary has two words, yellow and blue
● Suppose Pr[yellow | H] = 75% and Pr[blue | H] = 25%
● Suppose E is the document “blue yellow blue”
● Probability of observing document:

Suppose there is another class H' that has 
Pr[yellow | H'] = 10% and Pr[yellow | H'] = 90%:

● Need to take prior probability of class into account to make final 
classification

● Factorials don't actually need to be computed
● Underflows can be prevented by using logarithms

Pr [{blue yellow blue}∣H]≈3!×0.751

1! ×
0.252

2! =
9
64≈0.14

Pr [{blue yellow blue}∣H']≈3!× 0.11

1! ×
0.92

2! =0.24
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Naïve Bayes: discussion

● Naïve Bayes works surprisingly well (even if independence 
assumption is clearly violated)

● Why? Because classification doesn’t require accurate 
probability estimates as long as maximum probability is 
assigned to correct class

● However: adding too many redundant attributes will cause 
problems (e.g. identical attributes)

● Note also: many numeric attributes are not normally 
distributed (→  kernel density estimators)
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Constructing decision trees

● Strategy: top down
Recursive divide-and-conquer fashion

♦ First: select attribute for root node
Create branch for each possible attribute value

♦ Then: split instances into subsets
One for each branch extending from the node

♦ Finally: repeat recursively for each branch, using only 
instances that reach the branch

● Stop if all instances have the same class
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Which attribute to select?



30Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Which attribute to select?
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Criterion for attribute selection

● Which is the best attribute?
♦ Want to get the smallest tree
♦ Heuristic: choose the attribute that produces the 

“purest” nodes
● Popular impurity criterion: information gain

♦ Information gain increases with the average purity of 
the subsets

● Strategy: choose attribute that gives greatest 
information gain
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Computing information

● Measure information in bits
♦ Given a probability distribution, the info required to 

predict an event is the distribution’s entropy
♦ Entropy gives the information required in bits

(can involve fractions of bits!)
● Formula for computing the entropy:

entropy p1,p2,... ,pn=−p1 logp1−p2 logp2 ...−pn log pn
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Example: attribute Outlook 

● Outlook = Sunny :

● Outlook = Overcast :

● Outlook = Rainy :

● Expected information for attribute:

Note: this
is normally
undefined.

info[2,3]=entropy 2/5,3/5=−2/5log 2/5−3/5log 3/5=0.971bits

info[4,0]=entropy 1,0=−1log 1−0log0=0bits

info[2,3]=entropy 3/5,2 /5=−3/5log 3/5−2/5log 2/5=0.971bits

info[3,2], [4,0] , [3,2]=5/14×0.9714/14×05/14×0.971=0.693bits
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Computing information gain

● Information gain: information before splitting – 
information after splitting

● Information gain for attributes from weather data:

gain(Outlook )       = 0.247 bits
gain(Temperature )       = 0.029 bits
gain(Humidity )       = 0.152 bits
gain(Windy )       = 0.048 bits

gain(Outlook ) = info([9,5]) – info([2,3],[4,0],[3,2])
= 0.940 – 0.693
= 0.247 bits
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Continuing to split

gain(Temperature ) = 0.571 bits
gain(Humidity )      = 0.971 bits
gain(Windy ) = 0.020 bits



36Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Final decision tree

● Note: not all leaves need to be pure; sometimes 
identical instances have different classes

⇒   Splitting stops when data can’t be split any further
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Wishlist for a purity measure

● Properties we require from a purity measure:
♦ When node is pure, measure should be zero
♦ When impurity is maximal (i.e. all classes equally 

likely), measure should be maximal
♦ Measure should obey multistage property (i.e. decisions 

can be made in several stages):

● Entropy is the only function that satisfies all three 
properties!

measure [2,3,4 ]=measure [2,7 ]7/9×measure [3,4]
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Properties of the entropy

● The multistage property:

● Simplification of computation:

● Note: instead of maximizing info gain we could 
just minimize information

entropy p,q,r=entropy p,qrqr×entropy  q
qr , r

qr 

info[2,3,4]=−2/9×log 2/9−3/9×log3/9−4/9×log 4/9

=[−2×log2−3×log3−4×log49×log9]/9
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Highly-branching attributes

● Problematic: attributes with a large number of 
values (extreme case: ID code)

● Subsets are more likely to be pure if there is a 
large number of values

⇒ Information gain is biased towards choosing 
attributes with a large number of values

⇒ This may result in overfitting (selection of an 
attribute that is non-optimal for prediction)

● Another problem: fragmentation
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Weather data with ID code

N

M

L

K

J

I

H

G

F

E

D

C

B

A

ID code

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot  Overcast 

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTemp.Outlook
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Tree stump for ID code attribute

● Entropy of split:

⇒ Information gain is maximal for ID code (namely 
0.940 bits)

infoID code=info[0,1]info[0,1]...info[0,1]=0bits
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Gain ratio

● Gain ratio: a modification of the information gain that 
reduces its bias

● Gain ratio takes number and size of branches into 
account when choosing an attribute

♦ It corrects the information gain by taking the intrinsic 
information of a split into account

● Intrinsic information: entropy of distribution of instances 
into branches (i.e. how much info do we need to tell 
which branch an instance belongs to)
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Computing the gain ratio

● Example: intrinsic information for ID code

● Value of attribute decreases as intrinsic 
information gets larger

● Definition of gain ratio:

● Example:

info[1,1,. ..,1]=14×−1/14×log 1/14=3.807bits

gain_ratioattribute=gainattribute
intrinsic_infoattribute

gain_ratio ID code=0.940bits
3.807bits=0.246



44Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Gain ratios for weather data

0.019Gain ratio: 0.029/1.5570.157Gain ratio: 0.247/1.577

1.557Split info: info([4,6,4])1.577  Split info: info([5,4,5])

0.029Gain: 0.940-0.911 0.247 Gain: 0.940-0.693

0.911Info:0.693Info:

TemperatureOutlook

0.049Gain ratio: 0.048/0.9850.152Gain ratio: 0.152/1

0.985Split info: info([8,6])1.000  Split info: info([7,7])

0.048Gain: 0.940-0.892 0.152Gain: 0.940-0.788

0.892Info:0.788Info:

WindyHumidity
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More on the gain ratio

● “Outlook” still comes out top
● However: “ID code” has greater gain ratio

♦ Standard fix: ad hoc test to prevent splitting on that type of 
attribute

● Problem with gain ratio: it may overcompensate
♦ May choose an attribute just because its intrinsic 

information is very low
♦ Standard fix: only consider attributes with greater than 

average information gain
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Discussion

● Top-down induction of decision trees: ID3, 
algorithm developed by Ross Quinlan

♦ Gain ratio just one modification of this basic algorithm
♦ ⇒   C4.5: deals with numeric attributes, missing values, 

noisy data
● Similar approach: CART
● There are many other attribute selection criteria!

(But little difference in accuracy of result)
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Covering algorithms

● Convert decision tree into a rule set
♦ Straightforward, but rule set overly complex
♦ More effective conversions are not trivial

● Instead, can generate rule set directly
♦ for each class in turn find rule set that covers all 

instances in it
(excluding instances not in the class)

● Called a covering approach:
♦ at each stage a rule is identified that “covers” some 

of the instances
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Example: generating a rule

If x > 1.2
then class = a

If x > 1.2 and y > 2.6
then class = a

If true
then class = a

● Possible rule set for class “b”:

● Could add more rules, get “perfect” rule set

If x ≤ 1.2 then class = b
If x > 1.2 and y ≤ 2.6 then class = b
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Rules vs. trees

Corresponding decision tree:
(produces exactly the same
  predictions)

● But: rule sets can be more perspicuous when decision 
trees suffer from replicated subtrees

● Also: in multiclass situations, covering algorithm 
concentrates on one class at a time whereas decision tree 
learner takes all classes into account
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Simple covering algorithm

● Generates a rule by adding tests that maximize rule’s 
accuracy

● Similar to situation in decision trees: problem of 
selecting an attribute to split on

♦ But: decision tree inducer maximizes overall purity
● Each new test reduces

rule’s coverage:
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Selecting a test

● Goal: maximize accuracy
♦ t  total number of instances covered by rule
♦ p positive examples of the class covered by rule
♦ t – p number of errors made by rule
⇒ Select test that maximizes the ratio p/t

● We are finished when p/t = 1 or the set of 
instances can’t be split any further
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Example: contact lens data

● Rule we seek:
● Possible tests:

4/12Tear production rate = Normal
0/12Tear production rate = Reduced
4/12Astigmatism = yes
0/12Astigmatism = no
1/12Spectacle prescription = Hypermetrope
3/12Spectacle prescription = Myope
1/8Age = Presbyopic
1/8Age = Pre-presbyopic
2/8Age = Young

If ?
    then recommendation = hard



53Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Modified rule and resulting data

● Rule with best test added:

● Instances covered by modified rule:

NoneReducedYesHypermetropePre-presbyopic 
NoneNormalYesHypermetropePre-presbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung 

Recommended 
lenses

Tear production 
rate

AstigmatismSpectacle prescriptionAge

If astigmatism = yes 
    then recommendation = hard
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Further refinement

● Current state:

● Possible tests:

4/6Tear production rate = Normal
0/6Tear production rate = Reduced
1/6Spectacle prescription = Hypermetrope
3/6Spectacle prescription = Myope
1/4Age = Presbyopic
1/4Age = Pre-presbyopic
2/4Age = Young

If astigmatism = yes
    and ? 
  then recommendation = hard
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Modified rule and resulting data

● Rule with best test added:

● Instances covered by modified rule:

NoneNormalYesHypermetropePre-presbyopic
HardNormalYesMyopePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
HardNormalYesMyopeYoung

Recommended 
lenses

Tear production 
rate

AstigmatismSpectacle prescriptionAge

If astigmatism = yes
    and tear production rate = normal 
  then recommendation = hard
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Further refinement
● Current state:

● Possible tests:

● Tie between the first and the fourth test
♦ We choose the one with greater coverage

1/3Spectacle prescription = Hypermetrope
3/3Spectacle prescription = Myope
1/2Age = Presbyopic
1/2Age = Pre-presbyopic
2/2Age = Young

If astigmatism = yes 
  and tear production rate = normal
  and ?
then recommendation = hard
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The result

● Final rule:

● Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

● These two rules cover all “hard lenses”:
♦ Process is repeated with other two classes

If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard
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Pseudo-code for PRISM

For each class C
  Initialize E to the instance set
  While E contains instances in class C
    Create a rule R with an empty left-hand side that predicts class C
    Until R is perfect (or there are no more attributes to use) do
      For each attribute A not mentioned in R, and each value v,
        Consider adding the condition A = v to the left-hand side of R
        Select A and v to maximize the accuracy p/t
          (break ties by choosing the condition with the largest p)
      Add A = v to R
    Remove the instances covered by R from E 
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Rules vs. decision lists

● PRISM with outer loop removed generates a decision 
list for one class

♦ Subsequent rules are designed for rules that are not covered 
by previous rules

♦ But: order doesn’t matter because all rules predict the same 
class

● Outer loop considers all classes separately
♦ No order dependence implied

● Problems: overlapping rules, default rule required
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Separate and conquer

● Methods like PRISM (for dealing with one class) 
are separate-and-conquer algorithms:

♦ First, identify a useful rule
♦ Then, separate out all the instances it covers
♦ Finally, “conquer” the remaining instances

● Difference to divide-and-conquer methods:
♦ Subset covered by rule doesn’t need to be explored 

any further
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Mining association rules

● Naïve method for finding association rules:
♦ Use separate-and-conquer method
♦ Treat every possible combination of attribute values as a 

separate class
● Two problems:

♦ Computational complexity
♦ Resulting number of rules (which would have to be 

pruned on the basis of support and confidence)
● But: we can look for high support rules directly!
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Item sets

● Support: number of instances correctly covered by 
association rule

♦ The same as the number of instances covered by all tests in 
the rule (LHS and RHS!)

● Item: one test/attribute-value pair
● Item set : all items occurring in a rule
● Goal: only rules that exceed pre-defined support

⇒   Do it by finding all item sets with the given minimum 
support and generating rules from them!
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Weather data

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot  Overcast 

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook
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Item sets for weather data

…………

Outlook = Rainy
Temperature = Mild
Windy = False
Play = Yes (2)

Outlook = Sunny
Humidity = High
Windy = False (2)

Outlook = Sunny
Humidity = High (3)

Temperature = Cool (4)

Outlook = Sunny
Temperature = Hot
Humidity = High
Play = No (2)

Outlook = Sunny
Temperature = Hot
Humidity = High (2)

Outlook = Sunny
Temperature = Hot (2)

Outlook = Sunny (5)

Four-item setsThree-item setsTwo-item setsOne-item sets

● In total: 12 one-item sets, 47 two-item sets, 39 
three-item sets, 6 four-item sets and 0 five-item sets 
(with minimum support of two)
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Generating rules from an item set

● Once all item sets with minimum support have been 
generated, we can turn them into rules

● Example:

● Seven (2N-1) potential rules:
Humidity = Normal, Windy = False, Play = Yes (4)

4/4
4/6
4/6
4/7
4/8
4/9

4/12

If Humidity = Normal and Windy = False then Play = Yes
If Humidity = Normal and Play = Yes then Windy = False
If Windy = False and Play = Yes then Humidity = Normal
If Humidity = Normal then Windy = False and Play = Yes
If Windy = False then Humidity = Normal and Play = Yes
If Play = Yes then Humidity = Normal and Windy = False
If True then Humidity = Normal and Windy = False 

and Play = Yes
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Rules for weather data

● Rules with support > 1 and confidence = 100%:

● In total:
  3 rules with support four
  5 with support three
50 with support two

100%2⇒ Humidity=HighOutlook=Sunny Temperature=Hot58
............
100%3⇒ Humidity=NormalTemperature=Cold Play=Yes4
100%4⇒ Play=YesOutlook=Overcast3
100%4⇒ Humidity=NormalTemperature=Cool2
100%4⇒ Play=YesHumidity=Normal Windy=False1

Association rule Conf.Sup.
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Example rules from the same set

● Item set:

● Resulting rules (all with 100% confidence):

due to the following “frequent” item sets:

Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

Temperature = Cool, Windy = False ⇒ Humidity = Normal, Play = Yes
Temperature = Cool, Windy = False, Humidity = Normal ⇒ Play = Yes
Temperature = Cool, Windy = False, Play = Yes ⇒ Humidity = Normal

Temperature = Cool, Windy = False                     (2)
Temperature = Cool, Humidity = Normal, Windy = False  (2)
Temperature = Cool, Windy = False, Play = Yes         (2)
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Generating item sets efficiently

● How can we efficiently find all frequent item sets?
● Finding one-item sets easy
● Idea: use one-item sets to generate two-item sets, two-item 

sets to generate three-item sets, …
♦ If (A B) is frequent item set, then (A) and (B) have to be 

frequent item sets as well!
♦ In general: if X is frequent k-item set, then all (k-1)-item 

subsets of X are also frequent
⇒   Compute k-item set by merging (k-1)-item sets
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Example

● Given: five three-item sets
(A B C), (A B D), (A C D), (A C E), (B C D)

● Lexicographically ordered!
● Candidate four-item sets:

(A B C D)  OK because of (A C D) (B C D)
(A C D E)       Not OK because of (C D E)

● Final check by counting instances in dataset!
● (k –1)-item sets are stored in hash table



70Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Generating rules efficiently

● We are looking for all high-confidence rules
♦ Support of antecedent obtained from hash table
♦ But: brute-force method is (2N-1) 

● Better way: building (c + 1)-consequent rules from c-
consequent ones

♦ Observation: (c + 1)-consequent rule can only hold if all 
corresponding c-consequent rules also hold 

● Resulting algorithm similar to procedure for large 
item sets
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Example

● 1-consequent rules:

Corresponding 2-consequent rule:

● Final check of antecedent against hash table!

If Windy = False and Play = No
then Outlook = Sunny and Humidity = High (2/2)

If Outlook = Sunny and Windy = False and Play = No 
then Humidity = High (2/2)

If Humidity = High and Windy = False and Play = No
then Outlook = Sunny (2/2)
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Association rules: discussion

● Above method makes one pass through the data for each 
different size item set

♦ Other possibility: generate (k+2)-item sets just after (k+1)-item 
sets have been generated

♦ Result: more (k+2)-item sets than necessary will be considered 
but less passes through the data

♦ Makes sense if data too large for main memory
● Practical issue: generating a certain number of rules (e.g. by 

incrementally reducing min. support)
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Other issues

● Standard ARFF format very inefficient for typical 
market basket data

♦ Attributes represent items in a basket and most items are 
usually missing

♦ Data should be represented in sparse format
● Instances are also called transactions
● Confidence is not necessarily the best measure

♦ Example: milk occurs in almost every supermarket 
transaction

♦ Other measures have been devised (e.g. lift) 
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Linear models: linear regression

● Work most naturally with numeric attributes
● Standard technique for numeric prediction

♦ Outcome is linear combination of attributes

● Weights are calculated from the training data
● Predicted value for first training instance a(1)

(assuming each instance is extended with a constant attribute with value 1)

x=w0w1a1w2a2...wk ak

w0a0
1w1a1

1w2a2
1...wk ak

1=∑ j=0
k w j a j

1
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Minimizing the squared error

● Choose k +1 coefficients to minimize the squared error 
on the training data

● Squared error:
●

● Derive coefficients using standard matrix operations
● Can be done if there are more instances than attributes 

(roughly speaking)
● Minimizing the absolute error is more difficult

∑i=1
n xi−∑ j=0

k w ja j
i 2
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Classification

● Any regression technique can be used for classification
♦ Training: perform a regression for each class, setting the 

output to 1 for training instances that belong to class, and 0 
for those that don’t

♦ Prediction: predict class corresponding to model with 
largest output value (membership value)

● For linear regression this is known as multi-response 
linear regression

● Problem: membership values are not in [0,1] range, so 
aren't proper probability estimates
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Linear models: logistic regression

● Builds a linear model for a transformed target 
variable

● Assume we have two classes
● Logistic regression replaces the target

by this target

● Logit transformation maps [0,1] to (-∞ , +∞ )

P[1∣a1,a2, .... ,ak ]

log  P[1∣a1,a2, .... ,ak ]
1−P[1∣a1,a2, ....,ak]


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Logit transformation

● Resulting model: 

Pr [1∣a1,a2, ... ,ak ]=
1

1e−w0−w1a1−...−wk ak
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Example logistic regression model

● Model with w
0
 = 0.5 and w

1
 = 1: 

● Parameters are found from training data using 
maximum likelihood
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Maximum likelihood
● Aim: maximize probability of training data wrt 

parameters
● Can use logarithms of probabilities and maximize log-

likelihood of model:

where the x(i) are either 0 or 1
● Weights w

i
 need to be chosen to maximize log-

likelihood (relatively simple method: iteratively re-
weighted least squares) 

∑i=1
n 1−xi log 1−Pr [1∣a1

i,a2
i ,... ,ak

 i]
xi logPr [1∣a1

 i ,a2
i ,... ,ak

i]
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Multiple classes
● Can perform logistic regression independently 

for each class 
(like multi-response linear regression)

● Problem: probability estimates for different 
classes won't sum to one

● Better: train coupled models by maximizing 
likelihood over all classes

● Alternative that often works well in practice: 
pairwise classification



82Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Pairwise classification
● Idea: build model for each pair of classes, using only 

training data from those classes
● Problem? Have to solve k(k-1)/2 classification problems 

for k-class problem
● Turns out not to be a problem in many cases because 

training sets become small:
♦ Assume data evenly distributed, i.e. 2n/k per learning 

problem for n instances in total
♦ Suppose learning algorithm is linear in n
♦ Then runtime of pairwise classification is proportional 

to (k(k-1)/2)×(2n/k) = (k-1)n
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Linear models are hyperplanes

● Decision boundary for two-class logistic regression is 
where probability equals 0.5:

which occurs when
● Thus logistic regression can only separate data that can be 

separated by a hyperplane
● Multi-response linear regression has the same problem. 

Class 1 is assigned if:

Pr [1∣a1,a2, ... ,ak ]=1/1exp−w0−w1a1−...−wk ak=0.5

−w0−w1a1−...−wk ak=0

w0
1w1

1a1...wk
1akw0

2w1
2 a1...wk

2ak

⇔w0
1−w0

2w1
1−w1

2a1...wk
1−wk

2 ak0
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Linear models: the perceptron
● Don't actually need probability estimates if all we want to do is 

classification
● Different approach: learn separating hyperplane
● Assumption: data is linearly separable
● Algorithm for learning separating hyperplane: perceptron 

learning rule
● Hyperplane: 

where we again assume that there is a constant attribute with 
value 1 (bias)

● If sum is greater than zero we predict the first class, otherwise 
the second class

0=w0a0w1a1w2a2...wk ak
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The algorithm
Set all weights to zero
Until all instances in the training data are classified correctly
  For each instance I in the training data
    If I is classified incorrectly by the perceptron
      If I belongs to the first class add it to the weight vector
      else subtract it from the weight vector

● Why does this work?
Consider situation where instance a pertaining to the first class has 
been added:

This means output for a has increased by:

This number is always positive, thus the hyperplane has moved into the correct 
direction (and we can show output decreases for instances of other class)

w0a0a0w1a1a1w2a2a2...wkakak

a0a0a1a1a2a2...ak ak
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Perceptron as a neural network

Input
layer

Output
layer
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Linear models: Winnow
● Another mistake-driven algorithm for finding a separating 

hyperplane
♦ Assumes binary data (i.e. attribute values are either zero 

or one)
● Difference: multiplicative updates instead of additive updates

♦ Weights are multiplied by a user-specified parameter α > 
1(or its inverse)

● Another difference: user-specified threshold parameter θ 
♦ Predict first class if

w0a0w1a1w2a2...wk ak



88Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The algorithm

● Winnow is very effective in homing in on relevant 
features (it is attribute efficient)

● Can also be used in an on-line setting in which new 
instances arrive continuously 
(like the perceptron algorithm)

while some instances are misclassified
  for each instance a in the training data
    classify a using the current weights
    if the predicted class is incorrect
      if a belongs to the first class
        for each a

i
 that is 1, multiply w

i
 by alpha

        (if a
i
 is 0, leave w

i
 unchanged)

      otherwise
        for each a

i
 that is 1, divide w

i
 by alpha

        (if a
i
 is 0, leave w

i
 unchanged)
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Balanced Winnow
● Winnow doesn't allow negative weights and this can be a drawback in 

some applications
● Balanced Winnow maintains two weight vectors, one for each class:

● Instance is classified as belonging to the first class (of two classes) if:

w0
−w0

− a0w1
−w2

− a1...wk
−wk

− ak

while some instances are misclassified
  for each instance a in the training data
    classify a using the current weights
    if the predicted class is incorrect
      if a belongs to the first class
        for each a

i
 that is 1, multiply w

i
+ by alpha and divide w

i
- by alpha

          (if a
i
 is 0, leave w

i
+ and w

i
- unchanged)

      otherwise
        for each a

i
 that is 1, multiply w

i
- by alpha and divide w

i
+ by alpha

          (if a
i
 is 0, leave w

i
+ and w

i
- unchanged)
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Instance-based learning

● Distance function defines what’s learned
● Most instance-based schemes use Euclidean 

distance:

a(1) and a(2): two instances with k attributes
● Taking the square root is not required when 

comparing distances
● Other popular metric: city-block metric
● Adds differences without squaring them 

a1
1−a1

22a2
1−a2

22...ak
1−ak

22
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Normalization and other issues

● Different attributes are measured on different scales ⇒  
need to be normalized:

vi : the actual value of attribute i
● Nominal attributes: distance either 0 or 1
● Common policy for missing values: assumed to be 

maximally distant (given normalized attributes)

ai=
v i−min v i

max v i−min vi
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Finding nearest neighbors efficiently

● Simplest way of finding nearest neighbour: linear scan of 
the data

♦ Classification takes time proportional to the product of the 
number of instances in training and test sets

● Nearest-neighbor search can be done more efficiently using 
appropriate data structures

● We will discuss two methods that represent training data in 
a tree structure:

                  kD-trees and ball trees
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kD-tree example
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Using kD-trees: example
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More on kD-trees
● Complexity depends on depth of tree, given by logarithm of 

number of nodes
● Amount of backtracking required depends on quality of tree 

(“square” vs. “skinny” nodes)
● How to build a good tree? Need to find good split point and split 

direction
♦ Split direction: direction with greatest variance
♦ Split point: median value along that direction

● Using value closest to mean (rather than median) can be better if 
data is skewed

● Can apply this recursively
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Building trees incrementally
● Big advantage of instance-based learning: classifier can be 

updated incrementally
♦ Just add new training instance!

● Can we do the same with kD-trees?
● Heuristic strategy:

♦ Find leaf node containing new instance
♦ Place instance into leaf if leaf is empty
♦ Otherwise, split leaf according to the longest dimension 

(to preserve squareness)
● Tree should be re-built occasionally (i.e. if depth grows to 

twice the optimum depth)
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Ball trees
● Problem in kD-trees: corners
● Observation: no need to make sure that regions 

don't overlap 
● Can use balls (hyperspheres) instead of 

hyperrectangles
♦ A ball tree organizes the data into a tree of k-

dimensional hyperspheres
♦ Normally allows for a better fit to the data and thus 

more efficient search
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Ball tree example
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Using ball trees
● Nearest-neighbor search is done using the same backtracking 

strategy as in kD-trees
● Ball can be ruled out from consideration if: distance from 

target to ball's center exceeds ball's radius plus current upper 
bound 
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Building ball trees
● Ball trees are built top down (like kD-trees)
● Don't have to continue until leaf balls contain just two points: 

can enforce minimum occupancy 
(same in kD-trees)

● Basic problem: splitting a ball into two
● Simple (linear-time) split selection strategy:

♦ Choose point farthest from ball's center
♦ Choose second point farthest from first one
♦ Assign each point to these two points
♦ Compute cluster centers and radii based on the two subsets to 

get two balls
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Discussion of nearest-neighbor learning

● Often very accurate
● Assumes all attributes are equally important
● Remedy: attribute selection or weights

● Possible remedies against noisy instances:
● Take a majority vote over the k nearest neighbors
● Removing noisy instances from dataset (difficult!)

● Statisticians have used k-NN since early 1950s
● If n →   ∞ and k/n →   0, error approaches minimum

● kD-trees become inefficient when number of attributes is 
too large (approximately > 10)

● Ball trees (which are instances of metric trees) work well 
in higher-dimensional spaces
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More discussion

● Instead of storing all training instances, compress them into 
regions

● Example: hyperpipes (from discussion of 1R)
● Another simple technique (Voting Feature Intervals): 

♦ Construct intervals for each attribute
● Discretize numeric attributes
● Treat each value of a nominal attribute as an “interval”

♦ Count number of times class occurs in interval
♦ Prediction is generated by letting intervals vote (those that contain 

the test instance)
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● Clustering techniques apply when there is no class to be 
predicted

● Aim: divide instances into “natural” groups
● As we've seen clusters can be:

♦ disjoint vs. overlapping
♦ deterministic vs. probabilistic
♦ flat vs. hierarchical

● We'll look at a classic clustering algorithm called k-means
♦ k-means clusters are disjoint, deterministic, and flat

Clustering
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The k-means algorithm

To cluster data into k groups: 
(k is predefined)

0. Choose k cluster centers
♦ e.g. at random

1. Assign instances to clusters
♦ based on distance to cluster centers

2. Compute centroids of clusters
3. Go to step 1

♦ until convergence
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Discussion
● Algorithm minimizes squared distance to cluster centers
● Result can vary significantly

♦ based on initial choice of seeds
● Can get trapped in local minimum

♦ Example:

● To increase chance of finding global optimum: restart with 
different random seeds

● Can we applied recursively with k = 2

instances

initial 
cluster 
centres
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Faster distance calculations
● Can we use kD-trees or ball trees to speed up the 

process? Yes:
♦ First, build tree, which remains static, for all the 

data points
♦ At each node, store number of instances and sum of 

all instances
♦ In each iteration, descend tree and find out which 

cluster each node belongs to
● Can stop descending as soon as we find out that a node 

belongs entirely to a particular cluster
● Use statistics stored at the nodes to compute new 

cluster centers
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Example



108Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Multi-instance learning
● Simplicity-first methodology can be applied to 

multi-instance learning with surprisingly good 
results

● Two simple approaches, both using standard 
single-instance learners:

♦ Manipulate the input to learning
♦ Manipulate the output of learning
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Aggregating the input
● Convert multi-instance problem into single-instance one

♦ Summarize the instances in a bag by computing mean, 
mode, minimum and maximum as new attributes

♦ “Summary” instance retains the class label of its bag
♦ To classify a new bag the same process is used

● Results using summary instances with minimum and 
maximum + support vector machine classifier are 
comparable to special purpose multi-instance learners on 
original drug discovery problem
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Aggregating the output
● Learn a single-instance classifier directly from the original 

instances in each bag
♦ Each instance is given the class of the bag it originates from

● To classify a new bag:
♦ Produce a prediction for each instance in the bag
♦ Aggregate the predictions to produce a prediction for the bag as 

a whole
♦ One approach: treat predictions as votes for the various class 

labels
♦ A problem: bags can contain differing numbers of instances → 

give each instance a weight inversely proportional to the bag's 
size
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Comments on basic methods

● Bayes’ rule stems from his “Essay towards solving a 
problem in the doctrine of chances” (1763)

♦ Difficult bit in general: estimating prior probabilities (easy in the 
case of naïve Bayes)

● Extension of naïve Bayes: Bayesian networks (which we'll 
discuss later)

● Algorithm for association rules is called APRIORI
● Minsky and Papert (1969) showed that linear classifiers 

have limitations, e.g. can’t learn XOR
♦ But: combinations of them can (→   multi-layer neural nets, 

which we'll discuss later)
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