
Data Mining
Practical Machine Learning Tools and Techniques

Slides for Chapter 4 of Data Mining by I. H. Witten, E. Frank and
M. A. Hall

2Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Algorithms: The basic methods

● Inferring rudimentary rules
● Statistical modeling
● Constructing decision trees
● Constructing rules
● Association rule learning
● Linear models
● Instance-based learning
● Clustering

3Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Simplicity first

● Simple algorithms often work very well!
● There are many kinds of simple structure, eg:

♦ One attribute does all the work
♦ All attributes contribute equally & independently
♦ A weighted linear combination might do
♦ Instance-based: use a few prototypes
♦ Use simple logical rules

● Success of method depends on the domain

4Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Inferring rudimentary rules

● 1R: learns a 1-level decision tree
♦ I.e., rules that all test one particular attribute

● Basic version
♦ One branch for each value
♦ Each branch assigns most frequent class
♦ Error rate: proportion of instances that don’t belong

to the majority class of their corresponding branch
♦ Choose attribute with lowest error rate

(assumes nominal attributes)

5Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Pseudo-code for 1R

For each attribute,
For each value of the attribute, make a rule as follows:

count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value

Calculate the error rate of the rules
Choose the rules with the smallest error rate

● Note: “missing” is treated as a separate attribute value

6Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Evaluating the weather attributes

3/6True → No*

5/142/8False → YesWindy

1/7Normal → Yes

4/143/7High → NoHumidity

5/14

4/14

Total
errors

1/4Cool → Yes

2/6Mild → Yes

2/4Hot → No*Temp

2/5Rainy → Yes

0/4Overcast → Yes

2/5Sunny → NoOutlook

ErrorsRulesAttribute

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

* indicates a tie

7Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Dealing with numeric attributes
● Discretize numeric attributes
● Divide each attribute’s range into intervals

♦ Sort instances according to attribute’s values
♦ Place breakpoints where class changes (majority class)
♦ This minimizes the total error

● Example: temperature from weather data
 64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

……………

YesFalse8075Rainy

YesFalse8683Overcast

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook

8Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The problem of overfitting
● This procedure is very sensitive to noise

♦ One instance with an incorrect class label will probably
produce a separate interval

● Also: time stamp attribute will have zero errors
● Simple solution:

enforce minimum number of instances in majority class
per interval

● Example (with min = 3):
64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes | No No Yes Yes Yes | No Yes Yes No

9Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

With overfitting avoidance

● Resulting rule set:

0/1> 95.5 → Yes

3/6True → No*

5/142/8False → YesWindy

2/6> 82.5 and ≤ 95.5 → No

3/141/7≤ 82.5 → YesHumidity

5/14

4/14

Total errors

2/4> 77.5 → No*

3/10≤ 77.5 → YesTemperature

2/5Rainy → Yes

0/4Overcast → Yes

2/5Sunny → NoOutlook

ErrorsRulesAttribute

10Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Discussion of 1R
● 1R was described in a paper by Holte (1993)

♦ Contains an experimental evaluation on 16 datasets (using
cross-validation so that results were representative of
performance on future data)

♦ Minimum number of instances was set to 6 after some
experimentation

♦ 1R’s simple rules performed not much worse than much
more complex decision trees

● Simplicity first pays off!

Very Simple Classification Rules Perform Well on Most Commonly
Used Datasets
Robert C. Holte, Computer Science Department, University of Ottawa

11Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Discussion of 1R: Hyperpipes

● Another simple technique: build one rule for each class
♦ Each rule is a conjunction of tests, one for each attribute
♦ For numeric attributes: test checks whether instance's value is

inside an interval
● Interval given by minimum and maximum observed in

training data
♦ For nominal attributes: test checks whether value is one of a

subset of attribute values
● Subset given by all possible values observed in training data

♦ Class with most matching tests is predicted

12Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Statistical modeling

● “Opposite” of 1R: use all the attributes
● Two assumptions: Attributes are

♦ equally important
♦ statistically independent (given the class value)

● I.e., knowing the value of one attribute says nothing about
the value of another (if the class is known)

● Independence assumption is never correct!
● But … this scheme works well in practice

13Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Probabilities for weather data

 5/
14

5

No

9/
14

9

Yes

Play

3/5

2/5

3

2

No

3/9

6/9

3

6

Yes

True

False

True

False

Windy

1/5

4/5

1

4

NoYesNoYesNoYes

6/9

3/9

6

3

Normal

High

Normal

High

Humidity

1/5

2/5

2/5

1

2

2

3/9

4/9

2/9

3

4

2

Cool2/53/9Rainy

Mild

Hot

Cool

Mild

Hot

Temperature

0/54/9Overcast

3/52/9Sunny

23Rainy

04Overcast

32Sunny

Outlook

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

14Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

5/
14

5

No

9/
14

9

Yes

Play

3/5

2/5

3

2

No

3/9

6/9

3

6

Yes

True

False

True

False

Windy

1/5

4/5

1

4

NoYesNoYesNoYes

6/9

3/9

6

3

Normal

High

Normal

High

Humidity

1/5

2/5

2/5

1

2

2

3/9

4/9

2/9

3

4

2

Cool2/53/9Rainy

Mild

Hot

Cool

Mild

Hot

Temperature

0/54/9Overcast

3/52/9Sunny

23Rainy

04Overcast

32Sunny

Outlook

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook● A new day:

Likelihood of the two classes

For “yes” = 2/9 × 3/9 × 3/9 × 3/9 × 9/14 = 0.0053

For “no” = 3/5 × 1/5 × 4/5 × 3/5 × 5/14 = 0.0206

Conversion into a probability by normalization:

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

Probabilities for weather data

15Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Bayes’s rule
●Probability of event H given evidence E:

●A priori probability of H :
● Probability of event before evidence is seen

●A posteriori probability of H :
● Probability of event after evidence is seen

Thomas Bayes
Born: 1702 in London, England
Died: 1761 in Tunbridge Wells, Kent, England

Pr [H∣E]=Pr [E∣H]Pr [H]
Pr [E]

Pr [H]

Pr [H∣E]

16Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Naïve Bayes for classification

● Classification learning: what’s the probability of
the class given an instance?

♦ Evidence E = instance
♦ Event H = class value for instance

● Naïve assumption: evidence splits into parts (i.e.
attributes) that are independent

Pr [H∣E]=
Pr [E1∣H]Pr [E2∣H]Pr [En∣H]Pr [H]

Pr [E]

17Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Weather data example

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook Evidence E

Probability of
class “yes”

Pr [yes∣E]=Pr [Outlook=Sunny∣yes]
×Pr [Temperature=Cool∣yes]
×Pr [Humidity=High∣yes]
×Pr [Windy=True∣yes]

×Pr [yes]
Pr [E]

=

2
9×

3
9×

3
9×

3
9×

9
14

Pr [E]

18Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The “zero-frequency problem”

● What if an attribute value doesn’t occur with every class
value?
(e.g. “Humidity = high” for class “yes”)

♦ Probability will be zero!
♦ A posteriori probability will also be zero!

(No matter how likely the other values are!)
● Remedy: add 1 to the count for every attribute value-class

combination (Laplace estimator)
● Result: probabilities will never be zero!

(also: stabilizes probability estimates)

Pr [Humidity=High∣yes]=0
Pr [yes∣E]=0

19Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Modified probability estimates

● In some cases adding a constant different from 1
might be more appropriate

● Example: attribute outlook for class yes

● Weights don’t need to be equal
(but they must sum to 1)

Sunny Overcast Rainy

2/3
9

4/3
9

3/3
9

2p1

9
4p2

9
3p3

9

20Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Missing values
● Training: instance is not included in frequency count for

attribute value-class combination
● Classification: attribute will be omitted from calculation
● Example:

?TrueHighCool?

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 3/9 × 3/9 × 3/9 × 9/14 = 0.0238

Likelihood of “no” = 1/5 × 4/5 × 3/5 × 5/14 = 0.0343

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%

21Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Numeric attributes
● Usual assumption: attributes have a normal or

Gaussian probability distribution (given the
class)

● The probability density function for the normal
distribution is defined by two parameters:
● Sample mean µ

● Standard deviation σ

● Then the density function f(x) is

=1
n∑i=1

n

xi

σ=√ 1
n−1∑i=1

n

(xi−μ)
2

f (x)= 1
√2πσ

e
−
(x−μ)2

2σ2

22Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Statistics for weather data

● Example density value:

5/
14

5

No

9/
14

9

Yes

Play

3/5

2/5

3

2

No

3/9

6/9

3

6

Yes

True

False

True

False

Windy

σ =9.7

µ =86

95, …

90, 91,

70, 85,

NoYesNoYesNoYes

σ =10.2

µ =79

80, …

70, 75,

65, 70,

Humidity

σ =7.9

µ =75

85, …

72,80,

65,71,

σ =6.2

µ =73

72, …

69, 70,

64, 68,

2/53/9Rainy

Temperature

0/54/9Overcast

3/52/9Sunny

23Rainy

04Overcast

32Sunny

Outlook

f temperature=66∣yes= 1
26.2

e
−
66−732

2⋅6.22

=0.0340

23Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Classifying a new day

● A new day:

● Missing values during training are not included
in calculation of mean and standard deviation

?true9066Sunny

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 2/9 × 0.0340 × 0.0221 × 3/9 × 9/14 = 0.000036

Likelihood of “no” = 3/5 × 0.0221 × 0.0381 × 3/5 × 5/14 = 0.000108

P(“yes”) = 0.000036 / (0.000036 + 0. 000108) = 25%

P(“no”) = 0.000108 / (0.000036 + 0. 000108) = 75%

24Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Probability densities

● Relationship between probability and density:

● But: this doesn’t change calculation of a posteriori
probabilities because ε cancels out

● Exact relationship:

Pr [c−
2
xc 

2
]≈×f c

Pr [axb]=∫
a

b

f tdt

25Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Multinomial naïve Bayes I
● Version of naïve Bayes used for document classification using

bag of words model
● n

1
,n

2
, ... , n

k
: number of times word i occurs in document

● P
1
,P

2
, ... , P

k
: probability of obtaining word i when sampling from

documents in class H
● Probability of observing document E given class H (based on

multinomial distribution):

● Ignores probability of generating a document of the right length
(prob. assumed constant for each class)

Pr [E∣H]≈N!×∏
i=1

k Pi
ni

ni!

26Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Multinomial naïve Bayes II
● Suppose dictionary has two words, yellow and blue
● Suppose Pr[yellow | H] = 75% and Pr[blue | H] = 25%
● Suppose E is the document “blue yellow blue”
● Probability of observing document:

Suppose there is another class H' that has
Pr[yellow | H'] = 10% and Pr[yellow | H'] = 90%:

● Need to take prior probability of class into account to make final
classification

● Factorials don't actually need to be computed
● Underflows can be prevented by using logarithms

Pr [{blue yellow blue}∣H]≈3!×0.751

1! ×
0.252

2! =
9
64≈0.14

Pr [{blue yellow blue}∣H']≈3!× 0.11

1! ×
0.92

2! =0.24

27Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Naïve Bayes: discussion

● Naïve Bayes works surprisingly well (even if independence
assumption is clearly violated)

● Why? Because classification doesn’t require accurate
probability estimates as long as maximum probability is
assigned to correct class

● However: adding too many redundant attributes will cause
problems (e.g. identical attributes)

● Note also: many numeric attributes are not normally
distributed (→ kernel density estimators)

28Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Constructing decision trees

● Strategy: top down
Recursive divide-and-conquer fashion

♦ First: select attribute for root node
Create branch for each possible attribute value

♦ Then: split instances into subsets
One for each branch extending from the node

♦ Finally: repeat recursively for each branch, using only
instances that reach the branch

● Stop if all instances have the same class

29Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Which attribute to select?

30Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Which attribute to select?

31Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Criterion for attribute selection

● Which is the best attribute?
♦ Want to get the smallest tree
♦ Heuristic: choose the attribute that produces the

“purest” nodes
● Popular impurity criterion: information gain

♦ Information gain increases with the average purity of
the subsets

● Strategy: choose attribute that gives greatest
information gain

32Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Computing information

● Measure information in bits
♦ Given a probability distribution, the info required to

predict an event is the distribution’s entropy
♦ Entropy gives the information required in bits

(can involve fractions of bits!)
● Formula for computing the entropy:

entropy p1,p2,... ,pn=−p1 logp1−p2 logp2 ...−pn log pn

33Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example: attribute Outlook

● Outlook = Sunny :

● Outlook = Overcast :

● Outlook = Rainy :

● Expected information for attribute:

Note: this
is normally
undefined.

info[2,3]=entropy 2/5,3/5=−2/5log 2/5−3/5log 3/5=0.971bits

info[4,0]=entropy 1,0=−1log 1−0log0=0bits

info[2,3]=entropy 3/5,2 /5=−3/5log 3/5−2/5log 2/5=0.971bits

info[3,2], [4,0] , [3,2]=5/14×0.9714/14×05/14×0.971=0.693bits

34Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Computing information gain

● Information gain: information before splitting –
information after splitting

● Information gain for attributes from weather data:

gain(Outlook) = 0.247 bits
gain(Temperature) = 0.029 bits
gain(Humidity) = 0.152 bits
gain(Windy) = 0.048 bits

gain(Outlook) = info([9,5]) – info([2,3],[4,0],[3,2])
= 0.940 – 0.693
= 0.247 bits

35Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Continuing to split

gain(Temperature) = 0.571 bits
gain(Humidity) = 0.971 bits
gain(Windy) = 0.020 bits

36Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Final decision tree

● Note: not all leaves need to be pure; sometimes
identical instances have different classes

⇒ Splitting stops when data can’t be split any further

37Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Wishlist for a purity measure

● Properties we require from a purity measure:
♦ When node is pure, measure should be zero
♦ When impurity is maximal (i.e. all classes equally

likely), measure should be maximal
♦ Measure should obey multistage property (i.e. decisions

can be made in several stages):

● Entropy is the only function that satisfies all three
properties!

measure [2,3,4]=measure [2,7]7/9×measure [3,4]

38Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Properties of the entropy

● The multistage property:

● Simplification of computation:

● Note: instead of maximizing info gain we could
just minimize information

entropy p,q,r=entropy p,qrqr×entropy  q
qr , r

qr 

info[2,3,4]=−2/9×log 2/9−3/9×log3/9−4/9×log 4/9

=[−2×log2−3×log3−4×log49×log9]/9

39Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Highly-branching attributes

● Problematic: attributes with a large number of
values (extreme case: ID code)

● Subsets are more likely to be pure if there is a
large number of values

⇒ Information gain is biased towards choosing
attributes with a large number of values

⇒ This may result in overfitting (selection of an
attribute that is non-optimal for prediction)

● Another problem: fragmentation

40Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Weather data with ID code

N

M

L

K

J

I

H

G

F

E

D

C

B

A

ID code

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTemp.Outlook

41Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Tree stump for ID code attribute

● Entropy of split:

⇒ Information gain is maximal for ID code (namely
0.940 bits)

infoID code=info[0,1]info[0,1]...info[0,1]=0bits

42Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Gain ratio

● Gain ratio: a modification of the information gain that
reduces its bias

● Gain ratio takes number and size of branches into
account when choosing an attribute

♦ It corrects the information gain by taking the intrinsic
information of a split into account

● Intrinsic information: entropy of distribution of instances
into branches (i.e. how much info do we need to tell
which branch an instance belongs to)

43Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Computing the gain ratio

● Example: intrinsic information for ID code

● Value of attribute decreases as intrinsic
information gets larger

● Definition of gain ratio:

● Example:

info[1,1,. ..,1]=14×−1/14×log 1/14=3.807bits

gain_ratioattribute=gainattribute
intrinsic_infoattribute

gain_ratio ID code=0.940bits
3.807bits=0.246

44Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Gain ratios for weather data

0.019Gain ratio: 0.029/1.5570.157Gain ratio: 0.247/1.577

1.557Split info: info([4,6,4])1.577 Split info: info([5,4,5])

0.029Gain: 0.940-0.911 0.247 Gain: 0.940-0.693

0.911Info:0.693Info:

TemperatureOutlook

0.049Gain ratio: 0.048/0.9850.152Gain ratio: 0.152/1

0.985Split info: info([8,6])1.000 Split info: info([7,7])

0.048Gain: 0.940-0.892 0.152Gain: 0.940-0.788

0.892Info:0.788Info:

WindyHumidity

45Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

More on the gain ratio

● “Outlook” still comes out top
● However: “ID code” has greater gain ratio

♦ Standard fix: ad hoc test to prevent splitting on that type of
attribute

● Problem with gain ratio: it may overcompensate
♦ May choose an attribute just because its intrinsic

information is very low
♦ Standard fix: only consider attributes with greater than

average information gain

46Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Discussion

● Top-down induction of decision trees: ID3,
algorithm developed by Ross Quinlan

♦ Gain ratio just one modification of this basic algorithm
♦ ⇒ C4.5: deals with numeric attributes, missing values,

noisy data
● Similar approach: CART
● There are many other attribute selection criteria!

(But little difference in accuracy of result)

47Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Covering algorithms

● Convert decision tree into a rule set
♦ Straightforward, but rule set overly complex
♦ More effective conversions are not trivial

● Instead, can generate rule set directly
♦ for each class in turn find rule set that covers all

instances in it
(excluding instances not in the class)

● Called a covering approach:
♦ at each stage a rule is identified that “covers” some

of the instances

48Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example: generating a rule

If x > 1.2
then class = a

If x > 1.2 and y > 2.6
then class = a

If true
then class = a

● Possible rule set for class “b”:

● Could add more rules, get “perfect” rule set

If x ≤ 1.2 then class = b
If x > 1.2 and y ≤ 2.6 then class = b

49Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Rules vs. trees

Corresponding decision tree:
(produces exactly the same
 predictions)

● But: rule sets can be more perspicuous when decision
trees suffer from replicated subtrees

● Also: in multiclass situations, covering algorithm
concentrates on one class at a time whereas decision tree
learner takes all classes into account

50Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Simple covering algorithm

● Generates a rule by adding tests that maximize rule’s
accuracy

● Similar to situation in decision trees: problem of
selecting an attribute to split on

♦ But: decision tree inducer maximizes overall purity
● Each new test reduces

rule’s coverage:

51Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Selecting a test

● Goal: maximize accuracy
♦ t total number of instances covered by rule
♦ p positive examples of the class covered by rule
♦ t – p number of errors made by rule
⇒ Select test that maximizes the ratio p/t

● We are finished when p/t = 1 or the set of
instances can’t be split any further

52Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example: contact lens data

● Rule we seek:
● Possible tests:

4/12Tear production rate = Normal
0/12Tear production rate = Reduced
4/12Astigmatism = yes
0/12Astigmatism = no
1/12Spectacle prescription = Hypermetrope
3/12Spectacle prescription = Myope
1/8Age = Presbyopic
1/8Age = Pre-presbyopic
2/8Age = Young

If ?
 then recommendation = hard

53Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Modified rule and resulting data

● Rule with best test added:

● Instances covered by modified rule:

NoneReducedYesHypermetropePre-presbyopic
NoneNormalYesHypermetropePre-presbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung

Recommended
lenses

Tear production
rate

AstigmatismSpectacle prescriptionAge

If astigmatism = yes
 then recommendation = hard

54Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Further refinement

● Current state:

● Possible tests:

4/6Tear production rate = Normal
0/6Tear production rate = Reduced
1/6Spectacle prescription = Hypermetrope
3/6Spectacle prescription = Myope
1/4Age = Presbyopic
1/4Age = Pre-presbyopic
2/4Age = Young

If astigmatism = yes
 and ?
 then recommendation = hard

55Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Modified rule and resulting data

● Rule with best test added:

● Instances covered by modified rule:

NoneNormalYesHypermetropePre-presbyopic
HardNormalYesMyopePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
HardNormalYesMyopeYoung

Recommended
lenses

Tear production
rate

AstigmatismSpectacle prescriptionAge

If astigmatism = yes
 and tear production rate = normal
 then recommendation = hard

56Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Further refinement
● Current state:

● Possible tests:

● Tie between the first and the fourth test
♦ We choose the one with greater coverage

1/3Spectacle prescription = Hypermetrope
3/3Spectacle prescription = Myope
1/2Age = Presbyopic
1/2Age = Pre-presbyopic
2/2Age = Young

If astigmatism = yes
 and tear production rate = normal
 and ?
then recommendation = hard

57Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The result

● Final rule:

● Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

● These two rules cover all “hard lenses”:
♦ Process is repeated with other two classes

If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

58Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Pseudo-code for PRISM

For each class C
 Initialize E to the instance set
 While E contains instances in class C
 Create a rule R with an empty left-hand side that predicts class C
 Until R is perfect (or there are no more attributes to use) do
 For each attribute A not mentioned in R, and each value v,
 Consider adding the condition A = v to the left-hand side of R
 Select A and v to maximize the accuracy p/t
 (break ties by choosing the condition with the largest p)
 Add A = v to R
 Remove the instances covered by R from E

59Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Rules vs. decision lists

● PRISM with outer loop removed generates a decision
list for one class

♦ Subsequent rules are designed for rules that are not covered
by previous rules

♦ But: order doesn’t matter because all rules predict the same
class

● Outer loop considers all classes separately
♦ No order dependence implied

● Problems: overlapping rules, default rule required

60Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Separate and conquer

● Methods like PRISM (for dealing with one class)
are separate-and-conquer algorithms:

♦ First, identify a useful rule
♦ Then, separate out all the instances it covers
♦ Finally, “conquer” the remaining instances

● Difference to divide-and-conquer methods:
♦ Subset covered by rule doesn’t need to be explored

any further

61Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Mining association rules

● Naïve method for finding association rules:
♦ Use separate-and-conquer method
♦ Treat every possible combination of attribute values as a

separate class
● Two problems:

♦ Computational complexity
♦ Resulting number of rules (which would have to be

pruned on the basis of support and confidence)
● But: we can look for high support rules directly!

62Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Item sets

● Support: number of instances correctly covered by
association rule

♦ The same as the number of instances covered by all tests in
the rule (LHS and RHS!)

● Item: one test/attribute-value pair
● Item set : all items occurring in a rule
● Goal: only rules that exceed pre-defined support

⇒ Do it by finding all item sets with the given minimum
support and generating rules from them!

63Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Weather data

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

64Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Item sets for weather data

…………

Outlook = Rainy
Temperature = Mild
Windy = False
Play = Yes (2)

Outlook = Sunny
Humidity = High
Windy = False (2)

Outlook = Sunny
Humidity = High (3)

Temperature = Cool (4)

Outlook = Sunny
Temperature = Hot
Humidity = High
Play = No (2)

Outlook = Sunny
Temperature = Hot
Humidity = High (2)

Outlook = Sunny
Temperature = Hot (2)

Outlook = Sunny (5)

Four-item setsThree-item setsTwo-item setsOne-item sets

● In total: 12 one-item sets, 47 two-item sets, 39
three-item sets, 6 four-item sets and 0 five-item sets
(with minimum support of two)

65Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Generating rules from an item set

● Once all item sets with minimum support have been
generated, we can turn them into rules

● Example:

● Seven (2N-1) potential rules:
Humidity = Normal, Windy = False, Play = Yes (4)

4/4
4/6
4/6
4/7
4/8
4/9

4/12

If Humidity = Normal and Windy = False then Play = Yes
If Humidity = Normal and Play = Yes then Windy = False
If Windy = False and Play = Yes then Humidity = Normal
If Humidity = Normal then Windy = False and Play = Yes
If Windy = False then Humidity = Normal and Play = Yes
If Play = Yes then Humidity = Normal and Windy = False
If True then Humidity = Normal and Windy = False

and Play = Yes

66Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Rules for weather data

● Rules with support > 1 and confidence = 100%:

● In total:
 3 rules with support four
 5 with support three
50 with support two

100%2⇒ Humidity=HighOutlook=Sunny Temperature=Hot58
............
100%3⇒ Humidity=NormalTemperature=Cold Play=Yes4
100%4⇒ Play=YesOutlook=Overcast3
100%4⇒ Humidity=NormalTemperature=Cool2
100%4⇒ Play=YesHumidity=Normal Windy=False1

Association rule Conf.Sup.

67Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example rules from the same set

● Item set:

● Resulting rules (all with 100% confidence):

due to the following “frequent” item sets:

Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

Temperature = Cool, Windy = False ⇒ Humidity = Normal, Play = Yes
Temperature = Cool, Windy = False, Humidity = Normal ⇒ Play = Yes
Temperature = Cool, Windy = False, Play = Yes ⇒ Humidity = Normal

Temperature = Cool, Windy = False (2)
Temperature = Cool, Humidity = Normal, Windy = False (2)
Temperature = Cool, Windy = False, Play = Yes (2)

68Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Generating item sets efficiently

● How can we efficiently find all frequent item sets?
● Finding one-item sets easy
● Idea: use one-item sets to generate two-item sets, two-item

sets to generate three-item sets, …
♦ If (A B) is frequent item set, then (A) and (B) have to be

frequent item sets as well!
♦ In general: if X is frequent k-item set, then all (k-1)-item

subsets of X are also frequent
⇒ Compute k-item set by merging (k-1)-item sets

69Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example

● Given: five three-item sets
(A B C), (A B D), (A C D), (A C E), (B C D)

● Lexicographically ordered!
● Candidate four-item sets:

(A B C D) OK because of (A C D) (B C D)
(A C D E) Not OK because of (C D E)

● Final check by counting instances in dataset!
● (k –1)-item sets are stored in hash table

70Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Generating rules efficiently

● We are looking for all high-confidence rules
♦ Support of antecedent obtained from hash table
♦ But: brute-force method is (2N-1)

● Better way: building (c + 1)-consequent rules from c-
consequent ones

♦ Observation: (c + 1)-consequent rule can only hold if all
corresponding c-consequent rules also hold

● Resulting algorithm similar to procedure for large
item sets

71Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example

● 1-consequent rules:

Corresponding 2-consequent rule:

● Final check of antecedent against hash table!

If Windy = False and Play = No
then Outlook = Sunny and Humidity = High (2/2)

If Outlook = Sunny and Windy = False and Play = No
then Humidity = High (2/2)

If Humidity = High and Windy = False and Play = No
then Outlook = Sunny (2/2)

72Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Association rules: discussion

● Above method makes one pass through the data for each
different size item set

♦ Other possibility: generate (k+2)-item sets just after (k+1)-item
sets have been generated

♦ Result: more (k+2)-item sets than necessary will be considered
but less passes through the data

♦ Makes sense if data too large for main memory
● Practical issue: generating a certain number of rules (e.g. by

incrementally reducing min. support)

73Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Other issues

● Standard ARFF format very inefficient for typical
market basket data

♦ Attributes represent items in a basket and most items are
usually missing

♦ Data should be represented in sparse format
● Instances are also called transactions
● Confidence is not necessarily the best measure

♦ Example: milk occurs in almost every supermarket
transaction

♦ Other measures have been devised (e.g. lift)

74Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Linear models: linear regression

● Work most naturally with numeric attributes
● Standard technique for numeric prediction

♦ Outcome is linear combination of attributes

● Weights are calculated from the training data
● Predicted value for first training instance a(1)

(assuming each instance is extended with a constant attribute with value 1)

x=w0w1a1w2a2...wk ak

w0a0
1w1a1

1w2a2
1...wk ak

1=∑ j=0
k w j a j

1

75Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Minimizing the squared error

● Choose k +1 coefficients to minimize the squared error
on the training data

● Squared error:
●

● Derive coefficients using standard matrix operations
● Can be done if there are more instances than attributes

(roughly speaking)
● Minimizing the absolute error is more difficult

∑i=1
n xi−∑ j=0

k w ja j
i 2

76Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Classification

● Any regression technique can be used for classification
♦ Training: perform a regression for each class, setting the

output to 1 for training instances that belong to class, and 0
for those that don’t

♦ Prediction: predict class corresponding to model with
largest output value (membership value)

● For linear regression this is known as multi-response
linear regression

● Problem: membership values are not in [0,1] range, so
aren't proper probability estimates

77Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Linear models: logistic regression

● Builds a linear model for a transformed target
variable

● Assume we have two classes
● Logistic regression replaces the target

by this target

● Logit transformation maps [0,1] to (-∞ , +∞)

P[1∣a1,a2, ,ak]

log  P[1∣a1,a2, ,ak]
1−P[1∣a1,a2,,ak]



78Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Logit transformation

● Resulting model:

Pr [1∣a1,a2, ... ,ak]=
1

1e−w0−w1a1−...−wk ak

79Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example logistic regression model

● Model with w
0
 = 0.5 and w

1
 = 1:

● Parameters are found from training data using
maximum likelihood

80Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Maximum likelihood
● Aim: maximize probability of training data wrt

parameters
● Can use logarithms of probabilities and maximize log-

likelihood of model:

where the x(i) are either 0 or 1
● Weights w

i
 need to be chosen to maximize log-

likelihood (relatively simple method: iteratively re-
weighted least squares)

∑i=1
n 1−xi log 1−Pr [1∣a1

i,a2
i ,... ,ak

 i]
xi logPr [1∣a1

 i ,a2
i ,... ,ak

i]

81Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Multiple classes
● Can perform logistic regression independently

for each class
(like multi-response linear regression)

● Problem: probability estimates for different
classes won't sum to one

● Better: train coupled models by maximizing
likelihood over all classes

● Alternative that often works well in practice:
pairwise classification

82Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Pairwise classification
● Idea: build model for each pair of classes, using only

training data from those classes
● Problem? Have to solve k(k-1)/2 classification problems

for k-class problem
● Turns out not to be a problem in many cases because

training sets become small:
♦ Assume data evenly distributed, i.e. 2n/k per learning

problem for n instances in total
♦ Suppose learning algorithm is linear in n
♦ Then runtime of pairwise classification is proportional

to (k(k-1)/2)×(2n/k) = (k-1)n

83Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Linear models are hyperplanes

● Decision boundary for two-class logistic regression is
where probability equals 0.5:

which occurs when
● Thus logistic regression can only separate data that can be

separated by a hyperplane
● Multi-response linear regression has the same problem.

Class 1 is assigned if:

Pr [1∣a1,a2, ... ,ak]=1/1exp−w0−w1a1−...−wk ak=0.5

−w0−w1a1−...−wk ak=0

w0
1w1

1a1...wk
1akw0

2w1
2 a1...wk

2ak

⇔w0
1−w0

2w1
1−w1

2a1...wk
1−wk

2 ak0

84Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Linear models: the perceptron
● Don't actually need probability estimates if all we want to do is

classification
● Different approach: learn separating hyperplane
● Assumption: data is linearly separable
● Algorithm for learning separating hyperplane: perceptron

learning rule
● Hyperplane:

where we again assume that there is a constant attribute with
value 1 (bias)

● If sum is greater than zero we predict the first class, otherwise
the second class

0=w0a0w1a1w2a2...wk ak

85Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The algorithm
Set all weights to zero
Until all instances in the training data are classified correctly
 For each instance I in the training data
 If I is classified incorrectly by the perceptron
 If I belongs to the first class add it to the weight vector
 else subtract it from the weight vector

● Why does this work?
Consider situation where instance a pertaining to the first class has
been added:

This means output for a has increased by:

This number is always positive, thus the hyperplane has moved into the correct
direction (and we can show output decreases for instances of other class)

w0a0a0w1a1a1w2a2a2...wkakak

a0a0a1a1a2a2...ak ak

86Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Perceptron as a neural network

Input
layer

Output
layer

87Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Linear models: Winnow
● Another mistake-driven algorithm for finding a separating

hyperplane
♦ Assumes binary data (i.e. attribute values are either zero

or one)
● Difference: multiplicative updates instead of additive updates

♦ Weights are multiplied by a user-specified parameter α >
1(or its inverse)

● Another difference: user-specified threshold parameter θ
♦ Predict first class if

w0a0w1a1w2a2...wk ak

88Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The algorithm

● Winnow is very effective in homing in on relevant
features (it is attribute efficient)

● Can also be used in an on-line setting in which new
instances arrive continuously
(like the perceptron algorithm)

while some instances are misclassified
 for each instance a in the training data
 classify a using the current weights
 if the predicted class is incorrect
 if a belongs to the first class
 for each a

i
 that is 1, multiply w

i
 by alpha

 (if a
i
 is 0, leave w

i
 unchanged)

 otherwise
 for each a

i
 that is 1, divide w

i
 by alpha

 (if a
i
 is 0, leave w

i
 unchanged)

89Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Balanced Winnow
● Winnow doesn't allow negative weights and this can be a drawback in

some applications
● Balanced Winnow maintains two weight vectors, one for each class:

● Instance is classified as belonging to the first class (of two classes) if:

w0
−w0

− a0w1
−w2

− a1...wk
−wk

− ak

while some instances are misclassified
 for each instance a in the training data
 classify a using the current weights
 if the predicted class is incorrect
 if a belongs to the first class
 for each a

i
 that is 1, multiply w

i
+ by alpha and divide w

i
- by alpha

 (if a
i
 is 0, leave w

i
+ and w

i
- unchanged)

 otherwise
 for each a

i
 that is 1, multiply w

i
- by alpha and divide w

i
+ by alpha

 (if a
i
 is 0, leave w

i
+ and w

i
- unchanged)

90Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Instance-based learning

● Distance function defines what’s learned
● Most instance-based schemes use Euclidean

distance:

a(1) and a(2): two instances with k attributes
● Taking the square root is not required when

comparing distances
● Other popular metric: city-block metric
● Adds differences without squaring them

a1
1−a1

22a2
1−a2

22...ak
1−ak

22

91Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Normalization and other issues

● Different attributes are measured on different scales ⇒
need to be normalized:

vi : the actual value of attribute i
● Nominal attributes: distance either 0 or 1
● Common policy for missing values: assumed to be

maximally distant (given normalized attributes)

ai=
v i−min v i

max v i−min vi

92Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Finding nearest neighbors efficiently

● Simplest way of finding nearest neighbour: linear scan of
the data

♦ Classification takes time proportional to the product of the
number of instances in training and test sets

● Nearest-neighbor search can be done more efficiently using
appropriate data structures

● We will discuss two methods that represent training data in
a tree structure:

 kD-trees and ball trees

93Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

kD-tree example

94Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Using kD-trees: example

95Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

More on kD-trees
● Complexity depends on depth of tree, given by logarithm of

number of nodes
● Amount of backtracking required depends on quality of tree

(“square” vs. “skinny” nodes)
● How to build a good tree? Need to find good split point and split

direction
♦ Split direction: direction with greatest variance
♦ Split point: median value along that direction

● Using value closest to mean (rather than median) can be better if
data is skewed

● Can apply this recursively

96Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Building trees incrementally
● Big advantage of instance-based learning: classifier can be

updated incrementally
♦ Just add new training instance!

● Can we do the same with kD-trees?
● Heuristic strategy:

♦ Find leaf node containing new instance
♦ Place instance into leaf if leaf is empty
♦ Otherwise, split leaf according to the longest dimension

(to preserve squareness)
● Tree should be re-built occasionally (i.e. if depth grows to

twice the optimum depth)

97Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Ball trees
● Problem in kD-trees: corners
● Observation: no need to make sure that regions

don't overlap
● Can use balls (hyperspheres) instead of

hyperrectangles
♦ A ball tree organizes the data into a tree of k-

dimensional hyperspheres
♦ Normally allows for a better fit to the data and thus

more efficient search

98Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Ball tree example

99Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Using ball trees
● Nearest-neighbor search is done using the same backtracking

strategy as in kD-trees
● Ball can be ruled out from consideration if: distance from

target to ball's center exceeds ball's radius plus current upper
bound

100Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Building ball trees
● Ball trees are built top down (like kD-trees)
● Don't have to continue until leaf balls contain just two points:

can enforce minimum occupancy
(same in kD-trees)

● Basic problem: splitting a ball into two
● Simple (linear-time) split selection strategy:

♦ Choose point farthest from ball's center
♦ Choose second point farthest from first one
♦ Assign each point to these two points
♦ Compute cluster centers and radii based on the two subsets to

get two balls

101Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Discussion of nearest-neighbor learning

● Often very accurate
● Assumes all attributes are equally important
● Remedy: attribute selection or weights

● Possible remedies against noisy instances:
● Take a majority vote over the k nearest neighbors
● Removing noisy instances from dataset (difficult!)

● Statisticians have used k-NN since early 1950s
● If n → ∞ and k/n → 0, error approaches minimum

● kD-trees become inefficient when number of attributes is
too large (approximately > 10)

● Ball trees (which are instances of metric trees) work well
in higher-dimensional spaces

102Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

More discussion

● Instead of storing all training instances, compress them into
regions

● Example: hyperpipes (from discussion of 1R)
● Another simple technique (Voting Feature Intervals):

♦ Construct intervals for each attribute
● Discretize numeric attributes
● Treat each value of a nominal attribute as an “interval”

♦ Count number of times class occurs in interval
♦ Prediction is generated by letting intervals vote (those that contain

the test instance)

103Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

● Clustering techniques apply when there is no class to be
predicted

● Aim: divide instances into “natural” groups
● As we've seen clusters can be:

♦ disjoint vs. overlapping
♦ deterministic vs. probabilistic
♦ flat vs. hierarchical

● We'll look at a classic clustering algorithm called k-means
♦ k-means clusters are disjoint, deterministic, and flat

Clustering

104Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

The k-means algorithm

To cluster data into k groups:
(k is predefined)

0. Choose k cluster centers
♦ e.g. at random

1. Assign instances to clusters
♦ based on distance to cluster centers

2. Compute centroids of clusters
3. Go to step 1

♦ until convergence

105Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Discussion
● Algorithm minimizes squared distance to cluster centers
● Result can vary significantly

♦ based on initial choice of seeds
● Can get trapped in local minimum

♦ Example:

● To increase chance of finding global optimum: restart with
different random seeds

● Can we applied recursively with k = 2

instances

initial
cluster
centres

106Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Faster distance calculations
● Can we use kD-trees or ball trees to speed up the

process? Yes:
♦ First, build tree, which remains static, for all the

data points
♦ At each node, store number of instances and sum of

all instances
♦ In each iteration, descend tree and find out which

cluster each node belongs to
● Can stop descending as soon as we find out that a node

belongs entirely to a particular cluster
● Use statistics stored at the nodes to compute new

cluster centers

107Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example

108Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Multi-instance learning
● Simplicity-first methodology can be applied to

multi-instance learning with surprisingly good
results

● Two simple approaches, both using standard
single-instance learners:

♦ Manipulate the input to learning
♦ Manipulate the output of learning

109Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Aggregating the input
● Convert multi-instance problem into single-instance one

♦ Summarize the instances in a bag by computing mean,
mode, minimum and maximum as new attributes

♦ “Summary” instance retains the class label of its bag
♦ To classify a new bag the same process is used

● Results using summary instances with minimum and
maximum + support vector machine classifier are
comparable to special purpose multi-instance learners on
original drug discovery problem

110Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Aggregating the output
● Learn a single-instance classifier directly from the original

instances in each bag
♦ Each instance is given the class of the bag it originates from

● To classify a new bag:
♦ Produce a prediction for each instance in the bag
♦ Aggregate the predictions to produce a prediction for the bag as

a whole
♦ One approach: treat predictions as votes for the various class

labels
♦ A problem: bags can contain differing numbers of instances →

give each instance a weight inversely proportional to the bag's
size

111Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Comments on basic methods

● Bayes’ rule stems from his “Essay towards solving a
problem in the doctrine of chances” (1763)

♦ Difficult bit in general: estimating prior probabilities (easy in the
case of naïve Bayes)

● Extension of naïve Bayes: Bayesian networks (which we'll
discuss later)

● Algorithm for association rules is called APRIORI
● Minsky and Papert (1969) showed that linear classifiers

have limitations, e.g. can’t learn XOR
♦ But: combinations of them can (→ multi-layer neural nets,

which we'll discuss later)

	Slide 1
	Algorithms: The basic methods
	Simplicity first
	Inferring rudimentary rules
	Pseudo-code for 1R
	Evaluating the weather attributes
	Dealing with numeric attributes
	The problem of overfitting
	With overfitting avoidance
	Discussion of 1R
	Slide 11
	Statistical modeling
	Probabilities for weather data
	Slide 14
	Bayes’s rule
	Naïve Bayes for classification
	Weather data example
	The “zero-frequency problem”
	Modified probability estimates
	Missing values
	Numeric attributes
	Statistics for weather data
	Classifying a new day
	Probability densities
	Slide 25
	Slide 26
	Naïve Bayes: discussion
	Constructing decision trees
	Which attribute to select?
	Slide 30
	Criterion for attribute selection
	Computing information
	Example: attribute Outlook
	Computing information gain
	Continuing to split
	Final decision tree
	Wishlist for a purity measure
	Properties of the entropy
	Highly-branching attributes
	Weather data with ID code
	Tree stump for ID code attribute
	Gain ratio
	Computing the gain ratio
	Gain ratios for weather data
	More on the gain ratio
	Discussion
	Covering algorithms
	Example: generating a rule
	Rules vs. trees
	Simple covering algorithm
	Selecting a test
	Example: contact lens data
	Modified rule and resulting data
	Further refinement
	Slide 55
	Slide 56
	The result
	Pseudo-code for PRISM
	Rules vs. decision lists
	Separate and conquer
	Mining association rules
	Item sets
	Item sets for weather data
	Slide 64
	Generating rules from an item set
	Rules for weather data
	Example rules from the same set
	Generating item sets efficiently
	Example
	Generating rules efficiently
	Slide 71
	Association rules: discussion
	Other issues
	Linear models
	Minimizing the squared error
	Classification
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Instance-based learning
	Normalization and other issues
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Discussion of 1-NN
	Slide 102
	Slide 103
	The k-means algorithm
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Comments on basic methods

