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Abstract 
In medical diagnosis doctors must often determine what 
medical tests (e.g., X-ray, blood tests) should be ordered for 
a patient to minimize the total cost of medical tests and 
misdiagnosis.  In this paper, we design cost-sensitive 
machine learning algorithms to model this learning and 
diagnosis process. Medical tests are like attributes in 
machine learning whose values may be obtained at cost 
(attribute cost), and misdiagnoses are like misclassifications 
which may also incur a cost (misclassification cost). We 
first propose an improved decision tree learning algorithm 
that minimizes the sum of attribute costs and 
misclassification costs. Then we design several novel “test 
strategies” that may request to obtain values of unknown 
attributes at cost (similar to doctors’ ordering of medical 
tests at cost) in order to minimize the total cost for test 
examples (new patients). We empirically evaluate and 
compare these test strategies, and show that they are 
effective and that they outperform previous methods. A case 
study on heart disease is given. 

Introduction   
Inductive learning techniques have had great success in 
building classifiers and classifying test examples into 
classes with a high accuracy or low error rate. However, in 
many real-world applications, reducing misclassification 
errors is not the final objective, since different error can 
cost quite differently. This type of learning is called cost-
sensitive learning. (Turney 2002) surveys a whole range of 
costs in cost-sensitive learning, among which two types of 
costs are most important: misclassification costs and 
attribute costs. For example, in a binary classification task, 
the cost of false positive (FP) and the cost of false negative 
(FN) are often very different. In addition, attributes 
(similar to medical tests) may have different costs, and 
acquiring values of attributes may also incur costs. The 
goal of learning in this paper is to minimize the sum of the 
misclassification costs and the attribute costs.   
 Tasks involving both misclassification and attribute 
costs are abundant in real-world applications. In medical 
diagnosis, medical tests are like attributes in machine 
learning whose values may be obtained at cost (attribute 
cost), and misdiagnoses are like misclassifications which 
may also bear a cost (misclassification cost). When 
building a classification model for medical diagnosis from 
the training data, we must consider both the attribute costs 
(medical tests such as blood tests) and misclassification 
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costs (errors in the diagnosis). Further, when a doctor sees 
a new patient (a test example), additional medical tests 
may be ordered at cost to better diagnose or predict the 
disease of the patient (i.e., reducing the misclassification 
cost). We use the term “test strategy” to describe a process 
that allows the learning algorithm to obtain attribute values 
at cost when classifying test examples. The goal of the test 
strategies in this paper is to minimize the sum of attribute 
costs and misclassification costs, similar to doctors’ goal to 
minimize the total cost to the patients (or the whole 
medical system). A case study on heart disease is given in 
the paper. 
 In this paper, we first propose an improved decision tree 
learning that minimizes the sum of misclassification costs 
and attribute costs. We then describe several novel test 
strategies to determine what values of unknown attributes 
should be obtained, and at what order, such that the total 
expected cost is minimum. Extensive experiments have 
been conducted to show the effectiveness of our tree 
building algorithms and the new test strategies compared 
to previous methods.  

Review of Previous Work 
(Gorry and  Barnett 1968) suggested a “myopic approach” 
to request more information during decision making, but 
the method focuses only on prediction accuracy; there is 
no cost involved in getting the information. Cost-sensitive 
learning has received extensive attentions in recent years. 
Much work has been done in considering non-uniform 
misclassification costs (alone), such as (Elkan 2001). 
Those works can often be used to solve problem of 
learning with imbalanced datasets (Blake and Merz 1998). 
Some previous work, such as (Nunez, 1991, Tan 1993), 
considers the attribute costs alone without incorporating 
misclassification costs. As pointed out by (Turney 2000) it 
is obviously an oversight. As far as we know, the only 
work considering both misclassification and attribute costs 
includes (Turney 1995, Zubek and Dietterich 2002, 
Greiner et al. 2002, Ling et al. 2004, Chai et al. 2004). We 
discuss these works in detail below.  
 In (Zubek and Dieterrich 2002), the cost-sensitive 
learning problem is cast as a Markov Decision Process 
(MDP). They adopt an optimal search strategy, which may 
incur a high computational cost.  In contrast, we adopt the 
local search similar to C4.5 (Quinlan 1993), which is very 
efficient. (Greiner et al. 2002) studied the theoretical 
aspects of active learning with attribute costs using a PAC 
learning framework, which models how to use a budget to 
collect the relevant information for the real-world 



applications with no actual data at beginning. (Turney 
1995) presents a system called ICET, which uses a genetic 
algorithm to build a decision tree to minimize the cost of 
tests and misclassifications. Our algorithm is expected to 
be more efficient than Turney’s genetic algorithm. 
 (Chai et al. 2004) proposed a naïve Bayesian based cost-
sensitive learning algorithm, called CSNB, which reduces 
the total cost of attributes and misclassifications. Their test 
strategies are quite simple. We propose an improved 
decision tree algorithm that uses minimum total cost of 
tests and misclassifications as the attribute split criterion. 
We also incorporate discounts in attribute costs when tests 
are performed together. Most important, we propose a 
novel single batch strategy and a Multiple Batch strategy 
that, as far as we know, have not been published 
previously. Experiments show that our tree-based test 
strategies outperform naïve Bayes strategies in terms of the 
total cost in many cases (see later sections). 
 Our work is also significantly different from the 
previous work in attribute value acquisition. (Melville et 
al., 2004; 2005) proposed attribute value acquisition 
during training, instead of testing as in our paper. Their 
algorithm is sequential in nature in requesting the missing 
values, instead of in batches. In addition, their goal is to 
reduce misclassification errors, not the total cost as in our 
paper.  

Minimum Cost-Sensitive Decision Trees 
We assume that we are given a set of training data, the 
misclassification costs, and test costs for each attribute. 
(Ling et al, 2004) propose a new cost-sensitive decision 
tree algorithm that uses a new splitting criterion of cost 
reduction on training data, instead of minimal entropy (as 
in C4.5), to build decision trees. The cost-sensitive 
decision tree is similar to C4.5 (Quinlan, 1993), except that 
it uses total cost reduction, instead of entropy reduction, as 
the attribute split criterion. More specifically, the total cost 
before and after splitting on an attribute can be calculated, 
and the difference is the cost reduction “produced” by this 
attribute. The total cost before split is simply the 
misclassification cost of the set of examples. The total cost 
after split on an attribute is the sum of misclassification 
cost of subsets of examples split by the attribute values, 
plus the attribute cost of these examples.  The attribute 
with the maximal positive cost reduction is chosen as the 
root, and the procedure recursively applies to the subsets 
of examples split by the attribute values.  
 We improve (Ling et al, 2004)’s algorithm by 
incorporating possible discounts when obtaining values of 
a group of attributes with missing values in the tree 
building algorithm. This is a special case of conditional 
attribute costs (Turney 1995), which allows attribute costs 
to vary with the choice of prior tests. Often medical tests 
are not performed independently, and when certain 
medical tests are performed together, it is cheaper to do 
these tests in group than individually. For example, if both 
tests are blood tests, it would be cheaper to do both tests 
together than individually. In our case we assume that 

attributes can be partitioned into groups, and each group 
has a particular discount amount. When the first attribute 
in a group is requested for testing, the attribute cost is its 
original cost. However, if any additional attributes in the 
same group are requested for their values, their costs 
would be the original costs minus the discounted cost. In 
implementing the cost-sensitive decision-tree building 
process, if an attribute in a group is selected as a split 
attribute, the costs of other attributes in the group are 
simultaneously reduced by the discount amount for the 
future tree-building process. As the attribute costs are 
discounted, the tests in the same group would more likely 
be picked as the next node in the future tree building.  

A Case Study on Heart Disease 
We apply our cost-sensitive decision-tree learning on a 
real application example that involves the diagnosis of the 
Heart Disease, where the attribute costs are obtained from 
medical experts and insurance programs. The dataset was 
used in the cost-sensitive genetic algorithm by (Turney 
1995). The learning problem is to predict the coronary 
artery disease from the 13 non-invasive tests on patients, as 
listed in Table 1. The attributes on patients profile, such 
age, sex, etc., are also regarded as “tests” with a very low 
cost (such as $1) to obtain their values. The costs of the 13 
non-invasive tests are in Canadian dollars ($), and were 
obtained from the Ontario Health Insurance Program's fee 
schedule (Turney 1995). These individual tests and their 
costs are also listed in Table 1. Tests such as exang, 
oldpeak, and slope are electrocardiography results when 
the patient runs on a treadmill, and are usually performed 
as a group. Tests done in a group are discounted in costs, 
and Table 1 also lists these groups and the discount 
amount of each group. Each patient can be classified into 
two classes: the class label 0 or negative class indicates a 
less than 50% of artery narrowing; and 1 indicates more 
than 50%. There are a total of 294 cases in the dataset, 
with 36.1% positive cases (106 positive cases).  
Table 1: Attribute costs (in $) and group discounts for 
Heart disease. 

Tests Description Individual 
Costs 

Group A 
discount 

Group B 
discount 

Group C 
discount

age age of the patient $1.00    
sex sex $1.00    
cp chest pain type $1.00    
trestbps resting blood pressure $1.00    
chol serum cholesterol in 

mg/dl $7.27 $2.10   
fbs fasting blood sugar $5.20 $2.10   

restecg 
resting 
electrocardiography 
results 

$15.50    

thalach maximum heart rate 
achieved $102.90  $101.90  

exang exercise induced angina $87.30   $86.30 
oldpeak ST depression induced 

by exercise $87.30   $86.30 

slope slope of the peak 
exercise ST segment  $87.30   $86.30 

Ca number of major vessels 
colored by fluoroscopy $100.90    

thal finishing heart rate $102.90  $101.90  



(a): without group discount                                            (b): with group discount        
Figure 1: Cost-sensitive decision trees. Continuous attributes have been discretized and are represented by 1, 2, and so on.  

 However, no information about misclassification costs 
was given. After consulting a researcher in the Heart-
Failure Research Group in the local medical school, a 
positive prediction normally entails a more expensive and 
invasive test, the angiographic test, to be performed, which 
more accurately measures the percentage of artery 
narrowing. A negative prediction may prompt doctors to 
prescribe medicines, but the angiographic test may still be 
ordered if other diseases (such as diabetes) exist. An 
angiographic attribute costs about $600. Thus, it seems 
reasonable to assign false positive and false negative to be 
$600 and $1,000 respectively. 
 When applying the cost-sensitive decision tree algorithm 
on the Heart dataset, we obtain the trees as shown in 
Figure 1. In the tree, the branch labels (1, 2, …) are 
discretized values: the numerical attributes in the dataset 
are discretized into integers (1, 2, …) using the minimal 
entropy method of (Fayyad and Irani 1993). Figure 1 (a) is 
the tree without considering group discounts, while Figure 
1 (b) is the tree considering group discounts (as in Table 
1). We can easily see that the two trees are very similar, 
except for one test in Figure 1 (b), thalach, which replaces 
the test restecg in Figure 1 (a). Since tests thal and thalach 
belong to the same group, after thal is tested at the full 
cost, thalach costs only $1 and is selected after thal when 
group discounts are considered. This would clearly reduce 
the total cost when the tree in Figure 1 (b) classifies test 
examples (see later).  
 Also we can see that in general less expensive tests 
(attributes) are used in the top part of the trees. The 
splitting criterion selects attributes according to their 
relative merit of reducing the total cost. When these trees 
are presented to the Heart-Failure researcher, he thinks that 
they are quite reasonable in predicting artery narrowing. 
We will revisit the case study with each novel test strategy 
proposed in following sections. 

Three Categories of Test Strategies 
A “test strategy” is a method to classify a test example 
from a cost-sensitive decision tree during which it is 
possible to “perform tests”, that is, to obtain values of 
unknown attributes, at cost (attribute costs). It mimics the 
diagnosis process of doctors in which additional medical 

tests may be requested at cost to help their diagnoses 
(predicting the disease of the patients). 

In this paper we define and study three categories of test 
strategies representing three different cases in diagnosis: 
Sequential Test, Single Batch Test, and Multiple Batch 
Test. For a given test example (a new patient) with 
unknown attributes, the Sequential Test can request only 
one test (attribute value) at a time, and wait for the test 
result to decide which attribute to be tested next, or if a 
final prediction is made.  The Single Batch Test, on the 
other hand, can request one set (batch) of one or many 
tests to be done simultaneously before a final prediction is 
made. The Multiple Batch Test can request a series of 
batches of tests, each after the results of the previous batch 
are known, before making a final prediction. Clearly, the 
Multiple Batch Test is most general, as the other two are 
special cases of it – Sequential Test is when each batch 
only contains one test, and Single Batch is when the 
number of batches can only be one.   
 The three categories of test strategies correspond well to 
different cases of diagnosis in the real world. In medical 
diagnoses, for example, doctors normally request one set 
of tests (at cost) to be done. This is the case of the Single 
Batch Test. Sometimes doctors may order a second (and a 
third) set of tests to be done, based on the results of the 
previous set of tests. This is the case of the Multiple Batch 
Test. If doctors only order one test at a time (this can 
happen if tests are very expensive and/or risky), this is the 
case of the Sequential Test. The goal of these test 
strategies again is to minimize the total cost of tests 
(attributes) requested and the misclassification costs 
associated with the final prediction. In the next three 
subsections the three types of test strategies will be 
discussed in great detail. 

Strategy 1: Sequential Test 
We propose a simple Sequential Test strategy (Ling et al. 
2004) that directly utilizes the decision tree built to guide 
the sequence of tests to be performed in the following way: 
when the test example is classified by the tree, and is 
stopped by an attribute whose value is unknown, a test of 
that attribute is requested and made at cost. This process 
continues until the test case reaches a leaf of the tree. 
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According to the leaf reached, a prediction is made, which 
may incur a misclassification cost if the prediction is 
wrong. Clearly the time complexity of the strategy is only 
linear to the depth of the tree. 
 Note that Sequential Test is near “optimal” by the nature 
of the decision tree built to minimize the total cost; that is, 
subtrees are built because there is a cost reduction in the 
training data. Thus, the tree’s suggestions for tests should 
also result in near minimum total cost in the test case.   
Case Study on Heart Disease Continued. We choose a 
test example with most attribute values known from the 
dataset, as the known values serve as the test results. We 
apply Sequential Test on the tree in Figure 1(b) which 
considers the group discount to the test case. Assuming all 
values are unknown, Sequential Test requests the sequence 
of tests as: cp, fbs, thal, and thalach, with a total attribute 
cost of $110.10, while the misclassification cost is $0. 
Therefore, the total cost for this test case is $110.10.   

Strategy 2: Single Batch Test 
In Sequential Test described earlier one must wait for the 
result of each test to determine which test will be the next 
one. Waiting not only agonizes patients in medical 
diagnosis, it may also be life threatening if the disease is 
not diagnosed and treated promptly. Thus doctors normally 
order one set of tests to be done at once. This is the case of 
the Single Batch Test. Note that results of the tests in the 
batch can only be obtained simultaneously after the batch 
is determined.   
 In this section we propose a novel Single Batch strategy. 
The Single Batch seeks a set of tests to be performed such 
that the sum of the attribute costs and expected 
misclassification cost after those tests are done is optimal 
(minimal). Intuitively, it finds the expected cost reduction 
for each unknown attribute (test), and adds a test to the 
batch if the expected cost reduction is positive and 
maximum (among other tests). This process is continued 
until the maximum cost reduction is no longer greater than 
0, or there is no reachable unknown attributes. The batch 
of tests is then discovered. However, Single Batch is a 
guess work. Often some tests requested are wasted, and the 
test example may not be classified by a leaf node (in this 
case it is classified by an internal node in the tree). The 
pseudo-code of the Single Batch is shown here. 
 In the pseudo-code, misc(.) is the expected 
misclassification cost of a node, c(.) is the attribute cost, 
R(.) is all reachable unknown nodes and leaves under a 
node, and p(.) is the probability (estimated by ratios in the 
training data) that a node is reached.  Therefore, the 
formula E(i) in the pseudo-code calculates the cost 
difference between no test at i (so only misclassification 
cost at i) and after testing i (the attribute cost plus the 
weighted sum of misclassification costs of reachable nodes 
under i). That is, E(i) is the expected cost reduction if i is 
tested. Then the node t with the maximum cost reduction is 
found, and if such reduction is positive, t should be tested 
in the batch. Thus, t is removed from L and added into the 
batch list B, and all reachable unknown nodes or leaves of 

t, represented by the function R(t), is added into L for 
further consideration. This process continues until there is 
no positive cost reduction or there is no unknown nodes to 
be considered (i.e., L is empty). The time complexity of the 
Single Batch is linear to the size of the tree, as each node is 
considered only once.  

 
Case Study on Heart Disease Continued. We choose the 
same test example to study the Single Batch with the 
decision tree in Figure 1(b). The Single Batch suggests a 
single batch of (cp, sex, slope, fbs, thal, age, chol, and 
restecg) to be tested. The test example did not go into a 
leaf, and some tests are wasted. The total attribute cost for 
this case is $221.17, while the misclassification cost is 0. 
Thus, the total cost for the test case is $221.17.  

Strategy 3: Multiple Batch Test 
The Multiple Batch Test naturally combines the Sequential 
Test and the Single Batch, in that multiple batches of tests 
can be requested in sequence. To make the Multiple Batch 
Test meaningful, one must assume and provide a “batch 
cost”, the extra cost of each additional batch test (there is 
no batch cost for the first batch).  When the batch cost is 
set as 0, then Multiple Batch should become Sequential 
Test, as it is always better to request one test at a time 
before the next request. In other words, if waiting costs 
nothing, one should never request multiple tests at the 
same time, as some tests may be wasted (as in Single 
Batch), thus increasing the total cost. If the batch cost is 
infinitely large, then one can only request one batch of 
tests, thus Multiple Batch becomes Single Batch.   
 Here we extend Single Batch described in the last 
subsection to Multiple Batch. Recall that in Single Batch, 
an unknown attribute is added into the batch if the 
successive cost reduction of testing it is positive and 
maximum among the current reachable unknown 
attributes. In Multiple Batch, we include an additional 
constraint: attributes added in the current batch must 
improve the accumulative ROI (return on investment), 
which considers the batch cost. The ROI is defined as 

∑
∑

+
=

ostAttributeCBatchCost
ionCostreduct

ROI
.  

 The rationale behind this (heuristic) strategy is that 
attributes that bring a larger ROI should be worth 
including in the same batch test. After the current batch of 
tests is determined and tested with values revealed, the test 
example can be classified further down in the tree 

L = empty   /* list of reachable and unknown attributes */
B = empty   /* the batch of tests */ 
u = the first unknown attribute when classifying a test case 
Add u into L  
Loop 

For each i ∈  L, calculate E(i):  
  E(i)= misc(i) – [c(i) +∑ × ))(())(( iRmisciRp ] 

 E(t) = max E(i) /* t has the maximum cost reduction */ 
If E(t) > 0 then add t into B, delete t from L, add R(t) into L
 else exit Loop    /* No positive cost reduction */ 

Until L is empty 
Output B as the batch of tests   



according to the test results until it is stopped by another 
unknown attribute. The same process then applies, until no 
more batches of tests are required. The time complexity of 
this strategy is linear to the size of the tree, as each node in 
the tree would be considered at most once. 

The algorithm described above is heuristic but it is close 
to the ideal one: if the batch cost is $0, then usually only 
one test will be added in the batch, and the strategy is very 
similar to the Sequential Test. On the other hand, if the 
batch cost is very large, the current batch will grow until 
the cost reduction of the remaining unknown attributes is 
no longer greater than 0, and the strategy is similar to the 
Single Batch. See experimental comparison later.   
Case Study on Heart Disease Continued. We apply 
Multiple Batch on the same test example with the tree in 
Figure 1 (b). Assuming the batch cost is $50.00, the 
strategy decides that two batches of tests are needed for the 
test case. The first batch has just two tests, cp and fbs. 
After the values of cp and fbs are obtained, the second 
batch also contains two tests, thal and thalach. The 
misclassification cost is 0, while the total attributes costs 
for the test case is $161.1 (including the batch cost of 
$50.00). Thus the total cost for the test case is also $161.1.  
 Note that based on this single test case, we cannot 
simply conclude that in general Sequential Test is best, 
Multiple Batch is second and Single Batch is worst. The 
experimental comparison in the following section will 
answer this question.  

Experimental Comparisons 
To compare the overall performance of the three test 
strategies, we choose 10 real-world datasets, listed in Table 
2, from the UCI Machine Learning Repository (Blake and 
Merz 1998). These datasets are chosen because they are 
binary class, have at least some discrete attributes, and 
have a good number of examples. To create datasets with 
more imbalanced class distribution, two datasets (thyroid 
and kr-vs-kp) are resampled to create a small percentage of 
positive examples. They are called thyroid_i and kr-vs-
kp_i respectively. Each dataset is split into two parts: the 
training set (60%) and the test set (40%). Unlike the case 
study of heart disease, the attribute costs and 
misclassification costs of these datasets are unknown. To 
make the comparison possible, we simply assign certain 
values for these costs. We assign random values between 
$0 and $100 as attribute costs for all attributes. This is 
reasonable because we compare the relative performance 
of all test strategies under the same assigned costs. The 
misclassification cost FP/FN is set to $2,000/$6,000 
($2,000 for false positive and $6,000 for false negative) for 
the more balanced datasets (the minority class is greater 
than 10%) and $2,000/$30,000 for the imbalanced datasets 
(the minority class is less than 10% as in thyroid_i and kr-
vs-kp_i). The group discount of attributes is not 
considered. To make the comparison complete, the heart 
disease dataset used in the case study (called Heart-D at 
Table 2) is also added in the comparison (with its own 
attribute costs). For test examples, a certain ratio of 

attributes (0.2, 0.4, 0.6, 0.8, and 1) are randomly selected 
and marked as unknown to simulate test cases with various 
degrees of missing values.  

Table 2: The features of 13 Datasets. 
No. of Attributes No. of Examples Class dist. (N/P)

Ecoli 6 332 230/102
Breast 9 683 444/239
Heart 8 161 98/163
Thyroid 24 2000 1762/238
Australia 15 653 296/357
Tic-tac- 9 958 332/626
Mushroo 21 8124 4208/3916
Kr-vs-kp 36 3196 1527/1669
Voting 16 232 108/124
Cars 6 446 328/118
Thyroid i 24 1939 1762/167
Kr-vs- 36 1661 1527/134
Heart-D 13 294 188/106

Comparing the Three New Test Strategies 
We compare Sequential Test, Single Batch, and Multiple 
Batch with the batch cost to be $0, $100 and $200 on the 
13 datasets listed in Table 2. The results are presented in 
Figure 2.  From the figure we can draw several interesting 
conclusions. First, when the ratio of missing values 
increases, the total cost of all the three strategies also 
increases, as expected. This is because it costs more when 
requesting more missing values in the test examples. 
Second, the total cost of Sequential Test is lowest, 
followed closely by Multiple Batch with 0 batch cost 
(B=0). As we discussed earlier, Multiple Batch should 
become Sequential Test if the batch cost is 0. The small 
difference between the two is probably due to the 
heuristics used in Multiple Batch. Third, Single Batch is 
worse than Sequential Test (and Multiple Batch with B=0). 
This is because requesting multiple tests in a batch is a 
guess work. Often some tests are requested but wasted, 
while other useful tests are not requested, increasing the 
total cost. Fourth, Single Batch is better than Multiple 
Batch with B=100 and 200. This might be a bit surprising 
at first glance. As we discussed earlier, Multiple Batch 
should become Single Batch as the worst case when the 
batch cost is infinitely large. However, when the batch cost 
is large but not infinitely large, usually more than one 
batch is requested by Multiple Batch, in which case the 
batch cost is added to the total cost. This batch cost is 
“extra” to test examples when comparing to Single Batch 
(and Sequential Test).  

Figure 2: Comparing the total costs for the three new test 
strategies. The smaller the total cost, the better. 
 To conclude, the experiments in this section confirm our 
expectations on the three new test strategies: Sequential 
Test is best as it requests only one test at a time before 
requesting next. Multiple Batch resembles closely to 
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Sequential Test when the batch cost is zero, and it becomes 
worse when the batch cost is large. 

Comparing with CSNB Strategies 
We first compare our Sequential Test with the sequential 
test strategy in naïve Bayes (called NB-Seq in short), 
proposed in (Chai et al. 2004), under the same 
experimental setting. The average total costs (in $) for the 
13 datasets are plotted in Figure 3 (a). We can clearly see 
that tree-based Sequential Test outperforms NB-Seq on 
average on the 13 datasets (balanced or imbalanced) under 
all unknown attribute ratios. This is because Sequential 
Test takes advantages of the minimum cost decision tree, 
but NB-Seq does not.  

         (a): Sequential Test.                  (b): Single Batch. 
Figure 3 (a): Comparing tree-based Sequential Test with 
NB-Seq. Figure 3 (b): Comparing tree-based Single Batch 
with NB-SinB. The smaller the total cost, the better. 
 Next we compare our Single Batch with the naïve Bayes 
single batch (called NB-SinB in short) proposed in (Chai et 
al. 2004). The average total costs (in $) for the 13 datasets 
are plotted in Figure 3(b). From the figure we can see 
again that our tree-based Single Batch outperforms naïve 
Bayes NB-SinB. The reason is again that the minimum 
cost decision tree is utilized when deciding the single 
batch, while naïve Bayes has no such structure to rely on.  
Last, our tree-based test strategies are about 60 to 300 
times faster than naïve Bayes strategies (details not shown 
here). 

Conclusions and Future Work 
In this paper, we present an improved decision tree 
learning algorithm with cost reduction as the attribute split 
criterion to minimize the sum of misclassification costs and 
attribute costs. We then design three categories of test 
strategies: Sequential Test, Single Batch, and Multiple 
Batch, to determine which unknown attributes should be 
tested, and in what order, to minimize the total cost of tests 
and misclassifications. The three test strategies correspond 
well to three different policies in diagnosis. We evaluate 
the performance of the three test strategies (in terms of the 
total cost) empirically, and compare them to previous 
methods using naïve Bayes. The results show that the new 
test strategies perform well. The time complexity of these 
new test strategies is linear to the tree depth or the tree 
size, making them efficient for testing a large number of 
test cases. These strategies can be readily applied to large 
datasets in the real world. A detailed case study on heart 
disease is given in the paper.  
 In our future work, we plan to continue to work with 
medical doctors to apply our algorithms to medical data.  
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