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Abstract—In medical diagnosis, doctors must often determine what medical tests (e.g., X-ray and blood tests) should be ordered for a

patient to minimize the total cost of medical tests and misdiagnosis. In this paper, we design cost-sensitive machine learning

algorithms to model this learning and diagnosis process. Medical tests are like attributes in machine learning whose values may be

obtained at a cost (attribute cost), and misdiagnoses are like misclassifications which may also incur a cost (misclassification cost). We

first propose a lazy decision tree learning algorithm that minimizes the sum of attribute costs and misclassification costs. Then, we

design several novel “test strategies” that can request to obtain values of unknown attributes at a cost (similar to doctors’ ordering of

medical tests at a cost) in order to minimize the total cost for test examples (new patients). These test strategies correspond to different

situations in real-world diagnoses. We empirically evaluate these test strategies, and show that they are effective and outperform

previous methods. Our results can be readily applied to real-world diagnosis tasks. A case study on heart disease is given throughout

the paper.

Index Terms—Induction, concept learning, mining methods and algorithms, classification.
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1 INTRODUCTION

INDUCTIVE learning techniques have had great success in
building classifiers and classifying test examples into

classes with a high accuracy or low error rate. However, in
many real-world applications, reducing misclassification
errors is not the final objective since different errors can cost
quite differently. This type of learning is called cost-
sensitive learning. Turney [18] surveys a whole range of
costs in cost-sensitive learning, among which two types of
costs are most important: misclassification costs and
attribute costs. (Turney used “test costs.” To reduce over-
use of the word “test,” we use “attribute cost” throughout
this paper.) For example, in a binary classification task, the
cost of false positive (FP) and the cost of false negative (FN)
are often very different. In addition, attributes (similar to
medical tests) may have different costs, and acquiring
values of attributes may also incur costs. The goal of
learning in this paper is to minimize the sum of the
misclassification costs and the attribute costs.

Tasks involving both misclassification and attribute costs

are abundant in real-world applications. In medical diag-

nosis, medical tests are like attributes in machine learning

whose values may be obtained at a cost (attribute cost), and

misdiagnoses are like misclassifications which may also

bear a cost (misclassification cost). When building a

classification model for medical diagnosis from the training

data, we must consider both the attribute costs (medical

tests such as blood tests) and misclassification costs (errors

in the diagnosis). Further, when a doctor sees a new patient
(a test example), additional medical tests may be ordered, at
a cost to the patient or the insurance company, to better
diagnose or predict the disease of the patient (i.e., reducing
the misclassification cost). We use the term “test strategy” to
describe a process that allows the learning algorithm to
obtain attribute values at a cost when classifying test
examples. The goal of the test strategies in this paper is to
minimize the sum of attribute costs and misclassification
costs, similar to doctors’ goal to minimize the total cost to
the patients (or the whole medical system). A case study on
heart disease is given in the paper.

In this paper, we first propose a lazy-tree learning that
improves on a previous decision tree algorithm [8] that
minimizes the sum of misclassification costs and attribute
costs. We then describe several novel test strategies to
determine what values of unknown attributes should be
obtained, and at what order, such that the total expected
cost is minimum. Extensive experiments have been con-
ducted to show the effectiveness of our tree building
algorithms and the new test strategies compared to
previous methods.

The rest of paper is organized as follows: We first review
the related work in Section 2. Then, we describe a tree-
building algorithm that is improved from a previous work
in Section 3. In Section 4, we propose several novel test
strategies when the tree is used to predict new test cases
with unknown attributes, and compare these strategies on
13 data sets. Throughout these sections, we provide a case
study on a real-world data set of the heart disease. Finally,
we conclude the work in Section 5.

2 REVIEW OF PREVIOUS WORK

Gorry and Barnett [7] suggested a “myopic approach” to
request more information during decision making, but the
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method focuses only on prediction accuracy; there is no cost
involved in getting the information. Cost-sensitive learning
has received extensive attentions in recent years. Turney
[18] analyzes a variety of costs in machine learning, such as
misclassification costs, attribute costs, active learning costs,
computation cost, human-computer interaction cost, etc.
Two types of costs are singled out as the most important in
machine learning: misclassification costs and attribute costs.
Much work has been done in considering nonuniform
misclassification costs (alone), such as [3], [4], [19], and [16].
Those works can often be used to solve the problem of
learning with imbalanced data sets [1]. Some previous
work, such as [12] and [15], considers the attribute costs
alone without incorporating misclassification costs. As
pointed out by [18], it is obviously an oversight. Melville
et al. [10], [11] studied how to achieve a desired model
accuracy by acquiring missing values in identified training
examples with minimum cost. However, they do not
minimize the total cost (misclassification and attribute
costs) of test examples with missing values. As far as we
know, the only work considering both misclassification and
attribute costs includes [17], [20], [9], [8], [14], and [2]. We
discuss these works in detail below.

In [20], the cost-sensitive learning problem is cast as a
Markov Decision Process (MDP), and an optimal solution is
given as a search in a state space for optimal policies. While
related to our work, their research adopts an optimal search
strategy, which may incur very high computational cost to
conduct the search. In contrast, we adopt heuristics and
local search similar to [13] using a polynomial time
algorithm to build a new decision tree, and our test
strategies are also polynomial to the tree size. Our results
may be only locally optimal. Lizotte et al. [9] studied the
theoretical aspects of active learning with attribute costs
using a PAC learning framework, which models how to use
a budget to collect the relevant information for the real-
world applications with no actual data at beginning. Our
algorithm builds a model from historical data to minimize
the sum of misclassification costs and attribute costs for a
new case with missing attribute values. Turney [17]
presented a system called ICET, which uses a genetic
algorithm to build a decision tree to minimize the sum of
attribute costs and misclassification costs. Our algorithm
adopts the same decision-tree building framework as in
[13], and it is expected to be more efficient than Turney’s
genetic algorithm-based approach. More specifically, ICET
[17] is a two-tiered search strategy. On the lower tier, EG2 is
applied to build the individual decision tree. On the upper
tier, ICET uses a genetic algorithm (GENESIS) to evolve a
population of 50 decision trees which have different biases.
In total, there are 1,000 trials in ICET. We only need to build
one decision tree for test examples with the same subset of
missing values (see Section 3.1.1). It is obvious that our
algorithm is much faster than ICET. In addition, the
individual decision tree is ICET is based on EG2, which
does not integrate misclassification costs and attribute costs
directly. Our decision tree integrates the two costs together
naturally. ICET considers two kinds of tests: “immediate”
tests and “delayed” tests. Our algorithm introduces the
“waiting cost” (see Section 4.3), which quantifies the delay.

Finally, the test strategy of ICET is similar to our sequential

test strategy, while we have also designed single batch test

strategies (Section 4.2) and the multiple batch test strategies

(Section 4.3).
Ling et al. [8] proposed a new decision tree learning

program that uses minimum total cost of attributes and

misclassifications as the attribute split criterion. They also

propose several simple test strategies to handle the missing

attributes in the test data, and compare their results to C4.5.

However, in their method, only a single tree is built for all

test examples. Our work is an extension of [8] and [14] as

we propose a new lazy decision tree algorithm that builds

different decision trees for different test examples to utilize

as much information in the known attributes as possible

(Section 3.1.1). We also incorporate discounts in attribute

costs when tests are performed together (Section 3.1.3). We

show that the same sequential test strategy produces

smaller total cost compared to [8] (see Section 4.1.2). In

addition, we propose several novel single batch strategies

(Section 4.2) and multiple batch strategies (Section 4.3) that,

as far as we know, have not been published previously.
Chai et al. proposed a naı̈ve Bayesian-based cost-

sensitive learning algorithm, called CSNB [2], which

reduces the total cost of attributes and misclassifications.

They also propose a single batch test strategy that may

obtain several attribute values simultaneously. Our single

batch strategies utilize the tree structure when deciding the

batch of attribute values to be obtained at the same time.

Experiments show that our tree-based test strategies out-

perform CSNB in terms of the total cost of misclassifications

and attributes in many cases (Section 4.1.2).

3 LAZY DECISION TREES FOR MINIMUM

TOTAL COST

We assume that we are given a set of training data (with

possible missing attribute values), the misclassification

costs, and attribute costs. Ling et al. [8] describes a C4.5-

like decision tree learning algorithm, which uses the

minimal total cost (or maximum cost reduction) as a tree-

split criterion, similar to maximum information gain ratio.

More specifically, given a set of training examples, a cost

metric of misclassifications, and attribute costs, the algo-

rithm calculates the misclassification cost without splits.

Then, for each attribute, the sum of the attribute cost and

misclassification costs after the split is calculated. That the

previous one subtracts the later one is the cost reduction.

The algorithm chooses an attribute with the maximum cost

reduction (equivalent to minimal total cost after split) to

split the training examples. This process is applied

recursively to build subtrees. With this method, a single

decision tree is built based on the training examples, and

the tree is used for predicting all test examples.

3.1 An Improved Algorithm for Constructing
Cost-Sensitive Decision Trees

We have designed and implemented three improvements

over [8] in constructing cost-sensitive decision trees.
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3.1.1 Improvement 1: Lazy Tree

Instead of building a single decision tree for all test
examples as in [8], we propose a lazy-tree approach [6] to
utilize as much information in the known attributes as
possible. More specifically, given a test example with
known and unknown attributes, we first reassign the cost
of the known attributes to be $0 while the cost of the
unknown attributes remains unchanged (see line 1ðiÞ of
LazyTree in the pseudocode). For example, suppose that
there are three attributes and their costs are $30, $40, and
$60, respectively. If in a test example, the second attribute
value is unknown, then the new attribute costs would be
reset to $0, $40, and $0, respectively. Then, a cost-sensitive
tree is built using [8]. As the attribute costs of the known
attributes are reset as $0, the first and third attributes most
possibly appear at the top of the tree. Although this is a
small change, we expect that it will reduce the total cost in
testing significantly. The rationale is that attributes with the
zero attribute cost are more likely to be chosen early during
the tree building process. When a test example is classified
by this decision tree, it is less likely to encounter unknown
attributes (the second attribute in above example) near the
top of the tree. This tends to reduce the total attribute cost,
and thus the total cost, as to be shown in the experiments in
Section 4.1.2.

Clearly, our lazy-tree approach builds different trees for
test examples with different sets of unknown attributes, as
attribute costs are set differently. One weakness of our
method is higher computational cost associated with lazy
learning because a tree is specifically built for each test
example. However, our tree-building process has the same
time complexity as C4.5, so it is quite efficient (see
Section 4.1.3 for comparing running time of various
algorithms). In addition, lazy trees for the same set of
known attributes are the same, and they can be saved for
predicting future examples with the same set of known
attributes. That is, trees frequently used can be stored in
memory for speedup.

3.1.2 Improvement 2: Expected Cost Calculation

Another improvement we made over [8] is that we use the

expected total misclassification cost when selecting attributes

for splitting to produce trees with a smaller total cost (see

lines 3 and 4 of CSDT in the pseudocode). This improved split

criterion tends to produce a more accurate split and build a

tree with small total cost (see Section 4.1.2). For a subset of

examples, if CP ¼ tp� TP þ fp� FP is the total misclassi-

fication cost of being a positive leaf, and CN ¼ tn� TN þ
fn� FN is the total misclassification cost of being a negative

leaf, then the probability of being positive is estimated by the

relative cost of CP and CN ; the smaller the cost, the larger the

probability (as minimum cost is sought). Thus, the prob-

ability of being a positive leaf is: 1� CP
CPþCN ¼

CN
CPþCN , and the

expected misclassification cost of being positive is:

EP ¼ CN
CPþCN � CP . Similarly, the probability of being a

negative leaf is CP
CPþCN , and the expected misclassification

cost of being negative is: EN ¼ CP
CPþCN � CN .1 Therefore,

without splitting, the expected total misclassification cost of

a given set of examples is: E ¼ EP þ EN ¼ 2�CP�CN
CPþCN . If an

attribute A has l branches, then the expected total misclassi-

fication cost after splitting on A is: EA ¼ 2�
Pl

i¼1
CPi�CNi
CPiþCNi

.

Thus, ðE � EA � TCÞ is the expected cost reduction splitting

onA, where TC is the cost of testing examples on attribute A.

After calculating the expected cost reduction for all attributes,

it is easy to find out which one is the largest. If the largest

expected cost reduction is greater than 0, then the attribute is

chosen as the split (otherwise, it is not worth to build the tree

further, and a leaf is returned). Section 4.1.2 compares the

improved tree algorithm with the original one [8].

3.1.3 Improvement 3: Considering Group Discount

A third improvement is that we have incorporated possible
discounts in obtaining values of a group of attributes with
missing values in the tree building process. This is a special
case of conditional attribute costs [17], which allow attribute
costs to vary with the choice of prior tests. Often, medical
tests are not performed independently, and when certain
medical tests are performed together, it is cheaper to do
these tests in a group than individually. For example, the
cholesterol test and fasting blood sugar attribute cost $7.27
and $5.20 individually. As both are blood tests, if both are
performed together, it would be cheaper to do the second
test. In general, attributes can be partitioned into groups,
and each group has a particular discount amount. When the
first attribute in a group is called for, the attribute cost is the
original cost (the full cost). However, if any additional
attributes in the same group are requested for their values,
their costs would be the original (full) costs minus the
discounted cost. In implementing the cost-sensitive deci-
sion-tree building process, if an attribute in a group is
selected as a split attribute, the costs of other attributes in
the group are simultaneously reduced by the discount
amount for the future tree-building process (see line 5 of
CSDT in the pseudocode). As the attribute costs are
discounted, the tests in the same group would more likely
be picked as the next node in the future tree building—a
property that is desirable for the cost-sensitive trees which
prefer attributes with lower costs [8]. An example of group
discounts will be given in the next section.

The pseudocode for the improved cost-sensitive learning
algorithm is given below:

LazyTree(Examples, Attributes, TestCosts, testExample)

1. For each attribute

i) If its value is known in testExample, its test cost is

assigned to 0

2. Call CSDT(Examples, Attributes, TestCostsUpdated) to

build a cost-sensitive decision tree

CSDT(Examples, Attributes, TestCosts)

1. If all examples are positive/negative, return root

2. If maximum expected cost reduction <0, return root
3. Let A be an attribute with maximum expected cost

reduction

4. root A

5. Update TestCosts if discount applies

6. For each possible value vi of the attribute A

LING ET AL.: TEST STRATEGIES FOR COST-SENSITIVE DECISION TREES 3

1. The expected misclassification cost EP of being a positive leaf for a
given set of examples is indeed the same as the expected misclassification
cost EN of being a negative leaf for the set of examples. This is possible as
both are expected costs.



i) Add a new branch A ¼ vi below root

ii) Segment the training examples Example_vi into the

new branch

iii) Call CSDT(examples_vi, Attributes-A, TestCosts) to

build subtree

3.2 A Case Study on Heart Disease

We apply our lazy decision-tree learning on a real
application example that involves the diagnosis of the
Heart Disease, where the attribute costs are obtained from
medical experts and insurance programs. The data set was
used in the cost-sensitive genetic algorithm by [17]. The
learning problem is to predict the coronary artery disease
from the 13 noninvasive tests on patients, as listed in
Table 1. The attributes on patients profile, such age, sex, etc.,
are also regarded as “tests” with a very low cost (such as $1)
to obtain their values. The costs of the 13 noninvasive tests
are in Canadian dollars ($), and were obtained from the
Ontario Health Insurance Program’s fee schedule [17].
These individual tests and their costs are also listed in
Table 1. Tests such as exang, oldpeak, and slope are
electrocardiography results when the patient runs on a
treadmill, and are usually performed as a group. Tests done
in a group are discounted in costs, and Table 1 also lists
these groups and the discount amount of each group. Each

patient is classified into two classes: the class label 0 or
negative class indicates a less than 50 percent of artery
narrowing, and 1 indicates more than 50 percent. There are
a total of 294 cases in the data set, with 36.1 percent positive
cases (106 positive cases).

However, no information about misclassification costs
was given. After consulting a researcher in the Heart-
Failure Research Group in the local medical school, a
positive prediction normally entails a more expensive and
invasive test, the angiographic test, to be performed, which
more accurately measures the percentage of artery narrow-
ing. A negative prediction may prompt doctors to prescribe
medicines, but the angiographic test may still be ordered if
other diseases (such as diabetes) exist. An angiographic
attribute costs about $600. Thus, it seems reasonable to
assign false positive and false negative to be $600 and
$1,000, respectively.

Assuming that in a new test example all attribute values
are missing (as seeing a completely new patient), the
original attribute costs given in Table 1 are used directly for
decision-tree building. The numerical attributes in data sets
are discretized into integers (1, 2, ...) using the minimal
entropy method of Fayyad and Irani in [5]. We apply our
lazy decision tree learning for this test case, and obtain two
decision trees shown in Fig. 1. Fig. 1a is the tree without
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Attribute Costs (in $) and Group Discounts for Heart Diseases

Fig. 1. Lazy trees for the test case with missing values for all attributes.



considering group discounts, while Fig. 1b is the tree
considering group discounts (as in Table 1).

We can easily see that the two trees are very similar,
except for one test, thalach, which replaces the test restecg
in Fig. 1a. Since tests thal and thalach belong to the same
group, after thal is tested at the full cost, thalach costs only
$1 and is selected after thal when group discounts are
considered. This would clearly reduce the total cost when
the tree in Fig. 1b classifies test examples. Also, we can see
that in general less expensive tests (attributes) are used in
the top part of the trees. The splitting criterion selects
attributes according to their relative merit of reducing the
total cost. When these trees are presented to the Heart-
Failure researcher, he thinks that they are quite reasonable
in predicting artery narrowing.

4 THREE CATEGORIES OF TEST STRATEGIES

In this paper, a “test strategy” is a method to classify a test
example from a cost-sensitive decision tree during which it
is possible to “perform tests,” that is, to obtain values of
unknown attributes, at a cost (attribute costs). It mimics the
diagnosis process of doctors in which additional medical
tests may be requested at a cost to help their diagnoses
(predicting the disease of the patients).

We define and study three categories of test strategies:
Sequential Test (Section 4.1), Single Batch Test (Section 4.2),
and Multiple Batch Test (Section 4.3). For a given test
example with unknown attributes, the Sequential Test can
request only one test (attribute value) at a time, and wait for
the test result to decide which attribute to be tested next, or
if a final prediction is made. The Single Batch Test, on the
other hand, can request one set (batch) of one or many tests
to be done simultaneously before a final prediction is made.
The Multiple Batch Test can request a series of batches of
tests, each after the results of the previous batch are known,
before making a final prediction. Clearly, the Multiple Batch
Test is most general, as the other two are special cases of
it—Sequential Test is when each batch only contains one
test, and Single Batch is when the number of batches can
only be one.

The three categories of test strategies correspond well to
different situations in real-world medical diagnosis. For
example, when seeing a new patient, doctors often order one
set of tests (at a cost) to be done together. This is the case of
the Single Batch Test. Sometimes doctors may order a second
(and a third) set of tests to be done, based on the results of the
previous set of tests. This is the case of the Multiple Batch
Test. If doctors only order one test at a time (this can happen
if tests are very expensive and/or risky), this is the case of
the Sequential Test. The goal of these test strategies again is
to minimize the total cost of tests (attributes) requested and
the misclassification costs associated with the final predic-
tion. In the next three sections, the three types of test
strategies will be discussed in great details.

4.1 Lazy-Trees Optimal Sequential Test (LazyOST)

Recall that Sequential Test allows one test to be performed
(at a cost) each time before the next test is determined, until a
final prediction is made. Ling et al. [8] described a simple
strategy called Optimal Sequential Test (or OST in short) that

directly utilizes the decision tree built to guide the sequence
of tests to be performed in the following way: When the test
example is classified by the tree, and is stopped by an
attribute whose value is unknown, a test of that attribute is
requested and made at a cost. This process continues until
the test case reaches a leaf of the tree. According to the leaf
reached, a prediction is made, which may incur a mis-
classification cost if the prediction is wrong. Clearly, the time
complexity of OST is only linear to the depth of the tree.

One weakness with this approach is that it uses the
same tree for all testing examples. In this paper, we have
proposed a lazy decision-tree learning algorithm (Section 3)
that builds a different tree for each test example. We apply
the same test process above in the lazy tree, and call it
Lazy-tree Optimal Sequential Test (LazyOST). Note that
this approach is “optimal” by the nature of the decision
tree built to minimize the total cost; that is, subtrees are
built because there is a cost reduction in the training data.
Therefore, the tree’s suggestions for tests will also result in
minimum total cost. (Note the terms such as “optimal”
and “minimum” used in this paper do not mean in the
absolute and global sense. As in C4.5, the tree building
algorithm and test strategies use heuristics which are only
locally optimal.)

Note that it is not obvious that this lazy-tree Optimal
Sequential (LazyOST) Test should always produce a small
total cost compared to the single-tree OST. This is because
in both approaches, the attribute costs of the known
attributes do not count during the classifying of a test
example. However, when we build decision tree specifi-
cally for a test example, the tree minimizes the total cost
without counting the known attributes in the training data.
This would produce a smaller total cost for that test
example. In contrast, in the single tree approach, only one
tree is built for all test examples, and specific information
about known and unknown attributes in each test example
is not utilized. In Section 4.1.2, we will compare LazyOST
and OST on 11 real-world data sets and two generated
data sets (Table 2) to see which one is better in terms of
having a smaller total cost.

4.1.1 Case Study on Heart Disease Continued

Continuing on the heart-disease example, we next choose a
test example with most attribute values known from the
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The Features of 13 Data Sets Used in the Experiments



data set, as the known values serve as the test results. The
discretized attribute values for this test case are: age = 1, sex
= 2, cp = 3, trestbps = 1, chol = 1, fbs = 1, restecg = 1, thalach
= 1, exang = 2, oldpeak = 2, slope = 1, ca = ?, thal = 2, and
class = 0 (a negative case). We apply LazyOST on the tree in
Fig. 1b which considers the group discount to the test case.
Again assuming all values are unknown, LazyOST requests
the sequence of tests as: cp (= 3), fbs (= 1), thal (= 2), and
thalach (= 1), with a total attribute cost of $110.10. The
prediction of the tree is 0 (it is correct), thus the
misclassification cost is $0. Therefore, the total cost for this
test case is $110.10. However, if the test example is classified
by the tree in Fig. 1a (group discount is not considered), the
test restecg will be requested instead of the much cheaper
thalach. In this case, the total cost would be $124.60, higher
than the tree that considers the group discount.

4.1.2 Comparing Total Cost for Sequential Test

Strategies

To compare the overall performance of various sequential
test strategies, we choose 10 real-world data sets, listed in
Table 2, from the UCI Machine Learning Repository [1].
These data sets are chosen because they are binary class,
have at least some discrete attributes, and have a good

number of examples. To create data sets with more
imbalanced class distribution, two data sets (thyroid and
kr-vs-kp) are resampled to create a small percentage of
positive examples. They are called thyroid_i and kr-vs-
kp_ik, respectively. Each data set is split into two parts: the
training set (60 percent) and the test set (40 percent). Unlike
the case study of heart disease, the attribute costs and
misclassification costs of these data sets are unknown. To
make the comparison possible, we simply assign certain
values as Canadian dollars (or any other unit) for these
costs. We randomly choose the attribute costs of all
attributes to be some values between $0 and $100. This is
reasonable because we compare the relative performance of
all test strategies under the same chosen costs. The
misclassification cost FP/FN is set to $200/$600 for the
more balanced data sets (the minority class is greater than
10 percent) and $200/$3000 for the imbalanced data sets
(the minority class is less than 10 percent as in thyroid_i and
kr-vs-kp_i). As the group discount of attributes is unknown,
all attributes are assumed to be independent in their
attribute costs. To make the comparison complete, the heart
disease data set used in the case study (called Heart-D at the
bottom of Table 2) is also added in the comparison (with its
own attribute costs). For test examples, a certain ratio of
attributes (0.2, 0.4, 0.6, 0.8, and 1) are randomly selected and
marked as unknown to simulate test cases with various
degrees of missing values. Three Sequential Test strategies,
OST [8], LazyOST (this work), and CSNB [2] are compared
in Table 3. The average total costs (in $) for the 13 data sets
are plotted in Fig. 2.

We can make several interesting conclusions. First, we
can see clearly that LazyOST outperforms OST on all the
13 data sets (balanced or imbalanced) under almost all
unknown attribute ratios. Note that OST, LazyOST, and
CSNB are all heuristic algorithms and, therefore, occasion-
ally, LazyOST may not be better than OST or CSNB. When
all attributes are unknown, the eager and lazy tree learners
produce the same tree, as expected. Second, the difference
between OST and LazyOST is larger at a lower ratio of
unknown attributes compared to a higher ratio. This is
because when the ratio is low, most attributes are known,
and LazyOST takes advantage of these known attributes for
individual test examples while OST does not. This confirms
our early expectation that our new lazy trees learning
algorithm produces a tree with smaller total costs compared
to the previous single tree approach. Last, we also see that
the CSNB [2] performs slightly better than OST when the
ratio of unknown attributes is less than about 0.6 (confirm-
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The Total Cost (in $) for Our LazyOST Compared

to Previous Strategies (CSNB and OST)

Fig. 2. Comparing the average total cost (in $) of our new Sequential

Test strategy LazyOST to previous methods CSNB and OST. The

smaller the total cost, the better.



ing results in [2]) since CSNB has a lower misclassification
cost than OST with lower ratios of unknown attributes.
However, LazyOST performs best among the three strate-
gies on average, as witnessed by Fig. 2.

We can obtain from Table 3 that LazyOST outperforms
OST by 32.8 percent on average over all data sets used in the
experiments. However, two improvements in the cost-
sensitive decision tree (lazy learning and expected cost
calculation; see Sections 3.3.1 and 3.3.2) may have been
responsible. To see how much of an effect each of the two
improvements in LazyOST has over OST, we choose one
data set, Kr-vs-kp, and run OST, OST plus expected cost
calculation, and OST plus expected cost calculation and
plus lazy tree (that is, LazyOST). The results, shown in
Table 4, clearly indicate that most cost reduction of
LazyOST over OST (81.2 percent on average) comes from
the new lazy learning improvement, while the expected cost
calculation also has an effect (18.8 percent on average).

4.1.3 Comparing Speed for Sequential Test Strategies

In our experiments, we find that the running speed of the
three sequential test strategies is quite different. Table 5 lists
the running time for each test example on the data set Ecoli
with 40 percent as test examples. Note that all the strategies
studied and compared in this paper are test strategies (on
test examples). The running time on each test example after
the decision tree is built is linear to the depth or size of the
tree, and it has little to do with the size of training or test
sets. (The LazyOST does rebuild the decision tree for each
test example, but similar to C4.5, the training process is
quite efficient). The All algorithms are implemented in Java
running on Windows XP on a Pentium IV (2.4 GHz) with
512GB memory. We can see clearly that CSNB is much
slower than OST and LazyOST. This is because the cost-
sensitive naı̈ve Bayes searches for attributes to test while the
cost-sensitive decision tree directly uses the tree structure to
determine attributes to be tested for each test example.
Although LazyOST is several times slower than OST, but
both are very fast. Also, we can observe that the time of
CSNB becomes longer when the ratio of unknown attributes
increases as there are more attributes that should be
searched and considered. However, both OST and LazyOST
use about the same time since the tree sizes of both lazy and
eager decision trees remain roughly the same when the ratio
of unknown attributes increases.

4.2 Single Batch Tests

The Sequential Test Strategies discussed in the previous
section have to wait for the result of each test to determine
which test will be the next one. Waiting not only agonizes

patients in medical diagnosis, it may also be life threatening
if the disease is not diagnosed and treated promptly. Thus,
doctors normally order one set of tests to be done at once.
This is the case of the Single Batch Test. Note that results of
the tests in the batch can only be obtained simultaneously
after the batch is determined.

In [8], a very simple heuristic is described. The basic idea
is that when a test example is classified by a minimum-cost
tree and is stopped by the first attribute whose value is
unknown in the test case, all unknown attributes under and
including this first attribute would be tested as a single
batch. Clearly, this strategy would have exactly the same
misclassification cost as the Optimal Sequential Test, but the
total attribute cost is higher as extra tests are performed. We
call this strategy Naı̈ve Single Batch (NSB).

We propose two new and more sophisticated Single
Batch Test strategies, and discuss their strengths and
weaknesses. We will show experimentally that they are
better than the Naı̈ve Single Batch and the single batch
based on naı̈ve Bayes [2].

4.2.1 Greedy Single Batch (GSB)

The rationale behind GSB is to find the most likely leaf (the
most typical case) that the test example may fall into, and
collect the tests on the path to this leaf as in the single batch
of tests (to “confirm” the case, similar to the diagnosis
process of many doctors). More specifically, it first locates
all “reachable” leaves under the first unknown attribute (let
us call it u) when the test example is classified by the tree.
Reachable leaves are the leaves that can be possibly reached
from u given the values of known attributes and all possible
values of the unknown attributes under u. Then, a reachable
leaf with the maximum number of training examples, which
is used to estimate the most likely leaf for the test example,
is located, and the unknown attributes on the path from u to
this leaf are collected as the batch of tests to be performed.

Intuitively, this strategy would produce a smaller total
attribute cost than the Naı̈ve Single Batch as only a subset of
the tests is performed. However, it may increase the
misclassification costs compared to the Optimal Sequential
Test, as the greedy “guesses” may not be correct, in which
case the test example will not reach a leaf, and must be
classified by an internal node in the decision tree, which is
usually less accurate than a leaf node. This will incur a
higher misclassification cost.

4.2.2 Optimal Single Batch (OSB)

The Optimal Single Batch (OSB) seeks a set of tests to be
performed such that the sum of the attribute costs and
expected misclassification cost after those tests are done is
optimal (minimal). Intuitively, it finds the expected cost
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TABLE 4
The Total Cost (in $) for LazyOST, OST, and OOST
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TABLE 5
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reduction for each unknown attribute (test), and adds a test
to the batch if the expected cost reduction is positive and
maximum (among other tests). More specifically, when a
test example is classified by the tree, and is stopped by the
first unknown attribute u in the tree, the total expected cost
miscðuÞ can be calculated. At this point, miscðuÞ is simply
the expected misclassification cost of u, and there is no
attribute cost. If u is tested at a cost C, then the test example
is split according to the percentage of training examples that
belong to different attribute values and is duplicated and
distributed into different branches of the tree (as we do not
know u’s value since this is a batch test), until it reaches
some leaves, or is stopped by other unknown attributes. For
each such reachable leaf or unknown attribute, the expected
cost can be calculated again, and the weighted misclassifi-
cation cost can be obtained (let us call it S). The sum of C
and S is then the expected cost if u is tested, and the
difference between miscðuÞ and C þ S is the expected cost
reduction EðuÞ if u is tested. If such a cost reduction is
positive, then u is put into the batch of tests. Then, from the
current set of reachable unknown attributes, a node with
the maximum positive cost reduction is chosen, and it is
added into the current batch of tests. This process is
continued until the maximum cost reduction is no longer
greater than 0, or there is no reachable unknown attributes
(all unknown attributes under u are in the batch, reducing
to Naı̈ve Single Batch). The batch of tests is then discovered.
The pseudocode of OSB is shown below:

L = empty /* list of reachable and unknown attributes */

B = empty /* the batch of tests */

u = the first unknown attribute when classifying a test case

Add u into L

Loop

For each i 2 L, calculate EðiÞ:
EðiÞ ¼ miscðiÞ � ½cðiÞ þ

P
pðRðiÞÞ �miscðRðiÞÞ�

EðtÞ ¼ maxEðiÞ /* t has the maximum cost reduction */

If EðtÞ > 0, then add t into B, delete t from L, add rðtÞ into

L else exit Loop /* No positive cost reduction */

Until L is empty

Output B as the batch of tests

In the pseudocode, miscð:Þ is the expected misclassifica-
tion cost of a node, cð:Þ is the attribute cost, Rð:Þ is all
reachable unknown nodes and leaves under a node, and
pð:Þ is the probability (estimated by ratios in the training
data) that a node is reached. Therefore, the formula EðiÞ in
the pseudocode calculates the cost difference between no
test at i (so only misclassification cost at i) and after testing i
(the attribute cost plus the weighted sum of misclassifica-
tion costs of reachable nodes under i). That is, EðiÞ is the
expected cost reduction if i is tested. Then, the node t with
the maximum cost reduction is found, and if such a
reduction is positive, t should be tested in the batch. Thus,
t is removed from L and added into the batch list B, and all
reachable unknown nodes or leaves of t, represented by the
function rðtÞ, is added into L for further consideration. This
process continues until there is no positive cost reduction or
there is no unknown nodes to be considered (i.e., L is
empty). The time complexity is linear to the size of the tree,
as each node is considered only once.

Comparing the two new single batch strategies, Greedy
Single Batch (GSB) is simple and intuitive; it finds the most
likely situation (leaf) and requests tests to “confirm” it. The
time complexity is linear to the depth of the tree. It works
well if there is a reachable leaf with a large number of
training examples. The time complexity of the Optimal
Single Batch (OSB) is linear to the size of the tree, but it is
expected to have a smaller total cost than GSB. Both GSB
and OSB may suggest tests that may be wasted, and test
examples may not fall into a leaf.

4.2.3 Case Study on Heart Disease Continued

We apply GSB and OSB on the same test case as in
Section 4.1.1 with the decision tree in Fig. 1b. The GSB
suggests the (single) batch of (cp and thal), while the OSB
suggests the single batch of (cp, sex, slope, fbs, thal, age,
chol, and restecg) to be tested. With both GSB and OSB, the
test case does not go into a leaf, and some tests are wasted.
The attribute cost is $103.9 for GSB and $221.17 for OSB,
while the misclassification costs are 0 for both GSB and
OSB. Thus, the total cost for the test case is $103.9 and
$221.17 for GSB and OSB, respectively. Note that we cannot
conclude here whether GSB is better than OSB as this is only
for one test case.

4.2.4 Comparing Total Cost for Single Batch Strategies

We use the same experiment procedure on the same 13 data
sets used in Section 4.1.2 (see Table 2) to compare the
overall performance of various Single Batch Test strategies
including CSNB-SB [2]. The only change is that we set the
misclassification costs to be much higher: $2,000/$6,000
($2,000 for false positive and $6,000 for false negative) for
the more balanced data sets (the minority class is greater
than 10 percent) and $2,000/$30,000 for the imbalanced
data sets (the minority class is less than 10 percent). This
will result in larger trees, and thus, the batch effect is more
evident. The total costs for the 13 data sets are listed in
Table 6 and the average total costs are plotted in Fig. 3.

From Fig. 3, we can clearly see that overall our new
single batch strategies OSB and GSB outperform previous
methods CSNB-SB and NSB. When the ratio of missing
attributes is relatively small (0.2), the three tree-based single
batch test strategies are similar, as very few attributes
would need to be tested. When the ratio of missing
attributes increases, the differences become more evident,
especially between our newly proposed strategies (GSB and
OSB) and previous methods (NSB and CSNB-SB). In
general, the tree-based single batch strategies perform
better than the naı̈ve Bayes-based one. The reason is again
that the structure of the minimum-cost decision tree is
utilized when deciding the single batch, while naı̈ve Bayes
has no such structure to rely on.

4.2.5 Comparing Speed for Single Batch Strategies

We also find the running speed of CSNB-SB and other tree-
based single batch strategies (NSB, GSB, and OSB) are about
the same. Thus, we only compare the speed of NSB with
that of CSNB-SB. The average running time for a test
example on the data set Ecoli is showed in Table 7.

From Table 7, we can see NSB is much faster than CSNB-
SB. It is because the tree-based test strategies can utilize the
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tree structure in deciding which tests to perform, so the
time complexity of the testing strategies is only liner to the
tree depth or tree size, while CSNB-SB is based on Naı̈ve
Bayes, and a search is performed to find the tests with small
costs. Thus, the average test time is much longer, and it
increases with the unknown attribute ratio. The tree-based
test strategies, however, have similar test time for different
unknown attribute ratios.

4.3 Multiple Batch Tests

The Multiple Batch Test naturally combines the Sequential
Test and the Single Batch Test, in that batches of tests can be
requested in sequence. To make the Multiple Batch Test
meaningful, one must assume and provide a “batch cost,” the
extra cost of each additional batch test (there is no batch cost
for the first batch). This cost reflects the cost of “waiting” for
the test results of previous batches. Ideally, if the batch cost is
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$0, then there is no need to do more than one test at a time,
and the Multiple Batch Test becomes simply the Sequential
Test. If the batch cost is infinitely large, then one cannot
afford to do more than one batch of tests, and the Multiple
Batch Test becomes the Single Batch Test.

The following two Multiple Batch Test strategies are an
extension (in the same way) of the previous Single Batch
Test strategies: Greedy Single Batch and Optimal Single
Batch. Thus, we simply change “single” to “multiple” in
naming the two new strategies.

4.3.1 Greedy Multiple Batch Test (GMB)

We first describe the Greedy Multiple Batch Test based on

the Greedy Single Batch Test. Recall that Greedy Single

Batch Test guesses the most probability path for a test

example. All the tests on this path are collected. In Greedy

Multiple Batch Test, we keep on adding tests on the paths

into the current batch until the cumulative ROI (return of

investment) does not increase. The rationale behind this

(heuristic) strategy is that attributes that bring a larger ROI

should be worth including in the same batch test. The ROI is

equal to the return (the total cost reduction) divided by the

investment (sum of the total attribute cost and the batch

cost). That is,

ROI ¼
P
Costreduction

BatchCostþ
P
AttributeCost

:

After the first batch of tests is determined and tested with
values revealed, the test example can be classified further
down in the tree according to the test results until it is
stopped by another unknown attribute. The same process
applies, until no more batches of tests are required. The time
complexity of this strategy is linear to the size of the tree, as
each node in the tree would be considered at most once.

The algorithm described above is highly heuristic as it
often adds more than one test into the current batch at a
time. Thus, even if the batch cost is $0, the strategy is not
equivalent to Sequential Test as in the ideal situation, but to
Greedy Single Batch. Also, if the batch cost is very large, the
current batch will grow until all the remaining unknown
attributes are added into the current batch, and the strategy
is similar to the Naı̈ve Single Batch.

4.3.2 Optimal Multiple Batch Test (OMB)

Here, we extend Optimal Single Batch to Optimal Multiple

Batch in the very same way as we extend Greedy Single

Batch to Greedy Multiple Batch. Recall that in the Optimal

Single Batch Test, an unknown attribute is added into the

batch if the successive cost reduction of testing it is positive

and maximum among the current reachable unknown

attributes. In the Optimal Multiple Batch Test, we keep on

adding more unknown attributes into the current batch

until the accumulative ROI (defined and used in Greedy

Multiple Batch) does not increase.

The algorithm described above is heuristic but it is close

to the ideal one: It guarantees that if the batch cost is $0,

then no extra tests will be added into the current batch, and

the strategy is equivalent to the Sequential Test. On the

other hand, if the batch cost is very large, the current batch

will grow until the cost reduction of the remaining

unknown attributes is no longer greater than 0, and the

strategy is equivalent to the Optimal Single Batch.

4.3.3 Case Study on Heart Disease Continued

We apply the Greedy Multiple Batch on the same test
example with the tree in Fig. 1b. Assuming the batch cost is
$50.00, the strategy decides that two batches of tests are
needed for the test case. The first batch of tests contains cp
and thal. As the value of cp is 3, not 4 (expected, as the test
example can go down to the thal node if cp = 4), the second
batch is needed (containing cp, fbs, thal, and thalach). As cp
and thal are already tested, only fbs and thalach have
attribute costs. Thus, the total attribute costs for the test case
is $161.1 (including the batch cost $50.00), while the
misclassification cost is 0. Thus, the total cost is $161.1.
The Optimal Multiple Batch Test suggests two batches of
tests. The first batch has just two tests, cp and fbs. After the
values of cp and fbs are obtained (as cp = 3 and fbs = 1), the
second batch also contains two tests, thal and thalach. The
misclassification cost is 0, while the total attributes costs for
the test case is also $161.1 (including the batch cost of
$50.00). Thus, the total cost for the test case is also $161.1.

4.3.4 Comparing Total Cost for Multiple Batch

Strategies

We conduct experiments with the two Multiple Batch Test
Strategies on the same 13 data sets using the same
procedure as in earlier sections. We vary the batch cost to
be $0, $100, and $200. Table 8 lists the number of batches
under different batch costs for the 13 data sets, and Fig. 4
plots the average results of the 13 data sets. Note that the
number of batches is often less than 1 especially when the
ratios of missing attributes are small (such as 0.2). This is
because often test examples do not encounter unknown
attributes when they are classified by the decision tree and,
thus, no tests are needed. As the tree would likely use
known attributes near the top of the tree, a feature of the
lazy tree discussed earlier, often test examples can reach a
leaf (classification result) without encountering any un-
known attribute. (We have also observed this in the
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TABLE 7
The Average Running Time (in Milliseconds) of a
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Optimal Sequential Test and Single Batch Test discussed
earlier.) We also note that the number of batches is almost
the same for the Greedy Multiple Batch Test under different
batch costs, so we list only one value (the average) in Table 8
and plot only one curve in Fig. 4.

From Fig. 4, we can draw several interesting conclusions

for the two Multiple Batch Test Strategies. For Optimal

Multiple Batch, first of all, the smaller the batch cost, the

more the number of batches (for the same ratio of unknown

attributes). This meets our expectation as when the batch

cost is small, it is cheaper to wait and, thus, more desirable

to actualize the tests and decide the subsequent tests. The

Optimal Multiple Batch Test becomes the Optimal Sequen-

tial Test when the batch cost is zero. Second, when the ratios

of missing values in the test examples increase, the average

number of batches also increases. This is also expected, as

with more unknown attributes, there is more opportunity to

do more batches of tests on the unknowns. On the other

hand, the number of batches of the Greedy Multiple Batch

Test does not vary with the batch cost. In most situations,

only one batch is sufficient, if tests are required. This is due

to the heuristic nature of the Greedy Multiple Batch, as it

adds multiple tests into the batch in each step (while the

Optimal Multiple Batch adds only one test at a time). We

can expect that the Optimal Multiple Batch would outper-

form (in terms of the total cost) the Greedy Multiple Batch,

as shown below.
Table 9 reports the total cost under different batch costs

and ratios of missing values in test examples for the 13 data

sets, and Fig. 5 plots the average of the 13 data sets.

Similarly, the total cost of the Greedy Multiple Batch Test is

very similar (less than 1 percent difference) with various

batch costs, so we list its results in one row in Table 9 and

plot in one curve in Fig. 5. For Optimal Multiple Batch, we

can see clearly that when the ratio of missing values

increases, the total cost also increases, as expected. What is

more interesting is that when the batch cost increases, the

total cost also increases. This is because Multiple Batch Test

is a trade-off between the best situation of Sequential Test (B

= $0) and the worst situation of Naı̈ve Single Batch Test

(B ¼ 1). Comparing Greedy Multiple Batch and Optimal

Multiple Batch, we can see that at a low ratio of missing

values (such as 0.2), the former is similar to the latter with a

small batch cost (B = $0). This is because when the batch

cost is small, the Optimal Multiple Batch Test becomes

Optimal Sequential Test, which is better but similar to

Greedy Single Batch; both perform tests from the first

unknown attribute to a leaf. At a high ratio of missing

values (such as 1), Greedy Multiple Batch has a similar total

cost as Optimal Multiple Batch when the batch cost is high

(such as $200). This is because at this stage, the Optimal

Multiple Batch becomes Optimal Single Batch, and as Fig. 3

shows, Optimal Single Batch has a similar total cost with

Greedy Single Batch. The results suggest to us that under

low ratios of missing values, the simpler and faster Greedy

Multiple Batch algorithm is preferred, while under high

ratios of unknown values, the Optimal Multiple Batch

should be applied.
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Fig. 4. The average number of batches for the two Multiple Batch Test
Strategies.



5 CONCLUSIONS AND FUTURE WORK

In this paper, we present a lazy decision tree learning
algorithm to minimize the sum of misclassification costs and
attribute costs. We then design three categories of test
strategies: Sequential Test, Single Batch Test, and Multiple
Batch Test, to determine which unknown attributes should
be tested, and in what order, to minimize the total cost of
tests and misclassifications. We evaluate the performance (in
terms of the total cost) empirically, compared to previous
methods using a single decision tree and naı̈ve Bayes. The
results show that the new test strategies, Lazy-tree Optimal
Sequential Test, Optimal Single Batch, and Optimal Multiple
Batch, work best in the corresponding categories. The time

complexity of these new test strategies is linear to the tree

depth or the tree size, making them efficient for testing a

large number of test cases. These strategies can be readily

applied to large data sets in the real world. A detailed case

study on heart disease is given in the paper.
In our future work, we will allow variable wait costs for

different tests; this can probably unify Single Batch and

Sequential Test Strategies discussed in this paper. We also

plan to continue to work with medical doctors to apply our

algorithms to medical data with real costs. Last, we plan to

study the effect of the pruning in cost-sensitive decision

trees, and incorporate other types of costs in our decision

tree learning and test strategies.
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Fig. 5. The average total costs (in $) under different batch costs for our

Multiple Batch Test Strategies.


